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Abstract—Based on a distributed Cloud infrastructure,
geographic region, available resources, delays constraints,
power consumption, etc are factors that involve in determin-
ing the best datacenter where to allocate virtual resources. Al-
location cost will also be determined according to that choice.
For example, datacenters, installed in cold area, offer lower
cost because they need few cooling maintenance. However,
small datacenters, called Cloudlets, installed closer to players,
could impose higher cost because of their limited resources
or high need to cooling maintenance. The present paper
contributes on optimizing resources allocation cost by propos-
ing intelligent resources placement over a distributed Cloud
infrastructure for Massively Multi-players Online Gaming
(MMOG) service. We propose a dynamic Virtaul Machines
(VMs) placement algorithm that enable inter migration of
VMs between datacenters in order to guarantee low cost
while respecting constraints of capacity and response delay.
Our placement algorithm is based on a look-ahead window
that predicts future workload of the Cloud service with the
aim of minimizing number of VMs migration. Experiments
show effectiveness of our contribution in maintaining the
balance between low cost objective and delay and VMs
migration constraints.

Index Terms_MMOG, Distributed Cloud infrastructure,
VMs placement problem, resources allocation, multiple
multi-dimensional knapsack problem.

I. INTRODUCTION

An important challenge of running large-scale Cloud
services in a geo-distributed Cloud system is to mini-
mize the overall cost. Cloud system consists of tens of
geographically distributed datacenters interconnected with
high-capacity WAN leased lines. As writing this paper,
Amazon Web Service (AWS) deployed 33 datacenters
distributed in 12 regions all over the world as shown
in figure 1. It aims to extend its system to hold 42
datacenters worldwide distributed in 16 regions at the
end of 2017 [1]. Cost may vary from Cloud provider to
another. Besides, geographic region, available resources,
delays constraints, power consumption, etc are keys factors
that involve in deciding allocation resources cost. For
example, running a VM with 2 virtual CPUs, 3.75 GB
of memory and Linux OS on an AMAZON datacenter,
installed in Sao Paolo (Brasil) is priced with 0.155 $/h.
However, same characteristic of VM is priced as 0.1$/h if
placed in an AMAZON datacenter installed in Ohio (Est-
USA). Consecutively, the choice of datacenter, where to

Figure 1. Worldwide distributed AMAZON Cloud infrastructure

allocate and place virtual resources, is a critical task. In
principle, the problem of VMs placement can be classified
into two categories: static VMs placement and dynamic
VMs placement [2] [3]. Static placement of VMs can
be conducted at the startup of a system, or where there
are new VMs created which need to be placed to some
Physical Machines (PMs) without moving any existing
VMs, or all VMs would be shutdown and redistributed
on PMs. However, in real systems, several issues make
static method unreliable for VMs placement purposes.
For example, varied available capacities in datacenters,
unpredictable resources requirements of users especially
in peak periods, etc, could distort VMs mapping deci-
sion. Therefore, dynamic placement is more suitable to
achieve satisfactory performance. In fact, dynamic place-
ment method adjusts resources in accordance with the ser-
vice needs. The present paper discusses the dynamic VMs
placement problem in order to minimize the resources
allocation cost over a distributed data centers for large
scale MMOG service. We propose a predictable dynamic
VMs placement algorithm based on a look-ahead workload
window. The predictable workload window helps in select-
ing and placing the adequate resources in the appropriate
data center that minimize both delay and VMs migration
metrics even for next periods. Results show effectiveness
of our contribution in maintaining the balance between
cost, delay and VMS migration constraints.
Our paper makes the following contributions:

• We formulate the problem of dynamic VMs place-



ment under available capacity, response delay and
minimal inter-migration VMS constraints in order to
guarantee low resources allocation cost.

• We propose a predictable dynamic placement algo-
rithm based on a look ahead workload window that
predict future workload of the MMOG service in
order to minimize number of VMs migration between
datacenters. We evaluate our contribution comparing
to static and dynamic placement algorithms.

