
EasyChair Preprint
№ 6055

Conceptual Model for Component Selection: A
Resaerch Review on Existing Techniques

Nazia Bibi, Tauseef Rana, Qurat-Ul Ain and Ayesha Naseer

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 27, 2021

Conceptual Model for Component Selection: A
Research Review on Existing Techniques

Nazia Bibi

Department of Computer Software Engineering
National University of Sciences and Technology

Islamabad, Pakistan
nazia.phdcse@students.mcs.edu.pk

Tauseef Rana

Department of Computer Software Engineering
National University of Sciences and Technology

Islamabad, Pakistan
tauseefrana@mcs.edu.pk

Qurat-ul-Ain

Department of Computer
Air University

Islamabad, Pakistan
Quratulain.raja15@gamail.com

Ayesha Naseer

Department of Computer Software Engineering
National University of Sciences and Technology

Islamabad, Pakistan
ayeshanaseer@mcs.edu.pk

Abstract—Nowadays, software developers pay more attention

to component-related innovations with the implementation of

software reuse; most of which have been used in the development

of large-scale complex applications to improve software

development efficiency and speed up time to market. The

development of component-based software is a well-known

technique that establishes the reusability of software and cost-

effectively reduces development. The major issue, however, is

determining how to select a component. The principle rationale

of this paper is to give a reference highlight future exploration by

ordering and arranging distinctive categories of component

selection methods and accentuating their individual qualities and

shortcomings. To achieve this, the rationale for employing these

techniques, as well as the use of a hybrid mechanism in the

component selection method, is demonstrated. Finally, a

conceptual approach for component selection is proposed which

utilizes existing methodologies. Hopefully, it can help researches

to locate the current status of this issue and fill in as a reason for

future exercises

Keywords— software component; component reterieval;

component selection

I. INTRODUCTION

The greatest challenge that organizations are facing in this

age of data digitization is to have a quality software product in
shorter period. One possibility would be that companies
employ more software developers in less time to produce better
products but that will increase budget amount. This is not a
viable solution because organizations require less budget and
time to deliver a high-quality product. Component Based
Software Development (CBSD) provides a solution to this
problem [1][2].

The trend for CBSD is growing [3][4] due to the
availability of component market and the enormous increase in
software repository components [5]. For the adoption of
CBSD, various problems must be addressed. The first problem

is component availability and maintenance; second, there is no
perfect component search and retrieval technique that meets the
requirements of users and the third problem is users need to
learn software and languages [6] to enter the query in a
specified format. Elementary approaches for component
search and retrieval have been developed [7] but these
approaches have some limitations.

CBSD is a systemic process of software development
which is derived from the reusable components from different
sources; for instance, local component repositories and
commercial component vendors. The way applications are
developed and passed on to the end-user is being transformed
by CBSD. It shifts the paradigms of software development,
primarily with the implementation of different standards of
component design. CBSD is not very common among today’s
developers because it takes developers a lot of time and effort
to search for the best eligible component [1][8].

In solving the problems of reuse, software component reuse
has opened doorways for researchers. For code
recommendation and efficient retrieval, researchers have
invented different methods. The key problem, faced during the
research, is how the component can be selected from the
available list of components that meet the requirements [3]. In
this paper, the component selection techniques are explained
that help to select the components that can fulfil the
requirements. This paper aims to examine the applicability of
software component selection techniques from online
repositories and to study the techniques. A conceptual model
for component selection is described in a simple and efficient
way after examining the strengths and limitations of the
techniques. This is the first research, provides an extensive
analysis of the component selection techniques. To conclude,
in the context of a conceptual model, differences in existing
research and possible future opportunities have been addressed
and presented.

The rest of the paper is organized in three sections. Related
techniques for component selection and retrieval along with the

IEEE Copyright Notice:
978-1-6654-1901-7/21/$31.00 ©2021 IEEE

2021 International Conference on Communication Technologies (ComTech)

existing problems are presented in Section II. Research
methodology is presented in Section III. Section IV presents
the proposed hybrid conceptual model for component selection
and retrieval. Discussion and analysis are explained in Section
V. Conclusion and future work is discussed in the final Section
VI.

