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Abstract
In sequential functional languages, sized types enable termination checking of programs with complex
patterns of recursion in the presence of mixed inductive-coinductive types. In this paper, we
adapt sized types and their metatheory to the concurrent setting. We extend the semi-axiomatic
sequent calculus, a subsuming paradigm for futures-based functional concurrency, and its underlying
operational semantics with recursion and arithmetic refinements. The latter enables a new and
highly general sized type scheme we call sized type refinements. As a widely applicable technical
device, we type recursive programs with infinitely deep typing derivations that unfold all recursive
calls. Then, we observe that certain such derivations can be made infinitely wide but finitely deep.
The resulting trees serve as the induction target of our strong normalization result, which we develop
via a novel logical relations argument.
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1 Introduction

Adding (co)inductive types and terminating recursion (including productive corecursive
definitions) to any programming language is a non-trivial task, since only certain recursive
programs constitute valid applications of (co)induction principles. Briefly, inductive calls
must occur on data smaller than the input and, dually, coinductive calls must be guarded
by further codata output. In either case, we are concerned with the decrease of (co)data
size – height of data and observable depth of codata – in a sequence of recursive calls. Since
inferring this exactly is intractable, languages like Agda (before version 2.4) [4] and Coq [59]
resort to conservative syntactic criteria like the guardedness check.

One solution that avoids syntactic checks is to track the flow of (co)data size at the type
level with sized types, as pioneered by Hughes et al. [39] and further developed by others
[8, 10, 2, 4]. Inductive and coinductive types are indexed by the height and observable depth
of their data and codata, respectively. Consider the equirecursive type definitions in Example
1 adorned with our novel sized type refinements: nat[i] describes unary natural numbers
less than or equal to i and streamA[i] describes infinite A-streams that allow the first i+ 1
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12:2 Type-Based Termination for Futures

elements to be observed before reaching potentially undefined or divergent behavior. ⊕ and &
are respectively analogous to eager variant record and lazy record types in the functional
setting.

▶ Example 1 (Recursive types).

nat[i] = ⊕{zero : 1, succ : i > 0 ∧ nat[i− 1]}
streamA[i] = &{head : A, tail : i > 0⇒ streamA[i− 1]}

Note that streamA[i] is not polymorphic, but is parametric in the choice of A for demonstrative
purposes.

The phrases ϕ ∧ . . . and ϕ ⇒ . . . are constrained types, so that the succ branch of
nat[i] produces a nat at height i− 1 when i > 0 whereas the tail branch of streamA[i] can
produce the remainder of the stream at depth i − 1 assuming i > 0. Starting from nat[i],
recursing on, for example, nat[i− 1] (i > 0 is assumed during elimination so that i− 1 is
well-defined) produces the size sequence i > i− 1 > i− 2 > . . . that eventually terminates
at 0, agreeing with the (strong) induction principle for natural numbers. Dually, starting
from streamA[i], recursing into streamA[i− 1] (again, i > 0 is assumed during introduction
so that i− 1 is well-defined) produces the same well-founded sequence of sizes, agreeing with
the coinduction principle for streams. In either case, a recursive program terminates if its
call graph generates a well-founded sequence of sizes in each code path. Most importantly,
the behavior of constraint conjunction and implication during elimination and introduction
encodes induction and coinduction, respectively. To see how sizes are utilized in the definition
of recursive programs, consider the type signatures below. We will define the code of these
programs in Example 5.

▶ Example 2 (Evens and odds I). Postponing the details of our typing judgment for the
moment, the signature below describes definitions that project the even- and odd-indexed
substreams (referred to by y) of some input stream (referred to by x) at half of the original
depth. Note that indexing begins at zero.

i; ·;x : streamA[2i] ⊢i y ← evens i x :: (y : streamA[i])
i; ·;x : streamA[2i+ 1] ⊢i y ← odds i x :: (y : streamA[i])

An alternate typing scheme that hides the exact size change is shown below – given a stream
of arbitrary depth, we may project its even- and odd-indexed substreams of arbitrary depth,
too. We provide implementations for both versions in Example 5.

i; ·;x : ∀j. streamA[j] ⊢i y ← evens i x :: (y : streamA[i])
i; ·;x : ∀j. streamA[j] ⊢i y ← odds i x :: (y : streamA[i])

∃j.X[j] and ∀j.X[j] denote full inductive and coinductive types, respectively, classifying
(co)data of arbitrary size. In general, less specific type signatures are necessary when the
exact size change is difficult to express at the type level [65]. For example, in relation to
an input list of height i, the height j of the output list from a list filtering function may be
constrained as j ≤ i.

Sized types are compositional: since termination checking is reduced to an instance of
typechecking, we avoid the brittleness of syntactic termination checking. However, we find
that ad hoc features for implementing size arithmetic in the prior work can be subsumed by
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more general arithmetic refinements [26, 65], giving rise to our notion of sized type refinements
that combine the “good parts” of modern sized type systems. First, the instances of constraint
conjunction and implication to encode inductive and coinductive types, respectively, in our
system are similar to the bounded quantifiers in MiniAgda [3], which gave an elegant
foundation for mixed inductive-coinductive functional programming, avoiding continuity
checking [2]. Unlike the prior work, however, we are able to modulate the specificity of type
signatures: (slight variations of) those in Example 2 are given in CICℓ̂ [54] and MiniAgda
[3, 1]. Furthermore, we avoid transfinite indices in favor of permitting some unbounded
quantification (following Vezzosi [62]), achieving the effect of somewhat complicated infinite
sizes without leaving finite arithmetic.

Moreover, some prior work, which is based on sequential functional languages, encodes
recursion via various fixed point combinators that make both mixed inductive-coinductive
programming [9] and substructural typing difficult, the latter requiring the use of the !
modality [63]. Thus, like Fcop

ω [4], we consider a signature of parametric recursive definitions.
However, we make typing derivations for recursive programs infinitely deep by unfolding
recursive calls ad infinitum [13, 45], which is not only more elegant than finitary typing,
but also simplifies our normalization argument. To prove strong normalization, we observe
that arithmetically closed typing derivations, which have no free arithmetic variables or
constraint assumptions, can be translated to infinitely wide but finitely deep trees of a
different judgment. The resulting derivations are then the induction target for our proof,
leaving the option of making the original typing judgment arbitrarily rich. Thus, although
our proposed language is not substructural, this result extends to programs that use their
data substructurally. In short, our contributions are as follows:
1. A general system of sized types based on arithmetic refinements subsuming features of

prior systems, such as the mixed inductive-coinductive types of MiniAgda [3] as well
as the linear size arithmetic of CICℓ̂ [54]. Moreover, we do not depend on transfinite
arithmetic.

2. The first language for mixed inductive-coinductive programming that is a subsuming
paradigm [46] for futures-based functional concurrency.

3. A method for proving normalization in the presence of infinitely deep typing derivations
by translation to infinitely wide but finitely deep trees. The diamond property of program
reduction implies that normalization is schedule-independent, encompassing call-by-need
and call-by-value strategies.

We define SAX∞, which extends the semi-axiomatic sequent calculus (SAX) [33] with
arithmetic refinements, recursion, and infinitely deep typing derivations (Section 2). Then,
we define an auxiliary type system called SAXω which has infinitely wide but finitely deep
derivations to which we translate the derivations of SAX∞ (Section 3). Then, we show that
all SAXω-typed programs are strongly normalizing by a novel logical relations argument over
configurations of processes that capture the state of a concurrent computation (Section 4).