The rest of the paper is structured as following: section
II summarizes an overview of the related work. Section III
express the system model for MMOG Cloud service and
details the distributed Cloud Gaming architecture. Section
IV discusses the predictable dynamic VMs placement
problem. Section V analyzes experiments results. Last
section concludes and suggests future works.

II. RELATED WORKS

Dynamic placement approaches consist in suiting dy-
namically the mapping of resources to physical machines
in order to balance workloads of PMs or for other reasons.
Interested to that adaptable behavior, many existing studies
gave attention to dynamic resources placement approach.
We found that different mathematical formulations are
used to model the placement problem as bin-packing or
linear programming methods, etc. Authors in [4] propose
a « Sandpiper » system that implements two algorithms
of hotspot detection and mitigation. They use a greedy
algorithm to determine a sequence of moves or swaps
which iteratively migrates the highest loaded VM to
the least loaded PM. Paper [5] discussed three major
challenges faced by dynamic VMs placement which are
constraints of multi-dimensional resource bounds, initial
and legal intermediate states. They design a configuration-
generation algorithm based on simulated annealing algo-
rithm to solve the mapping optimization problem. Some
existing researches implement two phase solutions to solve
the dynamic VMs placement problem. The first phase
consists in determining the minimum number of PMs
needed. Second phase uses some heuristics to place VMs
to PMs. Paper [6] presents an algorithm for dynamic VMs
placement with minimizing cost goal. They calculate the
minimum number of hosts required to support all VMs and
remap them to PMs. The problem is mapped to a bin pack-
ing problem and is solved by using a heuristic approach
based on the first-fit approximation. Authors in [7] used
this two phases approach based on constraint programming
for VMs consolidation and replacement problem. Enabling
VMs migration, the first phase determines the necessary
and minimal number of VMs. Thereafter, a reconfiguration
plan with the lowest cost is chosen based on the decided
configuration of virtual resources.

III. SYSTEM MODEL

The MMOG virtual world is a large-scale virtual game
world populated with entities [8]. Entities could be either
avatars representing players or objects describing the game
scene, e.g walls, trees, weapons, etc. The virtual game
world is partitioned into zones. As shown in figure 2,
entities are distributed all over these zones. Zones are
typically predefined and limited geographical virtual areas.

Figure 2. Distibuted MMOG architecture

Figure 3. Submodels of the controller unit

Each zone is handeled independently by a separate VM.
VMs are placed into physical servers according to the
strategy of the game provider. All physical servers could
be placed over a set of distibuted data centers. Due to
mobility of avatars, MMOG zones have heterogeneous
density in terms of entities. This heterogeneity makes
configuration of correspondent VMs heterogeneous too.
Thus, each zone may require different amount of resources
such as CPU, memory, bandwidth, etc.

A cloud gaming platform is managed by a basic compo-
nent called a controller [9] [10]. It is a software component
responsible of resources management. Figure 2 focus on
the controller role by decomposing it in submodules as
following:
• Admission control: computes number of actually con-

nected players. Accepted players are subject to appli-
cation provisioning.

• Data base: data, sent by the admission control, are
inserted into an SQL database.

• Workload analyzer: interacts with the historic data
base to estimate futur service workload. Results are
passed to resources predictor module.

• Resources predictor: decides capacity of expected
resources to be allocated based on informations sent
by workload analyzer module.

• Resources provisioner: allocates resources based on
informations sent by resources predictor and admis-
sion control.

In a previous work [11], we have implemented the con-
troller component with all sub-models in the aim of
modeling the MMOG workload. We used as database,



Figure 4. Cloud Gaming distributed architecture
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real traces of "World of Warcraft" (WoW) game [12], a
popular MMOG real game. Records describe a three-years
play game from January 2006 to January 2009. As result,
we have proposed the Seasonal Autoregressive Integrated
Moving Average (SARIMA) model that generally fits the
MMOG workload behavior. We suggest in this paper to
use that predictive workload model for allocation and
placement resources purposes.

