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Abstract: Estimation of the soil organic carbon (SOC) content is of utmost importance in 

understanding the chemical, physical, and biological functions of the soil. This study proposes 

machine learning algorithms of support vector machines (SVM), artificial neural networks (ANN), 

regression tree, random forest (RF), extreme gradient boosting (XGBoost), and conventional deep 

neural network (DNN) for advancing prediction models of SOC. Models are trained with 1879 

composite surface soil samples, and 105 auxiliary data as predictors. The genetic algorithm is used 

as a feature selection approach to identify effective variables. The results indicate that precipitation 

is the most important predictor driving 14.9% of SOC spatial variability followed by the normalized 

difference vegetation index (12.5%), day temperature index of moderate resolution imaging 

spectroradiometer (10.6%), multiresolution valley bottom flatness (8.7%) and land use (8.2%), 

respectively. Based on 10-fold cross-validation, the DNN model reported as a superior algorithm 

with the lowest prediction error and uncertainty. In terms of accuracy, DNN yielded a mean 

absolute error of 0.59%, a root mean squared error of 0.75%, a coefficient of determination of 0.65, 

and Lin’s concordance correlation coefficient of 0.83. The SOC content was the highest in udic soil 

moisture regime class with mean values of 3.71%, followed by the aquic (2.45%) and xeric (2.10%) 

classes, respectively. Soils in dense forestlands had the highest SOC contents, whereas soils of 

younger geological age and alluvial fans had lower SOC. The proposed DNN (hidden layers = 7, 

and size = 50) is a promising algorithm for handling large numbers of auxiliary data at a province-

scale, and due to its flexible structure and the ability to extract more information from the auxiliary 

data surrounding the sampled observations, it had high accuracy for the prediction of the SOC base-

line map and minimal uncertainty. 
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selection techniques. Such variable selection techniques can simplify modeling by lowering the 

number of input variables and potentially improving the accuracy of soil predictions. There is no 

universal feature selection method to reduce the number of covariates in the pool presented to an ML 

algorithm. For instance, Behrens et al. [49] compared the two most common approaches for the 

selection of covariates, namely supervised and unsupervised, and found that the supervised feature 

selection approach was superior because the soil classes were predicted more accurately. 

Taghizadeh-mehrjardi et al. [50] explored the effect of the reduction in dimension of feature space 

with ant colony optimization (ACO) and correlation-based feature selection (CFS) on the accuracy of 

prediction of spatial models for each particle size fraction. In this study, we decided to implement 

the GA, one of the most advanced algorithms for feature selection [46]. GA can manage the datasets 

with many features and do not need specific knowledge about the problem parallelizing easily in 

computer clusters [46,51,52]. 

Although many ML algorithms have been developed for the prediction of soil properties, the 

development of site-specific techniques is necessary for enhancing the quality of thematic soil maps 

[53]. However, there is no best worldwide predictive algorithm for SOC mapping given that the 

accuracy level of SOC predictions is highly related to the local geographic attributes of the study area 

[54], the sampling size [9,55] and the selected auxiliary variates [14,19,56]. 

Mazandaran province, northern Iran, is located on the southern coast of the Caspian Sea. There 

is a descending precipitation gradient from the west to east across the region, leading to a diversity 

of soil moisture regime (SMR) and soil temperature regime (STR) classes [57]. Due to the changes in 

SOC contents in northern Iran caused by the human activities and natural attributes (landslide, 

flooding, depression) [58,59], the existence of a high-quality SOC prediction map with known 

uncertainty in the Mazandaran province is crucial. This provides a base-line map for further temporal 

monitoring of SOC at the province-scale. Despite the known advantages of feature selection, there 

have been no insights into the important variables for SOC prediction in northern Iran given the 

different predominant climatic and soil-forming conditions. Therefore, due to the lack of an SOC 

base-line distribution map in Mazandaran province, the objectives of this research were (1) to 

determine the important auxiliary variables driving the SOC contents in the province using GA as a 

popular automatic method for feature selection, (2) to test the performance of six ML algorithms fed 

with GA-selected auxiliary variables and (3) to predict the spatial distribution of SOC for mapping 

with associated uncertainty and (4) to compare SOC contents in different geological units, soil classes 

and land uses in Mazandaran province. 