2 SAX∞

In this section, we extend SAX [33] with recursion and arithmetic refinements in the style of
Das and Pfenning [26]. SAX is a logic-based formalism and subsuming paradigm [46] for
concurrent functional programming that conceives call-by-need and call-by-value strategies
as particular concurrent schedules [51]. Concurrency and parallelism devices like fork/join,
futures [37], and SILL-style [61] monadic concurrency can all be encoded and used side-by-side
in SAX [51].

FSCD 2022



12:4 Type-Based Termination for Futures

To review SAX, let us make observations about proof-theoretic polarity. In the sequent
calculus, inference rules are either invertible – can be applied at any point in the proof search
process, like the right rule for implication – or noninvertible, which can only be applied when
the sequent “contains enough information,” like the right rules for disjunction. Connectives
that have noninvertible right rules are positive and those that have noninvertible left rules are
negative. The key innovation of SAX is to replace the noninvertible rules with their axiomatic
counterparts in a Hilbert-style system. Consider the following right rule for implication as
well as the original left rule in the middle that is replaced with its axiomatic counterpart on
the right.

Γ, A ⊢ B

Γ ⊢ A→ B
→R

((((((((((((((((
Γ, A→ B ⊢ A Γ, A→ B, B ⊢ C

Γ, A→ B ⊢ C
→L Γ, A→ B, A ⊢ B

→L

Since the axiomatic rules drop the premises of their sequent calculus counterparts,
cut elimination corresponds to asynchronous communication just as the standard sequent
calculus models synchronous communication [15]. In particular, SAX has a shared memory
interpretation, mirroring the memory-based semantics of futures [37]. A future x of type A
either contains an object of type A or is not yet populated. A process reading from x either
succeeds immediately or blocks if x is not yet populated. As a result, the sequent becomes
the typing judgment (extended with arithmetic refinements in the style of [26]):

V︷ ︸︸ ︷
i, j, . . .;

C︷ ︸︸ ︷
ϕ, ψ, . . .;

Γ︷ ︸︸ ︷
x : A, y : B, . . . ⊢e P :: (z : C)

where the arithmetic variables in V are free in the constraints (arithmetic formulas) in C,
the types in Γ, the process P , and type C; moreover, the address variables in Γ, which are
free in P , stand for addresses of memory cells representing futures. In particular, P reads
from x, y, . . . (sources) and writes to z (a destination) according to the protocols specified by
A,B, . . . and C, respectively. z is written to exactly once corresponding to the population
of a future [37]. Lastly, the vector (indicated by the overline) of arithmetic expressions
e will be used to track the sizes encountered at each recursive call as mentioned in the
introduction. Now, let us examine the definitions of types and processes. For our purposes,
detailed syntaxes for expressions e and formulas ϕ are unnecessary.

▶ Definition 3 (Type). Types are defined by the following grammar, presupposing some
mutually recursive type definitions of the form X[i] = AX(i). Positive types (in the left
column) and negative types (in the right column) are colored red and black, respectively.
Recursive type names are colored blue since they take on the polarity of their definientia.

A, B := 1 unit | X[e] equirecursive type
| A⊗B eager pair | A→ B function
| ⊕{ℓ : Aℓ}ℓ∈S eager variant record | &{ℓ : Aℓ}ℓ∈S lazy record
| ϕ ∧A constraint conjunction | ϕ⇒ A constraint implication
| ∃i. A(i) arithmetic dependent pair | ∀i. A(i) arithmetic dep. function

There are eight kinds of processes: two for the structural rules (identity and cut), one for
each combination of type polarity (positive or negative) and rule type (left or right), one for
definition calls, and one for unreachable code.

▶ Definition 4 (Process). Processes are defined by the following grammar. The superscripts
R and W indicating reading from or writing to a cell.
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P, Q := yW ← xR copy contents of x to y

| x← P (x); Q(x) allocate x, spawn P to write to x and concurrently
proceed as Q, which may read from x

| xW.V write value V to x

| case xR K read value stored in x and pass it to continuation K

| case xW K write continuation K to x

| xR.V read continuation stored in x then pass value V to it
| y ← f e x expands to Pf (e, x, y) from a signature of mutually

recursive definitions of the form y ← f i x = Pf (i, x, y)
| impossible unreachable code due to inconsistent arithmetic context

The first two kinds of processes correspond to the identity and cut rules. Values V and
continuations K are specified on a per-type-and-rule basis in the following two tables. Note
the address variable x distinguished by each rule.

polarity right rule left rule
positive xW.V case xR K

negative case xW K xR.V

type(s) value V continuation K

1 ⟨⟩ ⟨⟩ ⇒ P

⊗,→ ⟨y, z⟩ ⟨y, z⟩ ⇒ P (y, z)
&,⊕ ℓ y {ℓ y ⇒ P (y)}ℓ∈S

∧,⇒ ⟨∗, y⟩ ⟨∗, y⟩ ⇒ P (y)
∀, ∃ ⟨e, y⟩ ⟨i, y⟩ ⇒ P (i, y)

To borrow terminology from linear logic, the “multiplicative” group (1, ⊗,→) is concerned
with writing addresses, whereas the “additive” group (⊕, &) is concerned with writing labels
and their case analysis. Constrained types read and write a placeholder ∗ indicating that a
constraint is asserted or assumed. However, we will suppress instances of ∗ in the example
code given, since assumptions and assertions are inferrable in the absence of consecutively
alternating constraints (e.g., ϕ ∧ (ψ ⇒ A)). On the other hand, the arithmetic data
communicated by quantifiers are visible since inference is difficult in general [27]. Now that
we are acquainted with the process syntax, let us complete Example 2.

▶ Example 5 (Evens and odds II). Recall that we are implementing the following signature
and streamA[i] = &{head : A, tail : i > 0⇒ streamA[i− 1]}.

i; ·;x : streamA[2i] ⊢i y ← evens i x :: (y : streamA[i])
i; ·;x : streamA[2i+ 1] ⊢i y ← odds i x :: (y : streamA[i])

The even-indexed substream retains the head of the input, but its tail is the odd-indexed
substream of the input’s tail. The odd-indexed substream, on the other hand, is simply
the even-indexed substream of the input’s tail. Operationally, the heads and tails of both
substreams are computed on demand similar to a lazy record. Unlike their sequential
counterparts, however, the recursive calls proceed concurrently due to the nature of cut.
Since our examples will keep constraints implicit, we indicate when constraints are assumed
or asserted inline for clarity.

y ← evens i x = case yW{ head h⇒ xR.head h,

tail yt︸ ︷︷ ︸
i>0 assumed

⇒ xt ← xR. tail xt︸ ︷︷ ︸
2i>0 asserted

; yt ← odds (i− 1) xt︸ ︷︷ ︸
i;i>0⊢i−1<i checked

}

y ← odds i x = xt ← xR. tail xt︸ ︷︷ ︸
2i+1>0 asserted

; y ← evens i xt

FSCD 2022



12:6 Type-Based Termination for Futures

By inlining the definition of odds in evens and vice versa, both programs terminate according
to our criterion from the introduction even though odds calls evens with argument i. However,
we sketch an alternate termination argument for similar such definitions at the end of Section 3.
On the other hand, consider the alternate signature we gave.

i; ·;x : ∀j. streamA[j] ⊢i y ← evens i x :: (y : streamA[i])
i; ·;x : ∀j. streamA[j] ⊢i y ← odds i x :: (y : streamA[i])

First, we define head and tail observations on streams of arbitrary depth. Since they are not
recursive, we do not bother tracking the size superscript of the typing judgment, since they
can be inlined. Moreover, we take the liberty to nest values (boxed and highlighted yellow),
which can be expanded into SAX [51].

