
EasyChair Preprint
№ 7671

A Review Paper on Generating Regular Language
Using Regular Expression

Ruchita Chaudhari, Aditya Bhosale, Ashish Biradar, Kshitij Bisen
and Chetan Chaudhari

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 29, 2022

A Review paper on Generating Regular Language
Using Regular Expression

 Ruchita Chaudhari, Aditya Bhosle, Biradar Ashish,
 Bisen Kshitij, Chetan Chaudhari

Abstract— Interesting Languages are very
certainly infinite, yet they must be described in
some finite way. One technique is to use string
operations to show how string operations or the
language itself can be created from simpler
strings or how set operations can be used to
construct the language itself from simpler
languages. Another option is to define an
algorithm for determining. RL are simple
language we explore in this study, they may be
produced from one-element languages by
repeating certain basic operations a finite
number of times. They're also the ones that can
be recognized by finite automata (FA). A basic
computer machine with significantly limited
memory. We'll create a program that will build a
collection of Regular language based on the
regular expression provided by the user. Regular
Languages are the most restrictive sorts of
languages that finite automata can understand.

Keywords— Regular Expressions, DFA, NFA,
Regular Language, Finite automata, Theory of
Computations

I. INTRODUCTION

Regular expressions are a type of expression that
is used to represent regular languages. Can
succinctly express regular languages and actions
on them. Recursively, the bunch of RE overs an
alphabet is shown as below. A regular expression
is any element of that set. Regular Expressions are
a type of expression that is used to represent
regular languages. Finite Automata (FA) is the
most basic machine for recognizing patterns. The
finite automata, also called as the finite state
machine, it is a five-element or tuple abstract
machine. It has a set of states and rules for moving
from one to the next, but it is dependent on the
input symbol used. It's essentially a computer
model that's been abstracted.
The given ER if: @ is the RE for the RL @, ɛ is
the RE express for the RL..
 a belongs to ^ (And ^ here is defined as the
gaining alphabet) then, a is RE.
 a and b are RE, a + b is also a RE output as {a,b}.
a & b are RE, (ab) is additional and if a is RE, is
additional.

Simple expressions known as Regular
Expressions are frequently used to characterize the
language that finite automata accept. It is the
foremost efficient method of representing any
language. Regular languages are the languages that
are accepted by some RE. A regular RE is also
known as a pattern sequence which defines a string.
Regular expressions are frequently used to match
string character combinations. This pattern was
employed by the string searching method to find the
operations on a string.

II. LITERATURE REVIEW

1. A C R E was created by Eric Larson (author).
ACRE accepts a RE input and checks it for 10
things[1]. ACRE rejected 33 expressions out of a
total 781 that were not able to compile. ACRE
does not support a non-ASCII Unicode character
that is found in 24. The remaining 724 regular
expressions were used to assess the situation.
During the examination, 826 regular expressions
were employed in total. ACRE can be used by the
user by inserting a RE and then pushing key.
Some infractions are passed on to the person using
it, chunk of the RE that is erroneous spotlight. It
works with Python regular expressions only.
Except for UC after conventional ASCII
character, All Python regular expression elements
are supported by ACRE.

2. The authors (Anthony Cox and Maryanne
Fisher) have provided a short introduction of
regular expressions in regular Matches involving
alternation operators would take longer for users
to appropriately recognize[2]. Average time for
things without alter (C & CR) was considerably
less than the Average time for those with alter
(CA & CAR). It's more difficult to alternate than
it is to repeat or concatenate. It works with Python
regular expressions only. Except for Unicode
characters beyond conventional ASCII characters,
All the Python regular expression elements are
supported by ACRE.

3. Author J. Sonnenberg proposed a new modelling
approach that yields a straight separate event
system: X(k+l) = A. Xk(3)[3]. A new modelling

strategy is proposed that yields a straight discrete
occasion system: X(k+l) = A. X(k). The system
matrix A is calculated using a method that does not
need the answer of any structure of linear systems.
There is a link between eigenvalues and the FDA
cycles, alike to the definition of eigenvalues in a
separate time structure. It is demonstrated. Petri nets
can also be described and analyzed using the new
way. Deadlocks are easy to find since they are one-
length cycles. The method can also be used to find
isomorphisms among different Petri nets. The
process is quite convoluted and tough to comprehe.