2. Materials and Methods 

2.1. Study Area  

This research was conducted in Mazandaran province, northern Iran. The region is located at a 

longitude of 50°31′21′′ E to 53°56′52′′ E and latitude of 36°38′06′′ N to 36°54′59′′ N and covers an area 

of 2,388,179 ha. It borders the Caspian Sea in the north and the Alborz Mountain range in the south 

(Figure 1). Most of the province is covered by dense, moderate, and low-density forest with each 

forest type covering 39%, 4%, and 2% of the total area, respectively. There are several kinds of 

cultivated lands in the study area. Paddy fields are the most common agricultural land use with about 

210,000 ha, and orchards cover about 90,000 ha. Based on the De Martonne climate classification, the 

western, central, eastern, and mountainous parts of the province have very humid, humid, 

Mediterranean, and semihumid climates, respectively. The mean annual temperature ranges from 18 

°C on the coastal plain to below 8 °C in the highlands. There is a gradient of the decreasing 

precipitation from the west (around 1400 mm) to the east direction (around 450 mm) leading to the 

diversity of soil moisture regime (SMR) and soil temperature regime (STR) classes across the 

province. The xeric SMR class covers the largest area in the province, followed by the udic and aquic 

classes, while thermic (66%) is the most abundant STR followed by mesic (33%) and cryic (1%) [57]. 

The variation of elevation ranges from the Caspian Sea coastal areas with elevations <−5 m to more 

than 3000 m above sea level in the highlands of the Alborz Mountain range. Five USDS soil taxonomy 













 

2.5.4. Random Forest (RF) 

The random forest (RF) consists of a series of binary rule-based decisions that define 

relationships between input and its dependent variables. It comprises a large number of individual 

tree algorithms trained from bootstrap samples of the data [85]. The single prediction will be made 

by accumulating the results of all trees. One of the main benefits of random forests is that they can 

precisely explain the compound connections between the independent variables and the dependent 

variables. So when composite environmental systems and ecological supplementary variables are 

introduced, RF can be helpful [86]. Two important parameters in RF algorithms are the number of 

trees (Ntree) and the number of variables (Mtry) which are available for selection in each split [87]. 

These two main parameters (Mtry and Ntree) were adjusted for the best result. The range of values 

used is shown in Table 1. 

2.5.5. Extreme Gradient Boosting (XGBoost) 

The algorithm for extreme gradient boosting (XGBoost) was proposed by Chen and Guestrin 

[88]. It is an algorithm for improving the performance for gradient boosting machines and especially 

for regression trees and K classification methods [89]. By the supplemental training strategies, the 

“boosting” as a basic idea of this method extends a “strong” learner from a set of “weak” learners. 

The XGBoost technique is supposed to improve calculation but also reduce over-estimation events. 

The XGBoost simplifies the objective functions and improves the calculation speed to an optimum by 

allowing the combination of estimative and adjustment terms. In addition, in the XGBoost approach, 

during the training step, simultaneous computations will be done automatically for the functions 

[89]. More information can be obtained about the XGBoost algorithm from the work of [88]. Table 1 

shows the XGBoost algorithm parameters used to do this research including the type of algorithm, 

the depth of trees, the minimum sum of weights of all observations, the number of variables provided 

to a tree, the number of samples provided to a tree, and the learning rate. 

2.5.6. Deep Neural Networks (DNN) 

The performance of conventional DNN as an estimation algorithm for remote sensing 

applications has been extensively explored during the past few years [90]. DNN has been reported 

as a reliable and efficient approximation function for delivering insight into the relationship (whether 

a linear or a nonlinear relationship) between input and output variables [91]. DNN has shown 

promising results in a wide and diverse range of applications from digital signal processing and 

control systems to hazard susceptibility mapping [92,93]. Figure 3 illustrates the architecture of a 

conventional DNN. The networks are configured by passing several layers for learning the 

probability of the outputs. 

 

Figure 3. Illustration of the architecture of conventional deep neural network (DNN). 



 

In this study, conventional DNN is a feedforward learning network where there is no looping 

back from the output layer to input. In this case, the DNN produces a map of virtual neurons and 

random weights. The inputs and weights will be multiplied and would deliver outputs within the 

range of 0 and 1. The algorithm would adjust the weights to accurately identify a particular learning 

pattern to fully process the data. The DNN includes L hidden layers, the input layer (vector X), and 

the output layer (vector Y). As recently formulated by Wang et al., [94], the estimation of Y can be 

presented as follows. 