IV. PREDICTABLE DYNAMIC VMS PLACEMENT
PROBLEM BASED ON LOOK-AHEAD WORKLOAD

WINDOW

We model our predictable dynamic VMs placement
problem using a multiple multidimensional knapsack one.
Knapsacks are data centers. VMs are items to be placed
in knapsacks. K types of resources can be required by
an item (CPU, memory, bandwidth, space disk, etc). We
define a vector weight wm,v = (w1

m,v, w
2
m,v, ..., w

K
m,v) as

a set of requirement resources of vth item placed in mth

knapsack. Each knapsack has a vector capacity constraint
bm = (b1m, b

2
m, ..., b

K
m) stating the maximum amount of

each resource type. Formally, the problem is defined as
follow:

minimizeTt=t0(

M∑
m=1
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cm,vxm,v) (1)

(Dv(pv) + 2 ∗Nm,p)xm,v ≤ Dtmax,∀m,∀v,∀p (2)
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wk
m,vxm,v ≤ bkm,m = 1..M, k = 1..K (3)
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xm,vxm′,v (4)

M∑
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xm,v = 1 (5)

xm,v ∈ {0, 1} (6)

During a period of time T, we consider a set of V
VMs to be placed in M datacenters. Each VM, noted
v with 1 ≤ v ≤ V , has a vector weight wv composed
by the amount of CPU w1

m,v , memory w2
m,v , bandwidth

w3
m,v , and storage space w4

m,v . The variable xm,v is used
to specify whether the vth virtual machine would be
placed in the mth datacenter. In this case, xm,v takes 1
value; otherwise, zero value is filled instead. The objectif
function, given by equation 1, aims to minimize the cost
relative to the placement of VMs in datacenters. The
pricing model adopted is for AMAZON EC2 [1]. Equation
2 express the delay constaint of our problem. In fact,
the global response delay, which is the sum of network
and processing delays, should not exceed a predefined
threshold Dtmax. We have expressed and detailed network
and processing delays functions in our previous work [16].
Equation 3 lists the capacity constraint of a knapscak
problem for K types of resources. In fact, all allocated
resource type, wk

m, in the mth datacenter should not ex-
ceed its coresponding capacity bkm. Equation 4 emphasizes
minimization of migration number for each VM over time.
Equation 5 ensures that each VM is placed in only one data
center.

Since the objective function follows a linear aspect, we
choose to solve the abovementioned problem by means of
"linprog" solver. We have implemented our contribution
on Matlab [13], a multi-paradigm numerical computing
environment. We use N to denote all possible resources
configurations offered by the Cloud provider, Z present
number of zones that the MMOG world is partitioned to,
VMi is a variable that parses different resources config-
uration scenarios where the index i vary from 1 to N .
Tw present the size of the look-ahead prediction window.
As discussed previously, we employ the SARIMA(1,1,1)
model to predict future workload of the MMOG service
during the next Tw period. Hence, ˆVMTw

[z] denotes the
estimated workload of zth zone when looking Tw period
ahead. As output, πt denotes the placement vector of our
algorithm at time t. πt is defined as a placement sequence
{πt[1], πt[2],..., πt[z],..., πt[Z]} comprising placement of
all zones of the MMOG world. At time t0, algorithm1
initializes, in line 1, the first placement sequence πt0 to
NULL value. Line 2 sorts all configuration scenarios in
ascending order based on their performances and alloca-
tion costs. In fact, the more the resources configuration is
powerful, the high the cost will be [10]. Thereafter, line
3 initializes the window’s size to look-ahead. As fourth
step, Lines 4-19 iteratively find the adequat configuration



Algorithm 1 VMS PLACEMENT ALGORITHM BASED ON
LOOK-AHEAD PREDICTIVE WORKLOAD WINDOW
Require: N : number of resources configuration scenarios,

Z: number of zones of the MMOG world,
VMi: ith actual resources configuration scenario:
number of VMs to allocate ,
Tw: size of the look-ahead predictive workload win-
dow,