·; ·;x : ∀j. streamA[j] ⊢ y ← headx :: (y : A)

y ← headx = xR. ⟨0,head y⟩

·; ·;x : ∀j. streamA[j] ⊢ y ← tail x :: (y : ∀j. streamA[j])

y ← tail x = case yW (⟨j, y′⟩ ⇒ xR. ⟨j + 1, tail y′⟩︸ ︷︷ ︸
j+1>0 asserted

)

The implementation of odds and evens follows almost exactly as before with the above
observations in place. Note that we use the abbreviation y ← f e x;Q ≜ y ← (y ← f e x);Q
for convenience.

y ← evens i x = case yW{head h⇒ y ← headx,
tail yt ⇒ xt ← tail x; yt ← odds (i− 1) xt}

y ← odds i x = xt ← tail x; y ← evens i xt

Refer to Figure 1 for the full process typing judgment – we will comment on specific
rules when necessary, but section 5 of [33] discusses the propositional rules more closely. In
particular, the arithmetic typing rules make use of a well-formedness judgment V; C ⊢ e and
entailment V ; C ⊢ ϕ. Moreover, since the constraint rules are implicit, the noninvertible ones
are not axiomatic. Most importantly, there are two rules for recursive calls; let us reproduce
them below.
V; C; Γ ⊢e P :: (y :A)

V; C; Γ ⊢e
∞ P :: (y :A)

∞
V; C ⊢ e′ < e y ← f i x = Pf (i, x, y) V; C; x : A ⊢e′

∞ Pf (e′, x, y) :: (y :A)

V; C; Γ, x : A ⊢e y ← f e′ x :: (y :A)
call

Our process typing judgment is itself mixed inductive-coinductive [22] – we introduce the
auxiliary judgment V; C; Γ ⊢e

∞ P :: (y : A) that is coinductively generated by the ∞ rule
(indicated by the double line). Since the premise of the call rule refers to V ; C; Γ ⊢e

∞ P :: (y :
A), all valid typing derivations are trees whose infinite branches have a call-∞ pair occurring
infinitely often, representing the unfolding of a recursive process. At each unfolding, we
check that the arithmetic arguments have decreased (from e to e′) lexicographically1 for
termination.

For typechecking in finite time, restricting our type system to circular derivations, which
can be represented as finite trees with loops, and decidable arithmetic (e.g., Presburger) is
sufficient, although we do not show this formally. In short, such a restricted system can

1 If two vectors have different lengths, then zeroes are appended to the shorter one.
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V; C; Γ, x : A ⊢e yW ← xR :: (y : A)
id
V; C; Γ ⊢e P (x) :: (x : A) V; C; Γ, x : A ⊢e Q(x) :: (z : C)

V; C; Γ ⊢e x← P (x); Q(x) :: (z : C)
cut

V; C; Γ ⊢e xW.⟨⟩ :: (x : 1)
1R

V; C; Γ, x : 1 ⊢e P :: (z : C)
V; C; Γ, x : 1 ⊢e case xR (⟨⟩ ⇒ P ) :: (z : C)

1L

V; C; Γ, y : A, z : B ⊢e xW.⟨y, z⟩ :: (x : A⊗B)
⊗R

V; C; Γ, x : A⊗B, y : A, z : B ⊢e P (y, z) :: (w : C)
V; C; Γ, x : A⊗B ⊢e case xR (⟨y, z⟩ ⇒ P (y, z)) :: (w : C)

⊗L

V; C; Γ, y : A ⊢e P (y, z) :: (z : B)
V; C; Γ ⊢e case xW (⟨y, z⟩ ⇒ P (y, z)) :: (x : A→ B)

→R
V; C; Γ, x : A→ B, y : A ⊢e xR.⟨y, z⟩ :: (z : B)

→L

k ∈ S

V; C; Γ, y : Ak ⊢e xW.k y :: (x : ⊕{ℓ : Aℓ}ℓ∈S)
⊕R

{V; C; Γ, x : ⊕{ℓ : Aℓ}ℓ∈S , y : Aℓ ⊢e P (y) :: (z : C)}ℓ∈S

V; C; Γ, x : ⊕{ℓ : Aℓ}ℓ∈S ⊢e case xR {ℓ y ⇒ Pℓ(y)}ℓ∈S :: (z : C)
⊕L

{V; C; Γ ⊢e P (y) :: (y : Aℓ)}ℓ∈S

V; C; Γ ⊢e case xW {ℓ y ⇒ Pℓ(y)}ℓ∈S :: (x : &{ℓ : Aℓ}ℓ∈S)
&R k ∈ S

V; C; Γ, x : &{ℓ : Aℓ}ℓ∈S ⊢e xR.k y :: (y : Ak)
&L

V; C ⊢ e

V; C; Γ, y : A(e) ⊢e xW.⟨e, y⟩ :: (x : ∃i. A(i))
∃R

V, i; C; Γ, x : ∃i. A(i), y : A(i) ⊢e P (i, y) :: (z : C)
V; C; Γ, x : ∃i. A(i) ⊢e case xR (⟨i, y⟩ ⇒ P (i, y)) :: (z : C)

∃L

V, i; C; Γ ⊢e P (i, y) :: (y : A(i))
V; C; Γ ⊢e case xW (⟨i, y⟩ ⇒ P (i, y)) :: (x : ∀i. A(i))

∀R
V; C ⊢ e

V; C; Γ, x : ∀i. A(i) ⊢e xR.⟨e, y⟩ :: (y : A(e))
∀L

V; C ⊢ ϕ

V; C; Γ, y : A ⊢e xW.⟨∗, y⟩ :: (x : ϕ ∧A)
∧R

V; C, ϕ; Γ, x : ϕ ∧A, y : A ⊢e P (y) :: (z : C)
V; C; Γ, x : ϕ ∧A ⊢e case xR (⟨∗, y⟩ ⇒ P (y)) :: (z : C)

∧L

V; C, ϕ; Γ ⊢e P (y) :: (y : A)
V; C; Γ ⊢e case xW (⟨∗, y⟩ ⇒ P (y)) :: (x : ϕ⇒ A)

⇒R
V; C ⊢ ϕ

V; C; Γ, x : ϕ⇒ A ⊢e xR.⟨∗, y⟩ :: (y : A)
⇒L

V; C; Γ ⊢e P :: (y :A)

V; C; Γ ⊢e
∞ P :: (y :A)

∞
V; C ⊢ e′ < e y ← f i x = Pf (i, x, y) V; C; x : A ⊢e′

∞ Pf (e′, x, y) :: (y :A)
V; C; Γ, x : A ⊢e y ← f e′ x :: (y :A)

call

Figure 1 SAX∞ Typing.

be put in correspondence with a finitary system that detects said loops [13, 21, 51] and
arithmetic constraint obligations can be discharged mechanically [25]. In Example 22 in
the appendix, we show a hypothetical instance of typechecking (note that we use “D ∈ J”
to indicate a derivation D of the judgment J). Now, consider the following example that
demonstrates a use case of mixed induction-coinduction in concurrency.