𝐳1 = 𝜎1(𝐖1𝐗 + b1) (1) 

𝐳2 = 𝜎2(𝐖2𝐳1 + b2),    𝐳𝐿 = 𝜎𝐿(𝐖𝐿𝐳𝐿−1 + b𝐿),    𝐘 = 𝐖𝐿+1𝐳𝐿 + b𝐿 ,   𝜃 = {𝐖𝑖 , b𝑖}𝑖=1
𝐿+1 (2) 

where b𝑖  and 𝜎𝑖 are the bias and the activation function of the ith layer. Here, 𝐖𝑖 represents the 

weights. In Equation (2), the 𝐿 + 1 represents the output layer. Therefore, Y can be presented as 

follows. 

𝐘 = 𝑁𝑁(𝐗; 𝜃) (3) 

Eventually, through calculating the mean square error (MSE) of output and input values, loss 

function L can be estimated as follows. 

𝑀𝑆𝐸𝐷𝑎𝑡𝑎 = 𝐿(𝜃) =  
1

𝑁
∑|𝑁𝑁(𝐗𝑖 ; 𝜃) − 𝐘𝑖|

2

𝑁

𝑖=1

 (4) 

where N represents the sequence of data. Here, the GA is used to minimize the 𝐿(𝜃) function for the 

training. A trained DNN is further used for the estimation of the new variables. The predictive ability 

of neural networks is possible by learning large amounts of data. Generally, input data create the 

training datasets, and similar output data will be entered into a neural network algorithm. This 

algorithm can detect the basic rules in the data entered and compose an interior model that is suitable 

to estimate the new input data using several training repetitions during the process. The model can 

be computed by the interactions and connections between neurons, whereas any physical or clear 

mathematical relationships cannot be supplied [90]. The neural network structure can affect the 

precision of the predictive models. Each latent layer of the DNN algorithm consists of some 

calculative neurons that are interconnected to the next calculative neurons in the adjoining latent 

layers. To finalize the DNN model, the neurons of each latent layer measure the calculative neuron 

outputs of the prior layer, and after the computation procedure of the activation function, the outputs 

are generated for the subsequent layer [42]. 

Table 1 shows the specifications used for DNN, which are hidden layers, size, network weight 

initialization, learning rate, dropout regularization. In this study, for the DNN method, the H2O 

package [92] with the rectifier function as a nonlinear transformation was used for DNNs in this 

study [95]. It is worth mentioning that adhering to a balanced ratio of training and testing is of utmost 

importance in modeling with machine learning [96]. Several methods in a wide range of applications 

are introduced to identify the correct balance for testing [97]. Nevertheless, the evaluation metrics 

have been shown to be reliable measures to maintain a sufficient number of elements for a training 

dataset in soil research [37–40]. It is often observed that by decreasing the amount of training data, 

the error increases, which accurately indicates the worth of data for models. The amount of training 

data, in this study, is optimally tuned to ensure the lowest errors. The total dataset is divided into 10 

datasets that are sequentially used for training and testing. The DNN is calibrated 10 times to assure 

each data point was used as validation at least once. 

2.6. Evaluation of Algorithm Performance 

Ten-fold cross-validation was implemented for testing the performances of six ML prediction 

algorithms for estimating the SOC contents in Mazandaran province. In this regard, the total dataset 

was split into 10 datasets that were sequentially used as training and testing datasets for a given 

prediction algorithm. Each prediction model is calibrated 10 times, guaranteeing each data point was 

















 

 

Figure 7. Spatial prediction of (A) upper, (B) mean, and (C) lower confidence limits of soil organic 

carbon (SOC) using a deep neural network model. 

3.5. SOC Contents in Soil Classes and Geological Eras 

The mean comparison of the SOC contents within different soil orders and suborders is shown 

in Table 6. The Ultisols and Mollisols with mean SOC contents of 4.04% and 3.20%, respectively, had 

higher surface SOC compared with other soils. Most Ultisols and Mollisols were found in the dense 

forest in Mazandaran province showing the higher C inputs into the soils. The high precipitation 

with a relatively low MAT in the center of the Mazandaran province leads to higher SOC 

accumulation at the soil surface and in turn higher clay content in a Bt horizon [6,113] and the deeper 

Bk horizon [6,113,114]. Entisols had the highest SOC variability (CV = 40.66%) followed by the 

Inceptisols (33.94%), Alfisols (CV = 33.64%), and Mollisols (30.55%). The SOC under Mumults had 

the highest SOC with the lowest SOC variability (CV = 15.63) whereas Fluvents had significantly the 

lowest SOC due to the higher SOC decomposition caused by the exposure (tillage) and loss of SOC 

by erosion. 