ˆVMTw
[z]: predicted workload relative to zth zone

within next Tw period,
πt: placement vector of decided VMs configuation of
1 .. Z zones,
πt[z]: zth element of the placement vector,

1: πt0 = NULL vector;
2: sort VMi with i = 1..N depending on performances

and allocation cost in ascending order;
3: set the size of the look-ahead predictive workload

window Tw
4: while t = t0 : Tw : T do
5: for z = 1 .. Z do
6: if Jump == True then
7: continue;
8: else
9: virtual resources allocation and placement

(t,z,πt[z]);
10: Estimate future workload, noted ˆVMTw

[z] , of
the zth zone within the next Tw period;

11: if πt[z] satisfy ˆVMTw [z] then
12: pit+Tw

[z] = pit[z];
13: Jump = True;
14: else
15: Jump = False;
16: end if
17: end if
18: end for
19: end while

resources and their placement sequence for each zone over
time.

Line 6 verifies if the previous configuration resources
allocated for zone z could satisfy needs of the same zone at
t. Verification decision is made in lines 11-16. If verified,
our algorithm moves so to the next zone. In the other case,
we call the allocation and placement resources function
detailed in algorithm 2. This function fills out the sequence
placement vector for a zone z at time t. Once decision
is made, we predict workload for current zone z during
next Tw period. Estimated workload, noted ˆVM , is given
by the SARIMA(1,1,1) model as discussed in [11]. Line
11 tests if πt could reply, also, future workload ˆVM of
zone z. To do so, the solver linprog tests if the configured
resources of vector πt at t satisfy delay, capacity and
minimum migration constraints at t + Tw. On the base,
Jump variable changes its value. If verification is proved,
it takes 1 value, meaning that allocation and placement
phase will be ignored and the same placement sequence
will be kept for time t + Tw. If not, Jump variable takes
zero value, meaning that we will reconfigured the sequence
placement for next time slot.

We call the allocation and placement function at a given

Algorithm 2 VIRTUAL RESOURCES ALLOCATION AND
PLACEMENT(t,z,πt[z])
Require: N : number of resources configuration scenarios,

VMi: ith actual resources configuration scenario:
number of VMs to allocate ,
Wzt : workload of zth zone at time t
C(z, pz, v): cost relative to zth zone when allocating
vth resources configuration scenario,
D(z, pz, v): response delay relative to zth zone when
allocating vth resources configuration scenario,
for i = 1 .. N do

2: if VMi satisfy Wzt then
Calculate the allocation cost C(z, pz, v) relative
to the VMi configuration;

4: Calculate the processing delay D(z, pz, v) rela-
tive to the VMi configuration;
πt[z] = linprog(VMi,C(z, pz, v), D(z, pz, v));

6: if πt[z] is NULL then
upgrade to the next configuration scenario;

8: continue;
else

10: break;
end if

12: end if
end for

time t and for a particular zone z. At each iteration,
algorithm 2 calculates the response delay and the cost
corresponding to all configuration scenarios, then, calls
the "linpog" solver to select the most suitable scenario
that satisfies objective function and its constraints.

V. EXPERIMENTAL RESULTS

We compare in this section experiments results of
three VMs placement approaches which are static,
dynamic and predictable dynamic algorithms. Static
heuristic keeps initial VMs placement without giving
attention to workload variability over time. However,
dynamic heuristic enable VMs re-allocation and migration
over available datacenters if workload changes occurs.
Predictable dynamic placement heuristic works like the
simple dynamic algorithm with anticipating workload
variations thanks to employing the SARIMA predictive
model. This helps in allocating and placing resources
which serves actual and future needs. Hence, number
of future resources migration could be reduced. For our
experiments, we consider 33 data centers, as a Cloud
infrastructure, distributed all over the world [1]. For each
data center, we assume 10 physicals servers having the
following hardware characteristics [14]: 2048 Mb as
memory space, 104 Mb as storage space, 100 Mbps as
available bandwidth. Each unit has 4 processors with 100
MIPS as speed processor. Each physical server can host
several VMs. Used VMs configurations are those offered
by AMAZON EC2 platform for MMOG applications [1].
The number of zones and their population are extracted
from the "World of Warcraft" (WoW) game [12], a
popular MMOG real game. Referring to [15], we fixed
the global response delay threshold Dmax at 500 ms. In
order to evaluate performances in terms of delay, cost