4.The examination of normal forms of regular
expression was done by Benedek Nagy (author)[4].
The normal form of regular expression is examined.
For the decomposition of normal languages, the
author chose merger-free normal languages. A
normal form of regular expressions can be obtain
based on this decomposition, where all mergers are
a step above than chaining and Kleene-stars. This
regular type produces unique expression trees as
well as a specific type of syntax graphs.

III. LITERATURE REVIEW TABLE

Sr
no.

Paper Author Results Advantages Limitations

1 Automatic
Checking of
Regular
Expressions[1]
, 2018

Eric Larson
Seattle
University
Seattle,
WA USA

ACRE rejected 33
expressions out of a total 781
that were not able to compile.
ACRE does not support a
non-ASCII Unicode
character that is found in 24.
The remaining 724 regular
expressions were used to
assess the situation.

ACRE can be
used by the user
by inserting a RE
and then pushing
the inspect
button. Some
infractions get
passed on to the
user, with the
chunk of the RE
that is erroneous
spotlight.

It only works
with one
coding
language RE
that is
Python.

2 Examining
Programmer’s
Cognitive
Skills Using
Regular
Language[2],
2008

Anthony
Cox
Faculty of
Computer
Science
and
Maryanne
Fisher
Department
of
Psychology

Matches involving
alternation operators would
take longer for users to
appropriately recognize. The
average time for things
without changes (C and CR)
was considerably less than
the average time for those
with changes (CA and CAR).
It's more difficult to alternate
than it is to repeat or
concatenate.

They forecasted a
direct link
between accuracy
and completeness,
that implied that
there was no
trade-off.

Their
solution
times for
phrases with
alternation do
not differ
significantly
from those
for
expressions
without
alternation

3 A new method
that described
and analyzed
the finite
determined
automata by
Walsh
functions[3],
1999

J.
Sonnenber
g Clausthal
University
of
Technolog
y

A new modelling strategy is
proposed that yields a
straight discrete occasion
system: X(k+l) = A. X(k).
The system matrix A is
calculated using a method
that does not need the answer
of any structure of linear
systems. There is a link
between eigenvalues and the
FDA cycles, alike to the
definition of eigenvalues in a
separate time structure. It is
demonstrated.

Petri nets can also
be described and
analyzed using
the new way.
Deadlocks are
easy to find since
they are one-
length cycles.

The process
is quite
convoluted
and tough to
comprehend.

4 On Union-
complexity of
Regular
Languages[4],
2010

Benedek
Nagy

The normal form of regular
expression is examined in
this particular project . For
the decomposition of normal
languages, the author chose
merger-free normal
languages. A normal form of
regular expressions can be
obtain based on this
decomposition, where all
mergers are a step above than
chaining and Kleene-stars.
This regular type produces
unique expression trees as
well as a specific type of
syntax graphs.

They investigated
another category
and then they
described the
features of union
free regular
languages

Conceptual
study

IV. COMMON INFORMATION ABOUT
REGULAR EXPRESSIONS AND

LANGUAGES

1)Regular expressions:
 Our structure for the RE includes the standard
quality operations that are concatenation, Kleene
closure, and alternation. We have also included
the vacant set (∅) and few Boolean expressions
that are “and” and the “complement.”

2)Finite state machines (FSM): FSM provides a
computational model that will be used for the
implementation of recognizers for the RL.