II. TECHNIQUES FOR SPFTAWRE REUSE AND RETRIEVAL

A. Keyword Based

A basic keyword-based technique is applied by text
description analysis. Domain specific dictionaries of
keywords minimize the dimensions of the function space.
The observations of the classifier are contrasted with the
classifiers of the decision tree and SVM. Figure 1 provides
the architecture of the keyword-based technique.

Fig. 1. keyword based Technique

The software component can be retrieved using an
approach based on keywords. As the user is unaware of the
corpus/schema and query processing language, this strategy
masks the user’s difficulty. An abstract interface is
provided for the user to enter keywords, which are then
submitted to the search engine. A graded list of components
is returned by the search engine. Based on the keyword
match and the occurrence of the keyword in the corpus,
ranked components are given. Based on the frequency of
keyword match occurrence, software components are
ranked in descending order and the component with
maximum or higher occurrence will get higher priority [9].

Example: For keyword search mechanisms, it is important
that the person using it uses the type of terms that are
applicable to what is being searched for. For example, if the
individual using it was looking for how the stack is
implemented, searching should consider the word stack.

Limitation: The fact that the number and selection of words
is necessary for it to function is a problem that is often
faced during keyword use. The use of one keyword can
lead to a high recall, but lack of accuracy and the use of
several keywords, on the other hand, will have the opposite
effect. The quest becomes a boring process that results in
trial and error before the user finds the correct one with a
multitude of searches. To get the results, an experienced
user is typically needed. Thanks to its user-friendly
concept, the advantages of a keyword approach can be
extended easily. To search a keyword, certain numbers of
indices are required. For instance, the keywords that are
linked with objects are represented as OBJECT1-KW1,
KW2, KW3, and OBJECT2-KW3, KW4, KW5. If one
searches for KW3 then the objects that are related to this
keyword will be returned as a result. It will also retrieve a

few unrelated objects. The cost is high in manual indexing,
and for this, professional individuals are needed. The
ambiguous nature of keywords, which can cause a wide
discrepancy between keyword choices, is another
shortcoming of the keyword process.

B. Signature Based

Signature matching is a way for software libraries to
organize, navigate through, and perform retrieval process.
Method signature is considered as a part of method
declaration. If the extract name is used by various methods,
only one method is selected during the method call. The
signature of a method is specified by its name and its list of
parameters. For a class, the signature of the system should
be unique. The parameter name and return function form
are not a part of the method signature [10].

Fig. 2. Signature based Technique

For component retrieval, the signature matching technique
as provided in Figure 2 is also used as it decides which
component is matched with a query signature. Other
methods retrieve components based on exact query match,
but there are components that are not exactly identical to
the query, these components are similar in certain ways, so
if the query or component is slightly changed, it will match
a query [11]. For component retrieval, all cases (exact and
relaxed) of query matching are therefore considered. With
relaxed matches, the assumption is that the results are
returned close enough to be useful for the developers. For
example, relaxation matching will allow the input
parameters of the library function to be reordered. Matching
the signature in the most generalized form which is written
as follows:

��������	
����,
��ℎ������
��, �����	�	�����
��

→ ���� ������	�	�� ���	
����
��ℎ��, , ��

= { � ∈ �: ��, ��}
In other words, when giving a query q, a match predicate M
and a library component C, Signature Matching returns the
set of components that met the matching predicate.

Example: For a queue of digits and stack of integers, take
the signatures given in Table 1, these signatures are called
isomorphs and therefore to show what we can list as the
vocabulary problem. Users that reuse the program connect
discrete semantics with unique names, such as pop and
enqueue. Hence, the component developer can mislead the
users towards the semantics of components by choosing
names, or have no means of distinguishing between
components.

