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Abstract— The manuscript represents the state-of-the-art 

review of the deep learning methods for smart grid applications. 

This paper reviews novel applications of deep learning 

algorithms in smart grid. The deep learning based three 

algorithms i.e., Long-Short Term Memory, recurrent neural 

network, convolution neural network found to be most useful in 

smart grid application. These algorithms are found to be most 

useful for forecasting, cyber-attack, anomaly detection and 

electricity theft in smart grid. This paper briefly surveys the 

most usable deep learning algorithms for making the smart is 

resilience, accurate, and safe. The review result shows that the 

mentioned deep learning algorithms give an excellent results 

over other deep learning algorithm. Therefore, these three 

algorithms are widely acceptable for the evaluation of smart 

grids.   

Keywords—Smart Grid, Deep Learning, Long-Short Term 

Memory, Recurrent Neural Network, Convolution Neural Network. 

I. INTRODUCTION  

Deep learning (DL), which is based on artificial neural 
networks (ANN) with representation learning, has recently 
resurrected machine learning [1]. Because of its capabilities, 
different types of DL approaches are accessible in the 
literature, each with its own set of applications [2]. ML and 
DL aids in the analysis of smart grid applications in terms of 
efficiency and efficacy [3] . To safeguard the smart grid (SG) 
from cyber threats, such as collectively designing and 
creating appropriate SG testbeds to promote research [4]. A 
deep neural network is in fact an autoencoder for presenting 
relatively a set of data with degraded dimension [5]. Through 
the demand side management (DSM) system, the home 
energy management system efficiently schedules the 
appliances to achieve peak-average ration minimization, 
energy savings, and cost reduction [6]. To achieve the ideal 
set-point of smart inverters and the arrangement of capacitor 
banks for accomplishing dual timeframe voltage control in 
distribution networks, several researchers used an alternating 
current power flow model using deep Q networks [7].  

Adversarial attacks are inherently covert and capable of 
causing random or targeted malicious effects by substituting 
artificial adversarial instances for natural inputs in a target 
model [8]. False data injection attack detection (FDIA) 
scheme based on the Kalman filter and recurrent neural 
network can be used for state prediction [9]. The 
computational cost of DL results in an unavoidable 
disconnect between theoretical analysis and real-time actions 
[10]. A graphical model-based method for detecting 
abnormalities in SG control systems uses Bayesian networks 
to map the interaction between sensors and actuators [11]. DL 

provides particular benefits in handling complicated issues 
like power system frequency analysis and control [12]. The 
existing ML-based FDIA detection algorithms change 
measured data to malicious measurement data with false data 
injection attacks [13]. The significance of electricity theft 
detection in SG is crucial for cost-effectiveness [14].  

The application of DL in SG makes the power system 
secure and cost-effective. Even after such a great advantage 
of DL, it seems that SGs still have to help the power 
companies to enhance their operating and environmental 
performance. In addition, there is a research gap for the 
implication of DL in electric vehicles. To achieve a clean 
environment, electric vehicles will play an important role. If 
the DL concept applies in this sector, it would certainly 
transform the SG and helps to protect the environment. This 
motivates the author to do this literature review on the 
application of DL in SG. 

 

Fig. 1 A decade of deep learning in smart grid    

The progress of a decade of deep learning in smart grid is 
represented in Fig 1. The figure shows that between 2011to 
2016, the pace of research on DL was very slow but after 2017 
there are high increases in this field. The new algorithm of DL 
gives good results in making the traditional power system into 
a smart power system. 

II. MATERIALS AND METHODS 

The WOS has been explored from the year 2011 to 2022. 
The inquiries include a combination of all the deep learning 
methods with “smart grid”. The search resulted in 1750 
articles. Among them 200 had been selected as the most 
relevant through screening the titles and the abstracts of the 
manuscripts. In the second step, the classification of the 
method based on the deep learning method had been 
performed along with the PRISMA. The method of state-of-
the-art review had been adapted from [15-27]. After in dept 



study of the refined articles. The fundamental and novel 
methods of the deep learning had been identified and 
classified in the table 1. Further tables had been constructed 
based on the method of deep learning.  

III. STATE OF THE ART 

The fundamental and novel methods of the deep learning had 
been identified and classified in the table 1.