3)Regular Expressions Definition: A RE is
basically a design giving few string sets. RE can

also be described as:
1) (ϵ) and (ϕ) are RE that denotes {ϵ} and {ϕ}.
2) In case, F,E are RE that denote the L (F) and L
(E), then these regulations are often put in
application in a recursive format. A] F’s union and
E is denoted by RE F+E and representing the
speech L (E) U L (F).
B] Series of F and E is represented by FE and
representing the speech L (F*E) = L (F) * L (E).
C] Kleene closure is also written as E* and it acts
for the speech (L (E))*.
3) Any RE is made by using two of the given rules
only Closure Possessions of RL. Intersection: If
L2 and If L1 are 2 RLs, then L2 ∩ L1 is said to be
regular. Concatenation: If L2 and If L1 are 2 RLs,
then L2.L1 is said to be regular.
.

4)Kleene Closure:

If L 1 is the normal one, then the Kleene closure of
it will be L1* which is considered normal. L[G] is
normal, its companion L’[G] also will be normal.
Companion of it is often considered by deducting
which are found.
 Note: 2 re are same if same language is produced
by them. Let’s taka an instance, [A+B*] * and
[A+B]* both have similar meaning. Each is
produced by [A+B*]* is additionally produced by
& then the other way round.

V. ADVANTAGES

1) Lexical rules are quite simple just in case of
regular Expressions. A group of strings is defined
just in case of RE.
2) It's easy to construct an efficient recognizer from
RE.
3)RE are most important for describing structure of
lexical constructs like identifiers, constants etc.

VI. DISADVANTAGES

1) Regular languages are less productive than
Context Free Grammar.
2) RE are the foremost restrict sorts of language
that are finite automata accept.
3) RE aren't closed under infinite intersections.
All languages aren't regular.
4) Regular grammar doesn't provide a particular
mathematical definition that clearly rules out
certain sorts of language.

VII. CONCLUSION

The change in RE to RL and again back may be a
well-understood procedure which will be
implemented without much trouble, consistent with
the findings of this text. Coding the algorithms for
creating regular language was the foremost time-
consuming component of the project. This is thanks
to the very fact that, whereas RE define RL, they not
self-regular.
We've found many representations which will be
used as explanations for normal expressions, also as
algorithms for producing these representations
automatically (or semi-automatically within the case
of intention analysis). So we are developing a
program or we will say generator which can generate
the set of language for a given regular expression
provided by user input. Also, we could use this
generator where we'd like to develop complex
regular languages by providing regular expressions.

VII. REFERENCES

[1] Alfred V. Aho, “Constructing a Regular
Expression from a DFA”, Lecture notes in
Computer Science Theory, September 27,
2010, Available at
http://www.cs.columbia.edu/~aho/cs3261/
lectures.

[2] Ding-Shu Du and Ker-I Ko, “Problem

Solving in Automata, Languages, and
Complexity”, John Wiley & Sons, New
York, NY, 2001.

[3] Gelade, W., Neven, F., “Succinctness of

the complement and intersection of regular
expressions”, Symposium on Theoretical
Aspects of Computer Science. Dagstuhl
Seminar Proceedings, vol. 08001, pages
325–336. IBFI (2008).

[4] Gruber H. and Gulan, S. (2009),

“Simplifying regular expressions: A
quantitative perspective”, IFIG Research
Report 0904.

[5] Gruber H. and Holzer, M,” Provably

shorter regular expressions from
deterministic finite automata”, LNCS, vol.
5257, pages 383–395. Springer, Heidelberg
(2008).

[6] Gulan, S. and Fernau H., “Local

elimination-strategies in automata for
shorter regular expressions”, In
Proceedings of SOFSEM 2008, pages 46–
57 (2008).

[7] H. Gruber and M. Holzer, “Finite automata,

digraph connectivity, and regular
expression size”, In Proceedings of the
35th International Colloquium on
Automata, Languages and Programming,
Iceland, July 2008. Springer.

[8] H. Gruber and J. Johannsen, “Optimal

lower bounds on regular expression size
using communication complexity”, In
Proceedings of the 11th International
Conference Foundations of Software
Science and Computation Structures,
volume 4962 of LNCS, pages 273–286,
Budapest, Hungary, March–April 2008.
Springer.

[9] J. J. Morais, N. Moreira, and R. Reis,

“Acyclic automata with easy-tofind short
regular expressions”, In 10th Conference
on Implementation and Application of
Automata, volume 3845 of LNCS, pages

349–350, France, June 2005. Springer.