▶ Example 6 (Left-fair streams). Let us define the mixed inductive-coinductive type
lfairA,B[i, j] of left-fair streams [9]: infinite A-streams where each element is separated
by finitely many elements in B. Once again, these types are not polymorphic, but are
parametric in the choice of A and B for demonstration.

lfairA,B [i, j] = ⊕{now : &{head : A, tail : lfairν
A,B [i, j]}, later : B ⊗ lfairµ

A,B [i, j]}

lfairν
A,B [i, j] = i > 0⇒ ∃j′. lfairA,B [i− 1, j′]

lfairµ
A,B [i, j] = j > 0 ∧ lfairA,B [i, j − 1]

In particular, i bounds the observation depth of the A-stream whereas j bounds the height
of the B-list in between consecutive A elements. Thus, this type is defined by lexicographic
induction on (i, j). First, the provider may offer an element of A, in which case the observation
depth of the stream decreases from i to i− 1 (in the coinductive part, lfairν

A,B[i, j]). As a

FSCD 2022



12:8 Type-Based Termination for Futures

result, j may be “reset” as an arbitrary j′. On the other hand, if an element of “padding” in
B is offered, then the depth i does not change. Rather, the height of the B-list decreases
from j to j− 1 (in the inductive part, lfairµ

A,B [i, j]). By using left-fair streams, we can model
processes that permit some timeout behavior but are eventually productive, since consecutive
elements of type A are interspersed with only finitely many timeout acknowledgements of
type B. Armed with this type, we can define a projection operation [9] that removes all
of a left-fair stream’s timeout acknowledgements concurrently, returning an A-stream. For
brevity, we nest patterns (boxed and highlighted yellow), which can be expanded into nested
matches [51].

i, j; ·;x : lfairA,B [i, j] ⊢(i,j) y ← proj (i, j) x :: (y : streamA[i])
y ← proj (i, j) x =
casexR (now s⇒ case yW(headh⇒ sR.headh,

tail t︸︷︷︸
i>0 assumed

⇒ u← sR. tailu;

caseuR (⟨j′, x′⟩︸ ︷︷ ︸
i>0 asserted

⇒ t← proj (i− 1, j′) x′︸ ︷︷ ︸
i,j,j′;i>0⊢(i−1,j′)<(i,j) checked

)),

later⟨b, x′⟩︸ ︷︷ ︸
j>0 assumed

⇒ y ← proj (i, j − 1) x′︸ ︷︷ ︸
i,j;j>0⊢(i,j−1)<(i,j) checked

)

3 SAXω

Even without presenting the operational semantics yet, it is unclear how to prove normal-
ization of program reduction in the presence of infinite typing derivations. As a result, we
give a purely inductive process typing called SAXω with the judgment Γ ⊢ω P :: (x : A)
(selected rules in Figure 2 with the rest in Figure 5). By dropping the arithmetic and
constraint contexts, the rules ∃Lω and ∀Rω have one premise per natural number n instead
of introducing a new arithmetic variable (like the ω-rule of arithmetic [40]). Moreover, the
premises of ∧Lω and ⇒Rω assume the closed constraint ϕ (which has no free arithmetic
variables) holds at the meta level instead of adding it to a constraint context.

Most importantly, the call rule does not refer to a coinductively-defined auxiliary judgment,
because in the absence of free arithmetic variables, the tracked size arguments decrease from
some n to n′ to etc. Since the lexicographic order on fixed-length natural number vectors
is well-founded, this sequence necessarily terminates. To rephrase: the exact number of
recursive calls is known. While this system is impractical for type checking, we can translate
arithmetically closed SAX∞ derivations to SAXω derivations. In fact, any SAX∞ derivation
can be made arithmetically closed by substituting each of its free arithmetic variables for
numbers that validate (and therefore discharge) its constraints. By trading infinitely deep
derivations for infinitely wide but finitely deep ones, we may complete a logical relations
argument by induction over a SAXω derivation. Thus, let us examine the translation theorem.

▶ Theorem 7 (Translation). If D ∈ ·; ·; Γ ⊢n P :: (x : A), then Γ ⊢ω P :: (x : A).

Proof. By lexicographic induction on (n,D), we cover the important cases.
1. When D ends in ∃L or ∀R, its subderivation D′ introduces a fresh arithmetic variable i.

The mth premise of the corresponding SAXω rules ∃Lω and ∀Rω are fulfilled by induction
on (n, [m/i]D′).
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Γ, y : A, z : B ⊢ω xW.⟨y, z⟩ :: (x : A⊗B)
⊗Rω

Γ, x : A⊗B, y : A, z : B ⊢ω P (y, z) :: (w : C)
Γ, x : A⊗B ⊢ω case xR (⟨y, z⟩ ⇒ P (y, z)) :: (w : C)

⊗Lω

Γ, y : A(n) ⊢ω xW.⟨n, y⟩ :: (x : ∃i. A(n))
∃Rω

Γ, x : ∃i. A(i), y : A(n) ⊢ω P (n, y) :: (z : C) for all n ∈ N
Γ, x : ∃i. A(i) ⊢ω case xR (⟨i, y⟩ ⇒ P (i, y)) :: (z : C)

∃Lω

Γ ⊢ω P (n, y) :: (y : A(n)) for all n ∈ N
Γ ⊢ω case xW (⟨i, y⟩ ⇒ P (i, y)) :: (x : ∀i. A(i))

∀Rω

Γ, x : ∀i. A(i) ⊢ω xR.⟨n, y⟩ :: (y : A(n))
∀Lω

·; · ⊢ ϕ

Γ, y : A ⊢ω xW.⟨∗, y⟩ :: (x : ϕ ∧A)
∧Rω

Γ, x : ϕ ∧A, y : A ⊢ω P (y) :: (z : C) if ·; · ⊢ ϕ

Γ, x : ϕ ∧A ⊢ω case xR (⟨∗, y⟩ ⇒ P (y)) :: (z : C)
∧Lω

Γ ⊢ω P (y) :: (y : A) if ·; · ⊢ ϕ

Γ ⊢ω case xW (⟨∗, y⟩ ⇒ P (y)) :: (x : ϕ⇒ A)
⇒Rω

·; · ⊢ ϕ

Γ, x : ϕ⇒ A ⊢ω xR.⟨∗, y⟩ :: (y : A)
⇒Lω

(no rule for impossible)
y ← f i x = Pf (i, x, y) x : A ⊢ω Pf (n, x, y) :: (y : A)

Γ, x : A ⊢ω y ← f n x :: (y : A)
callω

Figure 2 Selected SAXω Typing Rules.

2. Analogously, when D ends in ∧L or ⇒R, its subderivation D′ assumes ϕ. The premises
of the corresponding SAXω rules ∧Lω and ⇒Rω assume E ∈ ·; · ⊢ ϕ, so we finish by
induction on (n,E ·D′) where E ·D′ cuts ϕ out of D′.

3. Finally, assume D ends in the call rule with subderivation D′. By inversion, D′ ends in
the ∞ rule with subderivation D′′. Although D′′ may be larger than D, we have some
new arithmetic arguments n′ < n. Thus, we are done by induction on (n′, D′′) then the
SAXω call rule. ◀

As we mentioned in the introduction, we can make the SAX∞ judgment arbitrarily rich
to support more complex patterns of recursion. As long as derivations in that system can
be translated to SAXω, the logical relations argument over SAXω typing that we detail in
Section 4 does not change. For example, consider the following additions.

1. Multiple blocks: To support multiple blocks of definitions, we may simply impose the
requirement that mutual recursion may not occur across blocks. In other words, the
call graph across blocks is directed acyclic, imposing a well-founded order on definition
names: g < f iff f calls g. As a result, translation of the definition f may proceed by
lexicographic induction on (f, n,D). For example, let f call g. If g is defined in a different
block than f , then the arithmetic arguments it applies (n) may increase. Otherwise, n
must decrease, since g is “equal” to f (in this order).