TABLE I. SIGNATURE COMPARSION

Signature of a Stack Signature of a Queue

Create:Stack
Push: Stack x Integer Stack
Pop: StackStack
Top: StackInteger
Empty: StackBoolean

Create:Queue
Enqueue: Queue x Integer: Queue
Dequeue: QueueQueue
Front: QueueInteger
Empty: QueueBoolean

Take another instance where we want to look for a
signature-named component (int, int), i.e., a function that
takes two arguments of the integer form and returns an
integer value. It can contain a list of the following
functions:

�	� ��� ��	� , �	��
�	�
�� � �	� , �	��
�	� ��� ��	�, �	��
�	� ��$ ��	�, �	��
�	� ��% ��	� , �	��
�	�
%� ��	�, �	��

Depending on the activities, the given list has objectives
with distinct actions. Matching of actions is performed to
find the addition of two numbers. To test the already
identified responses, the feature responds, and the
contradictory behaviors have been deleted. The resulting
list will appear as int sum (int,int) int add (int,int) int avg int
avg (int,int). In all the functions given above, the probable
behavior is shown. Here, the sum(), add() is set to “EXACT
MATCH” and avg() is set to “RELAXED MATCH”.

Limitation: With structural classification, there are many
limits. First, it is only targeted at the reuse of the white box,
so it only looks for approximate part retrieval. Second,
these approaches are predominantly for laboratory use to
date. Third, the proof theorem that must be matched in the
library is very complex and last, when the application
engineer knows a partial or a full signature description of
the necessary variable, the signature matching technique is
useful.

C. Faceted classification

A faceted classification is a method of classification used to
arrange information into a hierarchical order. To construct
the complete classification entry, a faceted classification
uses semantic categories, which combines either general or
subject-specific categories. The method of classification
and recovery of facets is the most detailed [2]. A word is
placed in the specified sense of the language and is defined
by a particular angle of view (called facet) representing the
critical feature of a software component in the facet
classification [3][4], a facet being a fundamental feature
identified in a domain. A software component is defined
from different profiles by each facet, a component can be
represented by several facets and many words in a facet, a
component can be described by different facets from
different angles. In a facet, organized term space is
generated by common and special relationships; there are a
number of terms [12].

Example: Experts extract keywords from program
specifications and documentation for faceted index
approaches and organize the keywords by facets into a
classification scheme, which is used as a standard software

component descriptor. For each facet, a thesaurus is
extracted to solve ambiguities, to ensure that the matched
keyword may only be within the sense of the facet.

Limitations: Faceted classification and retrieval has proven
to be very effective in retrieving reuse component from
repositories, but the approach is labor intensive.

D. Behavioral Matching

The behavioral retrieval technique to retrieve the repository
components was described by Qualid Khayati [13]. This
focuses primarily on the component’s behavior. By leveraging
the executability of software elements, behavioral retrieval
works. Programs are executed using components and the
responses of component are recorded. Retrieval is done by
selecting those components whose responses are nearest to a
pre-determined set of desired responses (with respect to the
program). Originally, this concept was called “behavioral
matching”. To retrieve the components that display the
predicted actions, behavioral matching usually executes each
component with input data. To retrieve the components whose
behavior is predicted, the process of behavioral matching
usually executes each component with input data [12].

Example: For example, both integer addition and subtraction
have the same signature, yet completely opposite behavior;
strcpy and strcat have the same signature for the C library
routines, but if one was replaced by the other, users will be
unhappy. The component’s behavior should conform to the
specified behavior (specification) for its effective execution.

Limitations: First, it uses randomly selected “samples” to
perform all software library operations with a signature
matching the appropriate one. Second, the developer has to
measure the predicted outcome by hand, the technique
obviously has some resemblance to what we call today’s black-
box testing.

E. Semantic Matching

The technique of semantic matching relies on semantic
knowledge. Lightweight ontologies are used to encode the
semantic information that is to define and linked nodes
semantically. Given two graphs (like structure and
classification), an ontology matching operator works to
classify or align the nodes of two graphs that are
semantically related to each other. The component is
obtained based on relevance, which is if the query and the
component’s recorded aspects are same, then the
component is referred to as the candidate component. In
practice, the more aspects that are similar between query
and the component, the greater the correlation exist
between them. So by using semantic matching, the problem
of mismatch can also be resolved [14].