Figure 5. Allocation Cost

Figure 6. MMOG service workload

Figure 7. Global response delay

Figure 8. Difference of VMs migration between Dynamic and Pre-
dictable dynamic placement algorithms

and number of VMs migration of different algorithms, we
developed and ran experiments using Matlab simulation
tool [13].

Figure 5 shows costs results. The static heuristic al-
locates resources with a constant cost. Because both dy-
namic and predictable dynamic algorithms adjust allocated
resources to the needs, their correspondent costs are lower
or sometime equal to static cost. They realize up to 13%
savings compared to static algorithm at high dense period
(in March-April 2007).

As regards the delay constraint, figure 7 compares
latency metric for above three heuristics. Static place-
ment algorithm realizes longest delay that exceeds tol-
erate threshold in peaks periods. This could leads to a

boring experience game. Because dynamic algorithm suits
allocation and placement resources to service workload
variation, we see its ability to maintain a quasi stable
and shorter delay than the static one. Powerful VMs are
allocated and placed in closer datacenters when the service
presents high peak workload. Consecutively, processing
and network delays would be as shorter as possible. In low
peak workload, dynamic algorithm allows longer but ac-
ceptable delays by allocating powerless VMs and placing
them in more far datacenters. However, predictive dynamic
algorithm realizes shortest response delays comparing to
others. At high peak rate (between March and July 2007),
predictive dynamic placement heuristic optimizes delay by
23%comparing to static approach. Along all simulations
period, both dynamics approaches realize closer delays
with slight improvement marked by predictable dynamic
placement algorithm.

A dual reading of two figures, 5 and 7, synthesizes that
predictable dynamic algoithm makes better the deal be-
tween optimizing allocation cost and correspondent delay.
Its look-ahead workload window helps in selecting and
placing adequate resources in the appropriate data center
that minimizes both delay and VMs migration metrics
even for next periods. Configuration decision of VMs
scenario to allocate depends imperatively on the density
of players to serve. High density requires powerful VMs
to guarantee short processing delay. Placement decision
is based on distance between datacenter and players and
on probability of non migration of resources during the
look-ahead window time. Our contribution prefers placing
resources in a datacenter that keeps global response delay
under the predefined threshold during [t, t + Tw] without
VMs migration.

We define δ as the difference between number of VMs
migration realized by the Predictable Dynamic algoithm,
noted RPD and number of VMs migration realized by
the Dynamic algoithm, noted RD. Fomally, δ = (RD −
RPD)/RD. Figure 8 show variation of δ variable over
time. The simple dynamic algorithm realizes more VMs
migration than our predictable dynamic algorithm. This
emphasizes the role of the look-ahead window in selecting
the placement that serves actual and future needs of the
service. Figure 8 shows that our contribution saves up
to of 10% of VMs migration in normal behavior service
and up to 90% for high peak periods (March, June 2007,
March 2008). This advantage could mitigates unnecessary
migration signalisations for the system architecture.

VI. CONCLUSION

The present paper contributes to the improvement of
resources management for a Cloud gaming service. For
that, it gives attention to VMs placement problem over a
distributed and heterogeneous Cloud infrastructure. Goal
is to optimize the overall resources allocation cost un-
der delay and VMs migration constraints. A multiple
multi-dimensional knapsack model is used for problem
formulation which is an NP hard one. Experimentally,
our contribution realizes successfully the balance between
these three compromises: allocation cost, delay and VMs
migration. As future work, we plan to study the impact
of VMs placement problem on the Quality of Experience



(QoE) of Cloud Gaming users. We aim also to propose a
utility function or a load balancing mechanism to distribute
fairly the workload over datacenters and to increase the
utility rate of the allocated resources.
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