2. Mutual recursion with priorities: Definitions in a block can be ordered by priority: if
g < f , then f can call g with arguments of the same size. In Example 5, odds calls evens
with arguments of the same size but evens calls odds with arguments of lesser size. As a
result, evens < odds. If < is well-founded (like in this example), then translation of f
may proceed by lexicographic induction on (n, f,D).

4 Semantics and Normalization

In this section, we will give an operational semantics for configurations of processes. Then, we
will show that all SAXω-typed processes are strongly normalizing. Program execution based
on processes alone is impractical, because cut elimination only facilitates communication
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between two processes at a time. Thus, DeYoung et al. [33] define programs in SAX as
configurations of simultaneously executing processes and the memory cells with which they
communicate. Relatedly, the metatheory of the π-calculus must be defined up-to structural
congruence to achieve a similar effect [53].

▶ Definition 8 (Configuration). Let a, b, c, . . . ∈ Addr be cell addresses and W := V | K. A
configuration C is defined by the following grammar.

C := · empty configuration
| proc aP process P writing to cell addressed by a
| !cell aW persistent (marked with !) cell addressed by a with contents W
| C,C join of two configurations

C denotes a multiset of objects (processes and cells), so the join and empty rules form a
commutative monoid. However, we also require that an address refers to at most one object
in C. Lastly, a configuration F is final iff it only contains (persistent) cells.

Now, let Γ and ∆ be contexts that associate cell addresses to types. The configuration
typing judgment given in Figure 3, Γ ⊢ C :: ∆, means that the objects in C are well-typed
with sources in Γ and destinations in ∆ (note that we are allowing the process typing
judgment to use addresses in place of address variables). Notice that the typing rules preserve
the invariant Γ ⊆ ∆ thanks to the persistence of memory cells.

Γ ⊢ω P :: (a : A)
Γ ⊢ proc a P :: (Γ, a : A)

proc Γ ⊢ω aW.V :: (a : A)
Γ ⊢ !cell a V :: (Γ, a : A) !cellV

Γ ⊢ω case aW K :: (a : A)
Γ ⊢ !cell a K :: (Γ, a : A) !cellK Γ ⊢ · :: Γ

empty Γ ⊢ C :: Γ′ Γ′ ⊢ C′ :: ∆
Γ ⊢ C, C′ :: ∆

join

Figure 3 Configuration Typing.

Configuration reduction → is given as multiset rewriting rules [17] in Figure 4, which
replace any subset of a configuration matching the left-hand side with the right-hand side.
However, ! indicates objects that persist across reductions. Principal cuts encountered in a
configuration are resolved by passing a value to a continuation also given in Figure 4 as the
relation V ▷ K = P .

!cell a W, proc b (bW ← aR)→ !cell b W

proc c (x← P (x); Q(x))→
proc a (P (a)), proc c (Q(a)) where a is fresh

!cell a K, proc c (aR.V )→ proc c (V ▷ K)

!cell a V, proc c (case aR K)→ proc c (V ▷ K)

proc a (a← f n b)→ proc a (Pf (n, b, a))

proc a (aW.V )→ !cell a V

proc a (case aW K)→ !cell a K

⟨⟩ ▷ ⟨⟩ ⇒ P = P

⟨a, b⟩ ▷ (⟨x, y⟩ ⇒ P (x, y)) = P (a, b)
k a ▷ {ℓ x⇒ Pℓ(x)}ℓ∈S = Pk(a)
⟨n, a⟩ ▷ (⟨i, x⟩ ⇒ P (i, x)) = P (n, a)
⟨∗, a⟩ ▷ (⟨∗, x⟩ ⇒ P (x)) = P (a)

Figure 4 Operational Semantics.
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The first rule for → corresponds to the identity rule and copies the contents of one cell
into another. The second rule, which is for cut, models computing with futures [37]: it
allocates a new cell to be populated by the newly spawned P . Concurrently, Q may read
from said new cell, which blocks if it is not yet populated. The third and fourth rules resolve
principal cuts by passing a value to a continuation, whereas the fifth one resolves definition
calls. Lastly, the final two rules perform the action of writing to a cell.

Now, we are ready to prove normalization. Relatedly, refer to Das and Pfenning [25] for
a proof of type safety for a session type system with arithmetic refinements. In contrast
to the normalization proof for base SAX [33], we explicitly construct a model of SAX in
sets of terminating configurations, also known as semantic typing [5, 38]. This leaves open
several possibilities – for example, we could reason about programs that fail to syntactically
typecheck [41, 34] or analyze fixed points of semantic type constructors. Our approach
mirrors that for natural deduction:
1. We define semantic types: sets of terminating configurations with the necessary properties

to prove normalization (see reducibility candidates [36]).
2. We show that semantic versions of the syntactic typing rules of processes, objects, and

configurations are admissible in this model.
3. This culminates in a fundamental theorem of the logical relation that translates syntactic

types to semantic ones. Weak normalization for closed configurations (where · ⊢ C :: ∆)
is a corollary.

4. Strong normalization of arbitrary configurations (where Γ ⊢ C :: ∆) is a corollary of the
fundamental theorem as well as a weak form of the diamond property [6].

Now, let us begin with the definition of semantic type.

▶ Definition 9 (Semantic type). A semantic type A ,B, . . . ∈ Sem is a set of pairs of
addresses and final configurations, writing F ∈ [a : A ] for (a;F ) ∈ A , such that if F ∈ [a : A ],
then:
1. Inversion: !cell aW ∈ F for some W .
2. Contraction: !cell bW ∈ [b : A ] for all b ∈ Addr (W is from above).
3. Weakening: F, F ′ ∈ [a : A ] for all F ′.
Let →∗ be multi-step reduction and C ∈ Ja : A K iff C →∗ F and F ∈ [a : A ].

Conditions 1 and 2 are required to reproduce the identity rule semantically, but condition
3 is a symptom of working in a concurrent setting: we need to aggregate the semantic type
ascriptions of different sub-configurations. In the next definition, we quickly define each
semantic type in boldface based on its syntactic counterpart.

▶ Definition 10 (Semantic types).
1. F ∈ [a : 1] ≜ F = F ′, !cell a ⟨⟩.
2. F ∈ [c : A ⊗ B] ≜ F = F ′, !cell c ⟨a, b⟩ where F ′ ∈ [a : A ] and F ′ ∈ [b : B].
3. F ∈ [c : A → B] ≜ !cell cK ∈ F for some K and F, F ′,proc b (cR.⟨a, b⟩) ∈ Jb : BK for

all a, b, F ′ such that F, F ′ ∈ [a : A ].
4. F ∈ [b : ⊕{ℓ : Aℓ}ℓ∈S ] ≜ F = F ′, !cell b (k a) and F ′ ∈ [a : Ak] for some k ∈ S.
5. F ∈ [b : &{ℓ : Aℓ}ℓ∈S ] ≜ !cell bK ∈ F for some K and F,proc a (bR.k a) ∈ Ja :

AkK for all k ∈ S, a ∈ Addr.
Assume F : N→ Sem and ϕ is a closed constraint.
1. F ∈ [b : ∃F ] ≜ F = F ′, !cell b ⟨n, a⟩ and F ′ ∈ [a : F (n)].
2. F ∈ [b : ∀F ] ≜ F,proc a (bR.⟨n, a⟩) ∈ Ja : F (n)K for all a ∈ Addr, n ∈ N.
3. F ∈ [b : ϕ∧ A ] ≜ where F = F ′, !cell b ⟨∗, a⟩, ·; · ⊢ ϕ, and F ′ ∈ [a : A ].
4. F ∈ [b : ϕ ⇒ A ] ≜ if ·; · ⊢ ϕ, then F,proc a (bR.⟨∗, a⟩) ∈ Ja : A K for all a ∈ Addr.
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Positive semantic types are defined by intension – the contents of a particular cell – whereas
negative semantic types are defined by extension – how interacting with a configuration
produces the desired result. Analogously for the λ-calculus, the semantic positive product
is defined as containing pairs of normalizing terms, whereas the semantic function space
contains all terms that normalize under application [36, 4]. Now, to state the semantic typing
rules, we need to define the semantic typing judgment.