Example: For example, when applied to a file system, the
“source code” folder may be found which is semantically
similar to the “code” folder since it has the same meaning.
You may obtain this data from a linguistic resource, such as
WordNet. As researchers do not make a clear distinction
between them, the terms semantic matching and semantic

search are distinct. The database is searched by query as far
as semantic matching is concerned, where both query and
document are called unstructured data. Semantic search
often searches the knowledge base and database by query,
where it is not inherently important to format the document
and query, but structured data is the knowledge base [6]

The main explanation for the mismatch (between the query
and the stored component) is that there was no proper
language analysis [15]. Language cannot be understood by
the machine, but it is not impossible. In contrast with other
approaches, the semantic matching approach is more
practical (e.g., Keyword and signature). Semantic matching
involves phrase analysis, word normalisation, topic
analysis, structure analysis, word sense analysis, and
matching between the question and part is carried out on
word sense aspect, form aspect, phrase aspect, structure
aspect and topic aspect as shown in Figure 3.

Fig. 3. Semantic based Technique

Limitations: This technique is in contrast with a drawback
for words with different meanings, but on the other hand, is
with the benefit of multiple senses. While this drawback is
not important, it is clear that there is no processing
advantage for terms with multiple definitions, contrary to
the agreed view in the literature. In addition, when the
stimuli were chosen to mitigate the influence of word
senses, Rodd et al. (1999) found a major disadvantage in
visual lexical decision for terms with more than one
context, compared with unambiguous words. Previous
claims of an ambiguity benefit may therefore be the product
rather than their numerous meanings of multiple senses
which have high-ambiguity stimuli.

III. RESEARCH METHODOLOGY

This analysis was carried out according to the system used
by Kitchenham and Charters [16], which, in turn, is divided
into three phases.

• The first stage includes the planning of the analysis and
the creation of the study protocol to be followed.

• The second stage involves carrying out the analysis,
then conducting the search, selecting the documents,
and extracting and synthesising information

• In the third level, the analysis is reported and the
distribution mechanisms and formats of the main
report are specified. Such a step contributed to the
elaboration of this paper in this context.

IV. PROPOSING A CONCEPTUAL MODEL

In this section, we propose a hybrid conceptual model for the
selection of components that fills the gap between the
prospective perspective of the present and the future. We infer
from the previous section that several methods have been used
for the collection and retrieval of software components. But,
as we discussed in Section II, each solution has its own
strengths and weaknesses. We referred to the suggested
conceptual model as “hybrid” because it combines the features
of all the approaches explained in the previous section.
The user defines the criteria that he/she is interested in using
natural language for the components (nominal or imperative
sentences). Initially a query is generated and augmented and
takes into account along with domain-specific knowledge
derived from specific domain models, within the context
where the user performs the search.

Fig. 4. Conceptual Model

Keywords from the user’s query are mapped to the domain
ontology and appropriate terms derived which are used in the
search query. If required, ontology is also used to extend the

query with synonyms to expand the search. The proposed
hybrid model thus offers a natural and versatile way for the
user to determine component search specifications. At the
same time, since it uses specific domain knowledge, efficiency
is greatly enhanced. In retrieving these, the hybrid approach
also considers relationships between components, resulting in
a consistent collection of components as it combines the set of
features of different approaches as shown in Figure 4.

A. Working of Proposed Conceptual Model

The proposed component retrieval approach consists of the
3 steps mentioned below: a) initial generation of queries, b)
refinement of queries, c) retrieval and feedback of
components. All of these are set out below.

• Step 1: Initial Query Generation

The user can check for the component by entering the
particular requirement of the component by entering
insignificant sentences or imperative. Examples of the
procedure used include: 1) a set of sentences or terms
specifying the commencement of a query; 2) a set of
pronouns that can be removed by parsing; 3) articles that
can be removed by parsing; and 4) heuristics to create SQL
statements.