                                            Table I. Notable deep learning methods and their applications in smart grid 

 
SG is very vulnerable to cyber-attacks. This is because it 

is a combination of communication systems and the Internet 
of Things (IoT). DT and DNN classifiers can be used for 
constructing a unique symmetric demonstration of the 
asymmetric datasets of the SG control systems. This 
incorporates detecting attacks in SG [28].. The DL-based 
model in combination with the classical bad data detection 
algorithms can detect unstructured and structured false data 
inoculation attacks [29]. The SG systems manage the 
operation of all associated components due to the integrated 
communication infrastructures. The Trust-Based Iterative 
Energy-Efficient Routing Protocol can help in secured data 
transmission in the home area network [30]. An agent-based 
approach provides attack exposure matrices with the 
integration of true data. The agent-based approach also helps 
in the decentralization of the data integrity system [31]. The 
DL algorithm can also help forecast computer-aided 
residential energy management [32]. The DL algorithms, like 
CNN and SVM, can be used to identify the damages in the 
transmission lines [33].  

The demand response modeling using the DL algorithms 
like robust adversarial reinforcement learning and gradient-
based Nikaido-Isoda function provides an optimal strategy 
that exhibits the analysis of scheduling of appliances [34]. The 
DL has several applications in the SG paradigm. It can help to 
analyze the extent of limitations, awareness, prediction, 
feasible scenarios, accuracy, and many more [35].  

In SGs, we can maximize the social welfare can be 
maximized by making a balance between power supply and 
demand through the electricity market. The increasing  

 
frequency of SG requires fast tuning strategy of neural 
networks to significantly handle the topology change [36]. 
The DL algorithms such as clustering can formulate power 
loss estimators for large-scale low-voltage distribution areas. 
These areas can be uncertainty in the smart meters, load 
unbalances, and power variability from distributed generation 
[37] . DL can be useful in the classification of non-periodicity 
of electricity that helps in identifying the power theft by the 
consumer [38]. The clustering-based pooling method can 
address the overfitting data gathered from the smart meters by 
increasing the data diversity and volume for the framework 
which improves the predictive performances [39]. DL-based 
modules improve authenticity with reasonable convergence of 
the predicted results [40]. DL algorithms are very useful in 
real-time economic generation dispatch because they provide 
several generation commands for future SGs with different 
topologies [41]. the implementation of DL-based iterative 
ResBlocks improves the forecasting performance [42]. 

A. Long-Short-Term Memory 

Recurrent neural networks (RNN) use Long Short-Term 
Memory. LSTM has three gates which include the forget 
gate, input gate, and output gate. By using the forget gate the 
LSTM will find out which information needs to be forgotten 
and which needs to be retained by using the parameter ‘ft’. 
This is based on the current input ‘xt’, the previous output ‘ht-

1’, and the previous state ‘ct-1’. The forget parameter can be 
given by equation (1) [43] 

�t = σ (Wf [�� ℎ� − 1] + bf)        (1) 

References Year Source Application Methods/Algorithms 

{28] 2022 Computers and Electrical Engineering 

Risk management and 
cyberattacks 
detections SVM, and DNN 

[29] 2022 Electrical Engineering 
Real-time exact data 
intrusion detection State estimation, K-nearest neighbors, SCADA. 

[30] 2022 Intelligent Engineering and Systems 

Model and validate a 
secure home area 
network Deep auto-encoders; Honeypot algorithm;  

[31] 2021 Computers and Electrical Engineering  False data cyber data DNN, Agent-based model 

[32] 2021 Energy Research 
Forecasting residential 
energy management 

Pooling-based deep neural network, Neural 
network auto aggressive integral moving 
average 

[33] 2021 Soft Computing 
Damage in the 
transmission lines Convolution neural network (CNN), SVM 

[34] 2021 IEEE Access 
Effective pricing 
schemes Reinforcement learning 

[35] 2021 IEEE Access 
 Analyse accuracy, 
limitations 

Federated learning, Edge intelligence, and 
Distributed computing. 