▶ Definition 11 (Semantic typing judgment). Let Γ and ∆ be contexts associating cell
addresses to semantic types.
1. F ∈ [Γ] ≜ F ∈ [a : A ] for all a : A ∈ Γ.
2. C ∈ JΓK ≜ C 7→∗ F and F ∈ [Γ].
3. Γ ⊨ C :: ∆ ≜ for all F ∈ [Γ], we have F,C ∈ J∆K.

In natural deduction, the equivalent judgment Γ ⊨ e : A is defined by quantifying over
all closing value substitutions σ with domain Γ, then stating σ(e) ∈ A . Similarly, we ask
whether the configuration C terminates at the desired semantic type(s) when “closed” by
a final configuration F providing all the sources from which C reads. Immediately, we
reproduce the standard backwards closure result.

▶ Lemma 12 (Backward closure). If C →∗ C ′ and Γ ⊨ C ′ :: ∆, then Γ ⊨ C :: ∆.

We are finally ready to prove a representative sample of semantic typing rules, all of
which are in Figure 6 (the dashed lines indicate that they are admissible rules). Afterwards,
we can tackle objects and configurations. As we promised, conditions 1 and 2 are used for
the admissibility of the identity rule.

▶ Lemma 13 (id). Γ, a : A ⊨ proc b (bW ← aR) :: (b : A )

Proof. Assuming F ∈ [Γ, a : A ], we want to show F,proc b (bW ← aR) ∈ Jb : A K. By
condition 1, !cell aW ∈ F . By condition 2, F, !cell bW ∈ [b : A ]. Since F,proc b (bW ←
aR)→ F, !cell bW , we are done by Lemma 12. ◀

The reader may have noticed that each semantic type’s definition encodes its own
noninvertible rule, which makes the admissibility of rules like ⊗R immediate. Invertible
rules require more effort; consider ⊗L below.

▶ Lemma 14 (⊗L). If Γ, c : A ⊗ B, a : A , b : B ⊢ proc d (P (a, b)) :: (d : C ), then
Γ, c : A ⊗B ⊢ proc d (case cR (⟨x, y⟩ ⇒ P (x, y))) :: (d : C ).

Proof. Assuming F ∈ [Γ, c : A ⊗ B], we want to show that F,proc d (case cR (⟨x, y⟩ ⇒
P (x, y))) ∈ Jd : C K. Since F ∈ [c : A ⊗B], we have F = F ′, !cell c ⟨a, b⟩ where F ′ ∈ [a : A ]
and F ′ ∈ [b : B]. As a result, both F ∈ [a : A ] and F ∈ [b : B] by condition 3. In sum,
F ∈ [Γ, c : A ⊗B, a : A , b : B], so by the premise, F,proc d (P (a, b)) ∈ Jd : C K. Since
F,proc d (case cR (⟨x, y⟩ ⇒ P (x, y)))→ F,proc d (P (a, b)), we are done by Lemma 12. ◀

Ironically, the persistence of a cell from the conclusion to the premise of a rule, which
encodes contraction, is justified via condition 3 (semantic weakening). On the other hand, the
identity rule, which “bakes in” weakening, is justified via condition 2 (semantic contraction).
Now, to prove semantic object typing rules, we need a logical relation that interprets syntactic
types as semantic ones.
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▶ Definition 15 (Logical relation). We define a logical relation LAMn by lexicographic induction
on (n,A) that sends arithmetically closed types to semantic ones. At a recursive type, n is
stepped down to allow A to potentially grow larger. Note that λ marks a meta-level anonymous
function and that ϕ is closed.

L1Mn ≜ 1 LA⊗BMn ≜ LAMn ⊗ LBMn LA→ BMn ≜ LAMn → LBMn

L⊕{ℓ : Aℓ}ℓ∈SMn ≜ ⊕{ℓ : LAℓMn}ℓ∈S L&{ℓ : Aℓ}ℓ∈SMn ≜ &{ℓ : LAℓMn}ℓ∈S

LX[m]M0 ≜ ∅ L∀i. A(i)Mn ≜ ∀(λm. LA(m)Mn) L∃i. A(i)Mn ≜ ∃(λm. LA(m)Mn)

LX[m]Mn+1 ≜ LAX [m]Mn Lϕ ∧AMn ≜ ϕ ∧ LAMn Lϕ⇒ AMn ≜ ϕ ⇒ LAMn

The index n is merely a technical device for defining the logical relation – it is not a step
index. Now, let F ∈ LAM ≜ F ∈ LAMn for some n. L·M is then extended to contexts Γ and ∆
in the obvious way.

▶ Lemma 16 (Semantic object typing).
1. If D ∈ Γ ⊢ω aW.V :: (a : A), then LΓM ⊨ !cell a V :: (a : LAM).
2. If D ∈ Γ ⊢ω case aW K :: (a : A), then LΓM ⊨ !cell aK :: (a : LAM).
3. If D ∈ Γ ⊢ω P :: (a : A), then LΓM ⊨ proc aP :: (a : LAM).

Proof. Part 1 follows by case analysis on D applying the relevant semantic typing rules,
like ⊗R for ⊗Rω. We prove parts 2 and 3 simultaneously by lexicographic induction on
D then the part number. That is, part 2 refers to part 3 on the typing subderivation
for the process contained in K (like →Rω). In part 3, if P reads a cell (like →Lω or
⊗Lω), then we invoke the relevant semantic typing rule. If P writes a continuation K,
then proc a (case aW K)→ !cell aK, so we invoke part 2 on D and conclude by Lemma 12.
Writing a value follows symmetrically, invoking part 1. ◀

The reader may have already noticed that there is a disconnect: the conclusions of our
semantic object typing rules have a single succedent, e.g., LΓM ⊨ proc aP :: (a : LAM), but
its syntactic counterpart factors sources through: Γ ⊢ proc aP :: (Γ, a : A). The following
lemma recovers this information as a consequence of memory cell persistence.

▶ Lemma 17 (Recall). If Γ ⊨ C :: ∆, then Γ ⊨ C :: Γ,∆.

Now that processes and objects have been resolved, it remains to derive the semantic
configuration typing rules.

▶ Lemma 18 (Semantic configuration typing).
1. Empty: Γ ⊨ · :: Γ
2. Join: If Γ ⊨ C :: Γ′ and Γ′ ⊨ C ′ :: ∆, then Γ ⊨ C,C ′ :: ∆.

The previous lemmas establish the fundamental theorem of the logical relation, of which
weak normalization of closed configurations is a corollary.

▶ Theorem 19 (Fundamental theorem). If D ∈ Γ ⊢ C :: ∆, then LΓM ⊨ C :: L∆M.

Proof. By induction on D, the empty and join cases are discharged by Lemma 18. The
object typing cases are covered by Lemma 16 then Lemma 17. ◀

Strong normalization follows from weak normalization as well as a weak form of the
diamond property (as follows) [6]. As we mentioned in the introduction, the latter implies
that normalization is independent of how processes are scheduled.
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▶ Theorem 20 (Diamond property). Let C1 ∼ C2 iff C1 is equal to C2 up-to renaming of
addresses. Assume Γ ⊢ C :: ∆, C → C1, and C → C2 where C1 ̸∼ C2. Then, C1 → C ′

1 and
C2 → C ′

2 such that C ′
1 ∼ C ′

2.
Proof. The proof follows that of theorem 10 (the diamond property) in [33], as the only
relevant addition is the unfolding of recursive definitions. ◀

▶ Theorem 21 (Strong normalization). If Γ ⊢ C :: ∆, then there are no infinite reduction
sequences beginning with C.