 

 

Figure 8. Mean comparison of soil organic carbon values within (A) soil moisture regime, soil 

moisture regime (SMR), classes, (B) the soil temperature regime, soil temperature regime (STR), 

classes, and geological eras in the Mazandaran province. Values with different letters in each column 

indicate significant differences (p < 0.05). The maps of SMR and STR classes were produced by Emadi 

et al. [57] according to the Newhall model. 



 

3.6. SOC Contents in Landform Units and Land Uses 

The soils formed on mountainous landforms had the highest SOC (3.11%) values with forest 

land use, while there was little difference in SOC contents for the other landforms except for the soils 

developed on alluvial fans that had significantly the lowest SOC contents (1.57%) with high coarse 

fractions (soil particles greater than 2 mm) (Figure 9). The alluvial fans with unstable landforms, have 

a high susceptibility to erosion and have little water holding capacity providing the lowest 

aboveground biomass production in the study area. The high degrees of stability in mountain 

landforms especially in the summit areas [6] showed more developed soils including the Ultisols, 

Mollisols, and Alfisols. These are closer to the steady-state conditions relative to the younger 

landforms (Fluvents) leading to greater humification and SOC accumulation on mountain landforms 

that are currently covered by dense forest. On more geomorphically dynamic/unstable landforms, 

organic layers can be removed from the developing surface inducing the SOC losses through erosion 

[115]. 

 

Figure 9. Mean comparison of soil organic carbon values within (A) physiographic units and (B) land 

uses in the Mazandaran province. Values with different letters in each column indicate significant 

differences (p < 0.05). I indicates the error bar (SD) in all columns. 



 

The disturbed soils in croplands and orchards had significantly lower SOC compared with 

forests and rangelands except for poor rangelands. Soils in residential, dry farming, poor rangelands, 

and seashore areas had SOC mean values of 2.08%, 1.78%, 1.71%, and 0.75%, respectively. 

Unsurprisingly, the dense forestlands have significantly the highest SOC content with mean values 

of 3.77% (Figure 9) followed by the semidense forestlands (2.90%), low dense forestlands (2.50%), 

good rangelands (2.57%), and moderate rangelands (2.03%), respectively. Emadi et al. [58] reported 

that the cultivation of virgin forest and pasturelands in Mazandaran province led to about 35 and 

30% reduction of SOC content, respectively. The conversion of forest and rangelands into the 

croplands induces SOC oxidation whereby the topsoil SOC decreases. 

4. Conclusions 

The objective of this study was to determine a reliable algorithm for predicting the SOC contents 

in Mazandaran province through consideration of six different ML algorithms and using 105 

environmental auxiliary variables derived from terrain attributes, remote sensing, and climatic data. 

Thirty-five auxiliary predictors were selected by the GA method. Precipitation, NDVI, MODIS day 

temperature, MrVBF, and land use were the most important predictors. The results show that the 

DNN algorithm outperformed other ML algorithms in terms of the power of the prediction 

uncertainty at the province scale demonstrating that DNN is suitable for use as a robust estimator for 

SOC mapping in Mazandaran province. The SOC was lower in soils under late geological age 

(Cenozoic era), while it is accumulated in more developed Ultisols and Mollisols with virgin forest 

and rangelands in udic SMR classes spread across the middle strip of Mazandaran province. The 

mesic STR class has significantly higher SOC with high vegetation cover and biomass and probably 

with a lower C decomposition rate. The predicted SOC map could be used as a base-line for further 

studies and projects related to the C sequestration development both locally in soils of the 

Mazandaran province and globally at the worldwide scale. Although the DNN algorithm was found 

to be the best algorithm to map SOC contents more accurately than other studied ML algorithms, the 

search for optimized spatial interpolation algorithms is still in its early stages in this province. 