• Step 2: Query Refinement

Depending on the requirements entered in the form of a
search query, the search engine will select one of the
methods. If the keyword is matched with the stored
component description in the repository, the user is
presented with the output data, which is the list of
components. It is also possible to search for the user
requirement against the method signature defined in the
repository. The search engine can conduct a behavioral and
semantic search if the match is still not found. To make
sure that correct phrases are used to query, the concepts and
keywords defined in the former step are mapped against
ontology. To expand the query, similar words which are
based on the context of the retrieval are also defined. By the
domain model, the context of the retrieval is created. For
example, if the consumer is interested in implementing a
specific auction site function, the corresponding objective is
used as the anchor point within the auction domain model
to decide the required processes and activities that must be
part of the system and the appropriate components to
support them [17].

• Step 3: Component Retrieval

The component recall process starts when the user enters
the query. Since the search engine incorporates the impact
of several approaches as defined in Section II, null is not
returned to the user query. The user-specified functional
requirement is broken down into particular processes and
activities using the domain model. They are then compared
to the definition stored and the percentage of behavior
endorsed by a specific component shows how important it
is to the requirement of users. Objects are retrieved
automatically that match a certain threshold value (e.g., a
percentage). The user will assess the utility of the retrieved

component and provide input on the basis of which the
threshold value can be modified [18].

V. DISCUSSION

Numerous software component selection techniques have
been proposed to enhance the proficiency and usefulness of
informal procedures. Current processes of selections are not
enough to discourse the detail and assessment of both the
functional and non-functional requirements. Designing and
developing of information system within very little time
endures being a stressful process. This hassled situation has
revived the research on the reusability of software especially in
the development of component-based software. Several
techniques for software component retrieval for instance
signature matching, behavioral matching, faceted classification,
semantic matching, and keyword matching, etc. have been
discussed in the literature. The keyword approach can be a
cause of inappropriate information and inconsistency in
choosing keywords due to the uncertain nature of keywords.
The approach of semantic matching becomes useless if the
terms contain numerous definitions or variant contexts. If we
take behavioral matching into account, the developers are
required to predict the outcome on a manual basis.
Furthermore, faceted retrieval and classification can be
recognized as the most effective technique to retrieve the
reusable components from repositories, however, a lot of labor
is required for successful results.

The proposed hybrid approach for searching and retrieving
software components can be much advantageous to the
organizations practicing “reusability”, the commercial reusable
components providers and distinct software developers as well.
Developers are facilitated to discover repositories, execute all
the plain text searches required to components and
consequently, collect a group of all the possible components.
Through this entire collection, the developers are enabled to
execute a more precise search by utilizing the domain
knowledge that is contained in certain domain models and
ontologies. The main resolution of this research is to
implement the common queries that can be used by a developer
to specify the parameters of the search for retrieval of
components i.e., size, run-time platform, or further technical
contemplations. It can be useful for the developer if he/she
tends some general queries like, “Give me all the components
implemented in JavaBeans.” The designer can be concerned
with this query to understand that what can he/she access from
the repository that is relatable to the certain application which
he/she is designing using a specific architecture.

VI. CONCLUSION

To enhance the proficiency and usefulness of informal
procedures, the methods of component selection have been
presented. The goal of the research is to discover such
methodologies that can be used for the development of some
tools and techniques to implement inter-enterprise information
systems through reusable components and the development of
reusable software also. This research paper is focused on
experimentation related to the testing of various methods of
component retrieval and indexing. Decisions about component
selection are usually made on an ad-hoc basis. Inconvenient

search and retrieval of those reusable components which fulfil
all the requirements can be considered as one of the chief
issues that are related to the development based on
components. However, the deficiency of sophisticated query
procedures and techniques is the reason behind this issue. A
hybrid approach proposed in this research allows the users to
implement queries in an intelligent manner using techniques of
NLP (natural language processing) and domain knowledge.
The rationality of utilizing has been shown using hybrid
mechanism applied in the method of component selection,
which finally presented the theoretical approach for selecting
components utilizing current practices. By entering the nominal
or imperative sentences and exact requirements of the
components, the users are allowed to search the components.
The user can retrieve the components right after the query is
entered. The query entered by the user cannot be nulled
because the search engine syndicates the effect of many
approaches like names. By using the domain model, the
functional requirement of the user is divided into precise
methods and actions. Those objects that qualify a specific
threshold value can be retrieved accordingly. This specific
threshold value can be adjusted according to the feedback of
users after determining the utility of the component that is
retrieved.