5 Related Work

Our system is closely related to the sequential functional language of Lepigre and Raffalli
[45], which utilizes circular typing derivations for a sized type system with mixed inductive-
coinductive types, also avoiding continuity checking. In particular, their well-foundedness
criterion on circular proofs seems to correspond to our checking that sizes decrease between
recursive calls. However, they encode recursion using a fixed point combinator and use
transfinite size arithmetic, both of which we avoid as we explained in the introduction.
Moreover, our metatheory, which handles infinite typing derivations (via mixed induction-
coinduction at the meta level), seems to be both simpler and more general since it does not
have to explicitly rule out non-circular derivations. Nevertheless, we are interested in how
their innovations in polymorphism and Curry-style subtyping can be integrated into our
system, especially the ability to handle programs not annotated with sizes.

Sized types. Sized types are a type-oriented formulation of size-change termination [44]
for rewrite systems [60, 12]. Sized (co)inductive types [8, 10, 2, 4] gave way to sized mixed
inductive-coinductive types [3, 4]. In parallel, linear size arithmetic for sized inductive types
[19, 64, 11] was generalized to support coinductive types as well [54]. We present, to our
knowledge, the first sized type system for a concurrent programming language as well as
the first system to combine both features from above. As we mentioned in the introduction,
we use unbounded quantification [62] in lieu of transfinite sizes to represent (co)data of
arbitrary height and depth. However, the state of the art [3, 4, 18] supports polymorphic,
higher-kinded, and dependent types, which we aim to incorporate in future work.

Size inference. Our system keeps constraints implicit but arithmetic data explicit at the
process level in agreement with observations made about constraint and arithmetic term
reconstruction in a session-typed calculus [27]. On the other hand, systems like CICℓ̂ [54]
and CIC∗̂ [18] have comprehensive size inference, which translates recursive programs with
non-sized (co)inductive types to their sized counterparts when they are well-defined. Since
our view is that sized types are a mode of use of more general arithmetic refinements, we do
not consider size inference at the moment.

Infinite and circular proofs. Validity conditions of infinite proofs have been developed to keep
cut elimination productive, which correspond to criteria like the guardedness check [30, 31, 7].
Although we use infinite typing derivations, we explicitly avoid syntactic termination checking
for its non-compositionality. Nevertheless, we are interested in implementing such validity
conditions as uses of sized types as future work. Relatedly, cyclic termination proofs for
separation logic programs can be automated [14, 58], although it is unclear how they could
generalize to concurrent programs (in the setting of concurrent separation logic) as well as
codata.
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Session types. Session types are inextricably linked with SAX, as it also has an asynchronous
message passing interpretation [52]. Severi et al. [56] give a mixed functional and concurrent
programming language where corecursive definitions are typed with Nakano’s later modality
[48]. Since Vezzosi [62] gives an embedding of the later modality and its dual into sized
types, we believe that a similar arrangement can be achieved in our setting. In any case, we
support recursion schemes more complex than structural (co)recursion [47].

π-calculi. Certain type systems for π-calculi [42, 49, 35] guarantee the eventual success
of communication only if or regardless of whether processes diverge [23]. Considering a
configuration C such that Γ ⊢ C :: (Γ, a : X[n]) where X[i] is a positive coinductive type,
we conjecture that |C|, which has all constraint and arithmetic data erased, is similarly
“productive” even if it may not terminate. Intuitively, C writes a number of cells as a function
of n then terminates, so |C| represents C in the limit since X[i] is positive coinductive.
However, this behavior is more desirable in a message passing setting rather than in our
shared memory setting.

On the other hand, there are type systems that themselves guarantee termination – some
assign numeric levels to each channel name and restrict communication such that a measure
induced by said levels decreases consistently [29, 28, 20]. While message passing is a different
setting than ours, we are interested in the relationship between sizes and levels, if any. Other
such type systems constrain the type and/or term structure; the language P [55] requires
grammatical restrictions on both types and terms, the latter of which we are trying to avoid.
On the other hand, the combination of linearity and a certain acyclicity condition [67] on
graph types [66] is also sufficient. Our system is able to guarantee termination despite
utilizing non-linear types, but it remains open how type refinements compare to graph types.

6 Conclusion and Future Work

We have presented a highly general concurrent language that conceives mixed inductive-
coinductive programming as a mode of use of arithmetic refinements. Moreover, we prove
normalization via a novel logical relations argument in the presence of infinitely deep typing
derivations that is mediated through infinitely wide but finitely deep (inductive) typing.
There are three main points of interest for future work.
1. Richer types: to mix linear [50], affine linear, non-linear, etc. references to memory as

well as persistent and ephemeral memory, we conjecture that moving to a type system
based on adjoint logic [52] is appropriate. In that case, sizes could be related to the
grades of the adjoint modalities [57]. Furthermore, we are interested in generalizing to
substructural polymorphic, higher-kinded [24], and dependent types [16, 43].

2. Implementation: we are interested in developing a convenient surface language (perhaps
a functional one [51]) for SAX and implementing our type system, following Rast [25],
an implementation of resource-aware session types that includes arithmetic refinements.
Perhaps various validity conditions of infinite proofs can be implemented as implicit uses
of sized type refinements.

3. Message passing: we would like to transport our results to the asynchronous message
passing interpretation of SAX [52], avoiding a technically difficult detour through asyn-
chronous typed π-calculi [32].
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A Appendix

▶ Example 22 (Typechecking). The process definition below, whose type signature is
i; ·;x : nat[i] ⊢i y ← eat i x :: (y : 1), traverses a unary natural number by induction to
produce a unit. Recall nat[i] = ⊕{zero : 1, succ : i > 0 ∧ nat[i− 1]}.

y ← eat i x = casexR { zero z ⇒ yW ← zR, succ z ⇒ y ← eat (i− 1) z}

Now, let us construct a typing derivation of its body below.

D =
z : 1 ⊢i (y : 1)

id

i; i > 0 ⊢ i− 1 < i

[(i− 1)/i][z/x]D ∈ i; ·; z : nat[i− 1] ⊢i−1 (y : 1)

i; ·; z : nat[i− 1] ⊢i−1
∞ (y : 1)

∞

i; i > 0; z : nat[i− 1] ⊢i (y : 1)
call

i; ·; z : i > 0 ∧ nat[i− 1] ⊢i (y : 1)
∧L

i; ·; x : nat[i] ⊢i (y : 1)
⊕L

For space, we omit the process terms. Of importance is the instance of the call rule for the
recursive call to eat: the check i− 1 < i (discharged automatically) verifies that the process
terminates and the loop [(i− 1)/i][z/x]D “ties the knot” on the typechecking process (the
constraint i > 0 is implicitly weakened). Mutually recursive programs, then, are checked by
circular typing derivations that are mutually recursive in the metatheory.
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Γ, x : A ⊢ω yW ← xR :: (y : A)
idω Γ ⊢ω P (x) :: (x : A) Γ, x : A ⊢ω Q(x) :: (z : C)