[36] 2020 IEEE Internet of Things Journal 
Market frequency 
efficiency 

DNN, Security-constrained economic dispatch 
model, Stacked denoising autoencoders 

[37] 2020 Electrical Power and Energy Systems 
Technical losses in 
large-scale SG Clustering algorithm, DNN loss model, 

[38] 2020 Electrical Energy Systems Electricity Theft SVM, RF, 1D-CNN 

[39] 2020 IEEE Industrial Informatics 
Uncertainty of 
customer’s groups  

Bayesian deep learning; Clustering-based 
pooling 

[40] 2020 Energies 
Energy consumption 
forecasting 

Factored conditional restricted Boltzmann 
machine forecasting module, Genetic 
Algorithm, Evolution algorithm, ANN 

[41] 2020 Energy 
Real-time economic 
generation dispatch 

Expandable deep learning algorithms, 
Imperialist competitive algorithm, Shuffled frog 
leaping algorithm 

[42] 2020 IEEE Access 
Short-term load 
forecasting Deep neural network and Iterative ResBlock 



where Wf and bf are the weight matrix and bias vector 
respectively, σ is a sigmoid function, and t and t-1 represent 

current and previous time respectively. Table II represents the 
novel research done for SG application using LSTM. 

                                                             Table II. Long-Short-Term Memory applications in SG 

The LSTM helps to determine a satisfactory, and reasonable 
price for customers by predicting the energy demand of 
customers. This provides reliable service to the customers 
[44]. The SG is integrated with the power grid and large-scale 
information and Communication Technologies and is the 
largest and most widely used data communication network in 
the IoT framework. It collects and analyzes data from 
distributors, transmission lines, substations, and consumer 
networks. The LSTM autoencoder and logistic regression 
classifiers identify false data injection attacks from the 
normal system operation events. The temporal correlations 
between the multi-dimensional feature vectors are used to 
train the LSTM-Autoencoder. [45]. A B-LSTM network is a 
reliable tool for time-series forecasting tasks. This handles 
the data with sharp variations and high stochastic behavior. 
The B-LSTM contains bidirectional memory-feedforward 
and feedback loops, which allows to see into data from 
previous and future hidden layers [46]. However, GA-LSTM 
increases the convergence speed that provides optimized 
effective performance, and lower execution time. This can be 
very useful for energy consumption prediction. When 
compared to random approach strategies, GA-LSTM gives 
better convergence. For the best answer with the least amount 
of error, GA constructs a new vector. [47]. The reconstruction 
of a new framework using the LSTM and multivariant linear 
regression gives better short-term load forecasting results 
[48]. Because of the dynamic context in which SG devices 
operate, the wireless link is easily disrupted, resulting in 
strong stochastic aspects. LSTM-NN based helps to calculate 
the communication link reliability confidence interval for 
prediction in wireless communication systems in SG [49].  

Optimal prediction intervals can be constructed by using 
LSTM which helps in sampling data around the forecasted 
sample data of the SG’s components. This can help in  

modeling a cloud-fog architecture that can be fast, feasible, 
flexible, reliable, and secure for modern SG [50]. Forecasting 
can help participants in the electricity market compete using 
bidding techniques. Despite its conceptual simplicity, an 
LSTM-based sequence-to-sequence network can estimate 
power consumption and pricing for smart city time-series 
data with high accuracy [51]. For predicting the stability of 
the SG, a multidimensional LSTM algorithm can be used to 
make cyber-physical systems [52].  
The efficiency and stability of modern SG are infeasible for 
power load and demand forecasting. Jaya-LSTM algorithm 
can be used to optimize the number of epochs, batch size, and 
window size. In SG, the Jaya-LSTM can be used to achieve 
the minimum mean absolute error. Big data is utilized to 
forecast electricity prices and demand using LSTM. [53]. 
Electricity theft has one of the severe non-technical losses. A 
robust CNN-LSTM model can be very useful for electricity 
theft detection using the synthetic minority over-sampling 
technique. This gives better performance in recall, accuracy, 
and precision. CNN is a frequently used feature extraction 
and classification technology that automates the process [54]. 
The maximum information coefficient analyzes the 
correlation between real-time price and load and the ARIMA-
based LSTM model can predict better model accuracy than 
the conventional model [55]. 

B. Recurrent Neural networks 

The RNN is a special kind of ANN used for the evaluation of 
sequential data. It can generate the next output from the 
previous input. LSTM is a peculiar type of RNN which has 
better performance than others in predicting time-series data. 
This is due to the existence of the gate functions. The cell 
memory is represented in equation 2 [56]:  

Ct = (Ft ⊗ Ct-1) ⊕ (It ⊗ tanh(WcXt +UcHt-1 + Bc))      (2) 

References Years Sources Application Module/Algorithms 

[43] 2022 
International Journal of System Assurance 
Engineering and Management Demand management 

Convolution methods, Deep recurrent 
neural networks 

[44] 2022 IET Smart Grid 
Optimal price 
determination 

Q-learning based algorithm, Pricing 
algorithm 

[45] 2021 Journal of Network and Computer Applications 
AC False Data Injection 
Attack detection 

Logistic Regression (LR) classifier, 
Variational mode decomposition 

[46] 2021 IEEE Transactions on Industrial Electronics Short-term forecasting 
Bi-directional LSTM(B-LSTM), Micro-
clustering, Gaussian SVM.  