REFERENCES

[1] Y. Wahab, M. I. Babar, and S. Ahmed, “Single Repository for Software
Component Selection (SRSCS): A Reusable Software Component
Selection Technique.,” J. Theor. Appl. Inf. Technol., vol. 26, no. 1,
2011.

[2] S. Younoussi and O. Roudies, “All about Software Reusability: A
Systematic Literature Review.,” J. Theor. Appl. Inf. Technol., vol. 76,
no. 1, 2015.

[3] A. W. Brown, “An overview of components and component-based
development,” in Advances in Computers, vol. 54, Elsevier, 2002, pp.
1–34.

[4] H. Jain, “Business Component Factory: A Comprehensive Overview of
Component-Based Development for the Enterprise.” Taylor & Francis,
2001.

[5] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An internet-scale
software repository,” in Proceedings of the 2009 ICSE Workshop on
Search-Driven Development-Users, Infrastructure, Tools and
Evaluation, 2009, pp. 1–4.

[6] L. Kaur and A. Mishra, “Software component and the semantic Web: An
in-depth content analysis and integration history,” J. Syst. Softw., vol.
125, pp. 152–169, 2017.

[7] H. Mili, P. Valtchev, A. M. Di Sciullo, and P. Gabrini, “Automating the
Indexing and Retrieval of Reusable Software Components.,” in NLDB,
2001, pp. 75–86.

[8] L. F. Capretz, M. A. M. Capretz, and D. Li, “Component-based software
development,” in Industrial Electronics Society, 2001. IECON’01. The
27th Annual Conference of the IEEE, 2001, vol. 3, pp. 1834–1837.

[9] H. Mili, E. Ah-Ki, R. Godin, and H. Mcheick, “An experiment in
software component retrieval,” Inf. Softw. Technol., vol. 45, no. 10, pp.
633–649, 2003.

[10] O. Khayati and J.-P. Giraudin, “Components retrieval systems,” 2002.

[11] S. Singh, “An experiment in software component retrieval based on
metadata and ontology repository,” Int. J. Comput. Appl., vol. 61, no.
14, 2013.

[12] J. Kaur and P. Tomar, “Clustering based architecture for software
component selection,” Int. J. Mod. Educ. Comput. Sci., vol. 11, no. 8, p.
33, 2018.

[13] H. Ben Khalifa, O. Khayati, and H. H. Ben Ghezala, “A behavioral and
structural components retrieval technique for software reuse,” in 2008

Advanced Software Engineering and Its Applications, 2008, pp. 134–
137.

[14] V. Sugumaran and V. C. Storey, “A semantic-based approach to
component retrieval,” ACM SIGMIS Database DATABASE Adv. Inf.
Syst., vol. 34, no. 3, pp. 8–24, 2003.

[15] Y. Shao, M. Zhang, and S. Xu, “Research on decision tree in component
retrieval,” in 2010 Seventh International Conference on Fuzzy Systems
and Knowledge Discovery, 2010, vol. 5, pp. 2290–2293.

[16] B. A. Kitchenham, “Systematic review in software engineering: where
we are and where we should be going,” in Proceedings of the 2nd
international workshop on Evidential assessment of software
technologies, 2012, pp. 1–2.

[17] N. Omer, S. K. Jha, and S. K. Khatri, “Maintaining Reusable Software
Components,” in 2019 International Conference on Intelligent
Computing and Control Systems (ICCS), 2019, pp. 1350–1352.

[18] K. R. Sekar, J. Sethuraman, and R. Manikandan, “A Novel Software
Component Selection Through Statistical Models,” in 2018 2nd
International Conference on Trends in Electronics and Informatics
(ICOEI), 2018, pp. 1391–1396.