Moreover, further investigation should be conducted to test the potential of other combination 

algorithms in this province and test the reliability of DNN reliability for other regions in Iran with 

different climate and agro-ecological structures. 
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44 
Atmospherically Resistant 

Vegetation Index  
(−0.18 + 1.17 (NIR − RED/NIR + RED)) 

45 
Blue-Wide Dynamic Range 

Vegetation Index  
(0.1 × NIR − BLUE)/(0.1 × NIR + BLUE) 

46 Brightness Index ((RED)2 + (NIR)2)0.5 

47 Canopy Index (SWIR-1-GREEN) 

48 Carbonate Index (RED/GREEN) 

49 Chlorophyll vegetation index (NIR × RED/(GREEN)0.5 

50 Clay Index (SWIR-1/SWIR-2) 

51 Coloration Index (RED − GREEN/RED + GREEN) 

52 Differenced Vegetation Index (NIR − RED) 

53 Enhanced Vegetation Index (NIR − RED)/(NIR + C1 × RED − C2 × BLUE + L) 

54 Ferrous Minerals  (SWIR-1/NIR) 

55 
Green Atmospherically 

Resistant Vegetation Index 
(NIR − (GREEN − (BLUE − RED))/(NIR − (GREEN + (BLUE − RED)) 

56 Green Leaf Index (2 × GREEN − RED − BLUE)/(2 × GREEN + RED + BLUE) 

57 
Green Normalized Difference 

Vegetation Index 
(NIR − GREEN/NIR+ GREEN) 

58 Green Vegetation Index (0.29 × GREEN − 0.56 × RED + 0.6 × SWIR-1 + 0.49 × GREEN) 

59 Green-Blue NDVI (NIR − (GREEN + BLUE)/NIR + (GREEN + BLUE)) 

60 Green-Red Vegetation Index (GREEN − RED) 

61 Gypsum index  (SWIR-1 − NIR)/(SWIR-1 + NIR) 

62 Hue Index (2 × (RED − GREEN − BLUE))/(GREEN − BLUE) 

63 
Infrared Percentage Vegetation 

Index 
(NIR/(NIR+RED)) 

64 Iron Oxide (RED/BLUE) 

65 Leaf Water Content  (SWIR-1/SWIR-2) 

66 
Modified Soil Adjusted 

Vegetation Index 
(0.5 × ((2 × (NIR + 1)) − (((2 × NIR) + 1)2 − 8 × (NIR − RED))0.5)) 

67 Near Infrared Ratio (NIR/RED) 

68 Norm GREEN (GREEN/(NIR + RED + GREEN)) 

69 Norm NIR (NIR/(NIR + RED + GREEN)) 

70 Norm RED (RED/(NIR + RED + GREEN)) 

71 Normalized Based ((NIR − (BLUE + GREEN)/(NIR + (BLUE + GREEN))) 

72 Normalized Canopy Index (SWIR-1 − GREEN/SWIR-1 + GREEN) 

73 
Normalized Difference 

Moisture Index 
(NIR − SWIR-1)/(NIR + SWIR-1) 

74 
Normalized Difference Salinity 

Index 
(RED − NIR)/(RED + NIR) 

75 
Normalized Difference 

Vegetation Index  
(NIR − RED)/(NIR + RED)  

76 
Perpendicular Vegetation 

Index 
(NIR − r) cos µ − RED × sin µ 

77 Ratio Vegetation Index  (NIR/RED)/(GREEN + RED) 

78 Redness Index (RED^2/BLUE × GREEN) 

79 Reflectance Absorption Index  (NIR/(RED + SWIR-1)) 

80 
Renormalized difference 

Vegetation Index 
(NIR − RED)/((NIR + RED) ^ 1/2) 

81 MODIS Red Wavelength of 0.620–0.670 μm of MODIS spectral band 

82 MODIS Near Infrared  Wavelength of 0.841–0.876 μm of MODIS spectral band 

83 MODIS Night Temperature Land Surface Temperature/Emissivity Daily L3 Global 1 km 

84 MODIS Day Temperature Land Surface Temperature/Emissivity Daily L3 Global 1 km 

85 
MODIS Normalized Difference 

Vegetation Index  
(MODIS NIR − MODIS RED)/(MODIS NIR + MODIS RED)  

86 MODIS Brightness Index ((MODIS RED)2 + (MODIS NIR)2)0.5 

87 Soil Adjusted Vegetation Index (1+ L) × (NIR − RED)/(NIR + RED + L) 

88 
Specific Leaf Area Vegetation 

Index 
(NIR/RED + SWIR-1) 
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