Γ ⊢ω x← P (x); Q(x) :: (z : C) cutω

Γ ⊢ω xW.⟨⟩ :: (x : 1)
1Rω

Γ, x : 1 ⊢ω P :: (z : C)
Γ, x : 1 ⊢ω case xR (⟨⟩ ⇒ P ) :: (z : C)

1Lω

Γ, y : A, z : B ⊢ω xW.⟨y, z⟩ :: (x : A⊗B)
⊗Rω

Γ, x : A⊗B, y : A, z : B ⊢ω P (y, z) :: (w : C)
Γ, x : A⊗B ⊢ω case xR (⟨y, z⟩ ⇒ P (y, z)) :: (w : C)

⊗Lω

Γ, y : A ⊢ω P (y, z) :: (z : B)
Γ ⊢ω case xW (⟨y, z⟩ ⇒ P (y, z)) :: (x : A→ B)

→Rω

Γ, x : A→ B, y : A ⊢ω xR.⟨y, z⟩ :: (z : B)
→Lω

k ∈ S

Γ, y : Ak ⊢ω xW.k y :: (x : ⊕{ℓ : Aℓ}ℓ∈S)
⊕Rω

{Γ, x : ⊕{ℓ : Aℓ}ℓ∈S , y : Aℓ ⊢ω P (y) :: (z : C)}ℓ∈S

Γ, x : ⊕{ℓ : Aℓ}ℓ∈S ⊢ω case xR {ℓ y ⇒ Pℓ(y)}ℓ∈S :: (z : C)
⊕Lω

{Γ ⊢ω P (y) :: (y : Aℓ)}ℓ∈S

Γ ⊢ω case xW {ℓ y ⇒ Pℓ(y)}ℓ∈S :: (x : &{ℓ : Aℓ}ℓ∈S)
&Rω k ∈ S

Γ, x : &{ℓ : Aℓ}ℓ∈S ⊢ω xR.k y :: (y : Ak)
&Lω

Γ, y : A(n) ⊢ω xW.⟨n, y⟩ :: (x : ∃i. A(n))
∃Rω

Γ, x : ∃i. A(i), y : A(n) ⊢ω P (n, y) :: (z : C) for all n ∈ N
Γ, x : ∃i. A(i) ⊢ω case xR (⟨i, y⟩ ⇒ P (i, y)) :: (z : C)

∃Lω

Γ ⊢ω P (n, y) :: (y : A(n)) for all n ∈ N
Γ ⊢ω case xW (⟨i, y⟩ ⇒ P (i, y)) :: (x : ∀i. A(i))

∀Rω

Γ, x : ∀i. A(i) ⊢ω xR.⟨n, y⟩ :: (y : A(n))
∀Lω

·; · ⊢ ϕ

Γ, y : A ⊢ω xW.⟨∗, y⟩ :: (x : ϕ ∧A)
∧Rω

Γ, x : ϕ ∧A, y : A ⊢ω P (y) :: (z : C) if ·; · ⊢ ϕ

Γ, x : ϕ ∧A ⊢ω case xR (⟨∗, y⟩ ⇒ P (y)) :: (z : C)
∧Lω

Γ ⊢ω P (y) :: (y : A) if ·; · ⊢ ϕ

Γ ⊢ω case xW (⟨∗, y⟩ ⇒ P (y)) :: (x : ϕ⇒ A)
⇒Rω

·; · ⊢ ϕ

Γ, x : ϕ⇒ A ⊢ω xR.⟨∗, y⟩ :: (y : A)
⇒Lω

(no rule for impossible)
y ← f i x = Pf (i, x, y) x : A ⊢ω Pf (n, x, y) :: (y : A)

Γ, x : A ⊢ω y ← f n x :: (y : A)
callω

Figure 5 SAXω Typing Rules.
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Γ, a : A ⊨ proc b (bW ← aR) :: (b : A )
id

Γ ⊨ proc a P :: (a : A ) Γ, a : A ⊨ proc c (Q(a)) :: (c : C )
Γ ⊨ proc c (x← P ; Q(x)) :: (c : C ) cut

Γ ⊨ !cell a ⟨⟩ :: (a : 1) 1R
Γ, a : 1 ⊨ proc b P :: (b : C )

Γ, a : 1 ⊨ proc b (case aR (⟨⟩ ⇒ P )) :: (b : C )
1L

Γ, a : A , b : B ⊨ !cell c ⟨a, b⟩ :: (c : A ⊗ B)
⊗R

Γ, c : A ⊗ B, a : A , b : B ⊢ proc d (P (a, b)) :: (d : D)
Γ, c : A ⊗ B ⊢ proc d (case cR (⟨x, y⟩ ⇒ P (x, y))) :: (d : D)

⊗L

Γ, a : A ⊨ proc b (P (a, b)) :: (b : B)
Γ ⊨ !cell c (⟨x, y⟩ ⇒ P (x, y)) :: (c : A → B) →R Γ, c : A → B, a : A ⊨ proc b (cR.⟨a, b⟩) :: (b : B)

→L

Γ, a : Ak ⊨ !cell b (k a) :: (b : ⊕{ℓ : Aℓ}ℓ∈S)
⊕R

{Γ, b : ⊕{ℓ : Aℓ}ℓ∈S , a : Ak ⊨ proc c (Pk(a)) :: (c : C )}k∈S

Γ, b : ⊕{ℓ : Aℓ}ℓ∈S ⊨ proc c (case bR {ℓ x⇒ Pℓ(x)}ℓ∈S) :: (c : C )
⊕L

{Γ ⊨ proc a (Pℓ(a)) :: (a : Aℓ)}ℓ∈S

Γ ⊨ !cell b {ℓ x⇒ Pℓ(x)}ℓ∈S :: (b : &{ℓ : Aℓ}ℓ∈S) &R Γ, b : &{ℓ : Aℓ}ℓ∈S ⊨ proc b (cR.k a) :: (a : A)
&L

Γ, a : F (n) ⊨ !cell b ⟨n, a⟩ :: (b : ∃F ) ∃R
{Γ, b : ∃F , a : F (n) ⊨ proc c (P (n, a)) :: (c : C )}n∈N

Γ, b : ∃F ⊨ proc c (case bR (⟨i, x⟩ ⇒ P (i, x))) :: (c : C )
∃L

{Γ ⊨ proc a (P (n, a)) :: (a : F (n))}n∈N

Γ ⊨ !cell b (⟨i, x⟩ ⇒ P (i, x)) :: (b : ∀F ) ∀R Γ, b : ∀F ⊨ proc a (bR.⟨n, a⟩) :: (a : F (n))
∀L

·; · ⊢ ϕ

Γ, b : A ⊨ !cell a ⟨∗, b⟩ :: (a : ϕ ∧ A ) ∧R
Γ, a : ϕ ∧ A , b : A ⊢ proc a (P (b)) :: (c : C ) if ·; · ⊢ ϕ

Γ, a : ϕ ∧ A ⊨ proc a (case aR (⟨∗, y⟩ ⇒ P (y))) :: (c : C )
∧L

Γ ⊨ proc b (P (b)) :: (b : A ) if ·; · ⊢ ϕ

Γ ⊨ !cell a (⟨∗, y⟩ ⇒ P (y)) :: (a : ϕ ⇒ A ) ⇒R
·; · ⊢ ϕ

Γ, a : ϕ ⇒ A ⊨ proc b (aR.⟨∗, b⟩) :: (b : A )
⇒L

(no rule for impossible)

y ← f i x = Pf (i, x, y) b : A ⊨ proc a (Pf (n, b, a)) :: (a : A )

Γ, b : A ⊨ proc a (a← f n b) :: (a : A )
call

Figure 6 Semantic Object Typing Rules.
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