[47] 2021 Computing and Informatics 
Energy Consumption 
Prediction GA-LSTM 

[48] 2021 IEEE Transactions on Industrial Informatics 
Short-Term Load 
Forecasting  

Multivariable Linear Regression, LSTM 
NN. 

[49] 2021 Computing 

Quality confidence 
interval boundary 
prediction 

Wavelet denoising algorithm, LSTM link 
quality prediction module 

[50] 2021 IEEE Transactions on Cybernetics 
Uncertainty-Aware 
Management  

Multiagent-based algorithm, Consensus 
Algorithm, Cloud-Fog-based architecture 

[51] 2021 International Journal of Sustainable Engineering 
Electricity demand and 
price forecasting  

Neural Nonlinear Autoregressive network 
with Exogenous variables 

[52] 2020 IEEE Access Predicting the Stability  Multidirectional LSTM 

[53] 2020 Entropy 
Electricity load and price 
forecasting  Jaya-LSTM 

[54] 2019 Energies Electricity theft detection  CNN, LSTM-NN. 

[55] 2018 Dianwang Jishu/Power System Technology 
Short-Term Load 
Forecasting  LSTM, ARIMA 



Where C is the cell memory, H is the hidden state, X is the 
input, B is bias, W and U represent the weight vectors of F 
and H, respectively, tanh represents the tangent function. 

Table III shows different application discussed in SG using 
RNN. 

                                                          Table III.    Recurrent Neural networks in smart grids 

 The short-term load and price forecasting can be achieved 
by enhanced RNN that eliminates irrelevant features by using 
recursive feature elimination [57]. The battery is an important 
component of any SG. The absorptive ability of the battery 
energy storage system is different in SG as compared to the 
conventional energy management system. A 1-layer RNN 
help to solve an energy management model in SG [58]. State 
estimation is commonly used for the operation of SG. 
However, this method is not reliable during the security 
attacks. Yet, the residual recurrent neural network can model 
the anomaly and model the attack [59]. In addition, a wide and 
RNN model can also be used for detecting false data injection 
attacks [60]. The RNN-based module is superior in detecting 
false data injection [61]. The reliability of SG can be enhanced 
by detecting the anomaly in the SG. An encoder-decoder 
framework with RNN can detect the anomaly with an 
unexpected high reconstruction error [62].  
 To get better resilience SG it is very important to know the 
behavior categories of power consumers. RNN helps in the 
classification of consumers and makes a forecast-based 
classification framework [63]. Pricing is an important factor 
to develop an effective consumer-side management SG 
system. The optimized NN maximizes the aggregate utilities 
of all the users and minimizes the price imposed on the power 
provider [64]. The RNN solves the real-time price problem in 
the most optimized way as compared to other methods [65]. 
The sensor in SG holds a major role and therefore its accuracy 
in the system is very important. An RNN with layer feedback 
for each sensor provides an accuracy of the control data from 
different sensors. This helps to estimate the amount of fault 
data of the sensor by using the Kalman filter [66]. 

C. Convolutional Neural networks 

The CNN is analogous to classic ANN as it is made up of 
neurons that learn to optimize. CNN has five main structures 
of data layer: - input to the entire NN, b) convolution layer, 

c) pooling layer, and d) fully connected layer [67]. In SG, the 
identification of faulty high-voltage power lines is very 
important as it leads to severe losses. These faults can happen 
because of several environmental hazards like severe voltage 
fluctuations, lighting, and incorrect design of electric field 
distribution. CNN and relief-F algorithms can be used to 
detect the power lines in SG [68]. The continuous wavelet 
transforms, and wavelet-CNN are used to detect the 
distributed denial of service attack on SG [69]. AlexNet-
based deep convolution network helps in estimating the aging 
of conductor morphology of high-voltage electricity grid 
[70]. A CNN-based detector identifies distributed denial of 
service attacks on the electric vehicle charging station. Such 
a detector helps to model the demand values [71].  