[10] K. Ellul, B. Krawetz, J. Shallit, and
M.Wang, “Regular expressions: New
results and open problems”, Journal of
Automata, Languages and Combinatorics,
10(4):pages 407– 437, 2005.

[11] Larkin, H., “Object oriented regular

expressions”, 8th IEEE International
Conference on Computer and Information
Technology, vol., no., pages 491-496,8-11
July,2008

[12] Peter Linz, Formal Languages and

Automata (Fourth Edition), Jones and
Bartlett Publishers, 2006

[13] Vayadande, Kuldeep, Ritesh Pokarne,

Mahalaxmi Phaldesai, Tanushri Bhuruk,
Tanmai Patil, and Prachi Kumar.
"SIMULATION OF CONWAY’S GAME
OF LIFE USING CELLULAR
AUTOMATA." International Research
Journal of Engineering and Technology
(IRJET) 9, no. 01 (2022): 2395-0056.

[14] Vayadande, Kuldeep, Ram Mandhana,

Kaustubh Paralkar, Dhananjay Pawal,
Siddhant Deshpande, and Vishal
Sonkusale. "Pattern Matching in File
System." International Journal of
Computer Applications 975: 8887.

[15] Vayadande, Kuldeep, Neha Bhavar, Sayee

Chauhan, Sushrut Kulkarni, Abhijit Thorat,
and Yash Annapure. Spell Checker Model
for String Comparison in Automata. No.
7375. EasyChair, 2022.

[16] VAYADANDE, KULDEEP. "Simulating
Derivations of Context-Free Grammar."
(2022).

[17] Vayadande, Kuldeep, Neha Bhavar, Sayee

Chauhan, Sushrut Kulkarni, Abhijit Thorat,
and Yash Annapure. Spell Checker Model
for String Comparison in Automata. No.
7375. EasaafyChair, 2022.

[18] Varad Ingale, Kuldeep Vayadande, Vivek

Verma, Abhishek Yeole, Sahil Zawar,
Zoya Jamadar. Lexical analyzer using
DFA, International Journal of Advance
Research, Ideas and Innovations in
Technology, www.IJARIIT.com.

[19] Kuldeep Vayadande, Harshwardhan

More,Omkar More, Shubham
Mulay,Atahrv Pathak, Vishwam Talanikar,

“Pac Man: Game Development using PDA
and OOP”, International Research Journal
of Engineering and Technology (IRJET), e-
ISSN: 2395-0056, p-ISSN: 2395-0072,
Volume: 09 Issue: 01 | Jan 2022,
www.irjet.net

[20] Kuldeep B. Vayadande, Parth Sheth,

Arvind Shelke, Vaishnavi Patil, Srushti
Shevate, Chinmayee Sawakare,

[21] “Simulation and Testing of Deterministic
Finite Automata Machine,” International
Journal of Computer Sciences and
Engineering, Vol.10, Issue.1, pp.13-17,
2022.

[22] Rohit Gurav, Sakshi Suryawanshi, Parth

Narkhede,Sankalp Patil,Sejal
Hukare,Kuldeep Vayadande, ” Universal
Turing machine simulator”, International
Journal of Advance Research, Ideas and
Innovations in Technology, ISSN: 2454-
132X, (Volume 8, Issue 1 - V8I1-1268,
https://www.ijariit.com/

[23] Kuldeep Vayadande, Krisha Patel, Nikita

Punde, Shreyash Patil, Srushti Nikam,
Sudhanshu Pathrabe, “Non-Deterministic
Finite Automata to Deterministic Finite
Automata Conversion by Subset
Construction Method using Python,”
International Journal of Computer Sciences
and Engineering, Vol.10, Issue.1, pp.1-5,
2022.

[24] Kuldeep Vayadande and Samruddhi Pate

Modulo Calculator Using Tkinter
Library”, EasyChair Preprint no. 7578,
EasyChair, 2022.