Ensemble DeepCNN can detect atypical behaviors of SG 
by using a random bagging method to deal with a highly 
imbalanced dataset. A random under bagging strategy is used 
to deal with the imbalance data as the first layer of the model, 
then deep CNNs are used on each subset, and lastly, a voting 
system is integrated as the final layer [72]. The measurement 
dataset included active power injection into IEEE39-buses 
and active power flow in the branches. A CNN algorithm 
mitigates the impacts of stealthy false data injection attacks in 
SGs [73]. Enhanced-CNN helps in modeling the uncertainties 
in time series [74]. For power price forecasting, CNN-based 
algorithms minimize data dimensionality and transmit crucial 
data to a classifier. Linear discriminant analysis reduces the 
data dimensionality and electricity price forecasting [75]. The 
CNN- based affinity propagation clustering algorithm and 
matching pursuit decomposition algorithms provide the cost-
effective fault diagnosis in SG [76]. Electricity price and load 
forecasting provide future trends and consumption patterns. 
CNN-based algorithm and enhanced support vector regression 
give better results for electricity price and load forecasting 
[77]. Table IV shows the application of CNN in SG. 

 
 

                                                                                    

Table IV. Convolutional Neural networks 

References Year Source  Application Module/Algorithm 

[56] 2022 IEEE Internet of Things Journal 
False Data Injection Attack 

Detection  
Backpropagation module, Kalman filter, 

and RNN 

[57] 2019 
ITT 2019 - Emerging Technologies Blockchain and 

IoT 
Short Term Price and Load 

Forecasting  ANN, RNN, LSTM 

[58] 2019 6th, ICCSS 2019 
Optimal energy 

management  1-layer RNN 

[59] 2019  ICEI 2019 False data detection  Residual RNN 

[60] 2019 Lecture Notes in Computer Science  False Data Injection  Wide and RNN 

[61] 2018 IEEE, ISGT 2018 False data injection attacks  
Backpropagation learning Algorithm, 

RNN 

[62] 2017 
Journal of China Universities of Posts and 

Telecommunications Anomaly detection RNN; encoder-decoder framework 

[63] 2017 IEEE, ISGT 2017 Classification  RNN, Hidden Markov Model 

[64] 2016 Lecture Notes in Computer Science  Optimal real-time price  
NN, Optimization, Tikhonov 

regularization item 

[65] 2015 Neurocomputing Optimal real-time  Lyapunov-like method, RNN. 

[66] 2011 IConRAEeCE'11 - Proceedings Faulty data identification  
Hammerstein-Wiener module, Kalman 

filter learning algorithm.  



 

The CNN-based algorithm provides an energy management 
system by forecasting renewable energy resources [78]. The 
hybrid of CNN-based fusing XG-Boost and DT can be used 
to create a model for forecasting price. This constitutes in 
feature engineering, and classification. The enhanced CNN 
and support vector regression can be used in classification to 
evaluate the model performance [79]. The wide and deep 
CNN model performs best among the existing model in case 
of electricity theft in SG [80]. Although the [81,82] represents 
some advanced deep learning and machine learning methods 
in smart grid, a wide range of state-of-the-art methods of 
machine learning, e.g., [83-94], are yet to be experimented. 
From the hybrid methods of deep learning and machine 
learning to the ensemble and optimized machine learning 
methods, e.g., [95-109], numerous techniques have not yet 
been applied in the smart grid applications. For the future 
research using such methods for developing advanced models 
are suggested.   

CONCLUSION 

Major deep learning methods for smart grid had been 
represented and a new taxonomy presented. The study 
showed that three major deep learning method of RNN, CNN 
and LSTM had the most applications among the other deep 
learning methods. These algorithms are best suitable for risk 
management analysis, forecasting, electricity theft, anomaly 
detection, false data injection attacks and cyber security.     

      List of Acronyms 
SG Smart Grid 
ML Machine Learning 
DL Deep Learning 
LSTM Long-Short-Term Memory 
DNN  Deep Neural Network 
RNN Recurrent Neural Network 

SVM Support Vector Machine 

CNN Convolutional Neural Network 
ANN Artificial Neural Network 
FDIA False Data Injection Attacks 
RF Random Forest 
IoT Internet of Things 
B-LSTM Bi-directional-LSTM 
DSM Demand Side Management 
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