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1 Introduction

We propose to verify the efficiency of an implicit scheme, based on the finite
volume method, applied to Navier-Stokes equations. Two approaches for build-
ing such an algorithm are exposed with the perspective to compare them and
find out the most efficient. Therefore, in the last part, different test cases are
proposed where main results and the computational time are given as criteria
of comparison.

2 Governing equations

The evolution equations we deal with are described by one or several sets of
conservation with the expression given in (1).

∂ ~W

∂t
+ ~∇.(~fc( ~W ) + ~fd( ~W )) = ~s( ~W ) (1)

The vector of unknowns is denoted by ~W (x, t), whose size m corresponds to the
number of conservative variables. It is defined on the domain Ω ⊂ Rn × R+,
with n,m ∈ N .

The convective flux fc is a density of macroscopic flux and the diffusive
flux fd is a density of microscopic flux, both are specified in the descritpion of
Navier-Stokes equations.
The related functions ~f and ~s are defined as ~f : Rm → Rm,n and as ~s : Rm →
Rm

3 Numerical method

In this section, we briefly present the numerical algorithm used in the code
and expose the construction of the matrix built with the implicit mehtod. We
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distinguish the construction of the matrix with large stencil and the one with
reduced stencil which roughly corresponds to first and second order.

3.1 FVM approximation

The finite volume method is used for the discretization of the equations (1):
The domain Ω is divided into distinct elements Ti satisfying, Ω ≡

⋃
i Ti on

which we integrate the conservative equations (1). With the Green’s formula,
we obtain : ∫

Ti

∂ ~Wi

∂t
dV +

∮
∂Ti

(~fc + ~fd)~ndS =

∫
Ti

~s(Wi)dV. (2)

The approximation of equation (2), in sense of finite volume method, leads
on each Ti to

∂ ~Wi

∂t
= − 1

µi

Nj∑
j=1

( ~fcij + fdij ). ~nij |σij |+ ~si(Wi) = (3)

= − ~
Ri( ~W~ )̀

~̀= {`1, `2, · · · , `s} is a set containing the unknowns indices used for the evalu-
ation of the residual.

Next, Nj is the number of faces of the sub-domain Ti, µi is volume of the

sub-domain Ti, ~fcij ,
~fdij are the numerical fluxes, ~si(Wi) is a numerical approx-

imation of the source term, ~nij is the unit normal vector of the face σij (face
between volumes Ti and Tj) and |σij | is the face’s mesure.

Both numerical convective and diffusive flux require specific scheme, not
given here.

3.1.1 Implicit scheme

We apply a backward differentiation formula (BDF), method of second order in
time, to the time derivative term of equation (3).

3W k+1
i − 4W k

i +W k−1
i

2∆t
= −Ri(W k+1

` ). (4)

We introduce the notation, ∆W k = W k+1 −W k. After a linearization of
the residual, we obtain the following linear system:

3

2
∆W k

i + ∆t
∑
`

∂Rki
∂W`

∆W k
` = −∆t.Ri(W

k
` ) +

1

2
∆W k−1

i . (5)

The time step ∆t is chosen as the time step computed from a stability criterion
for explicit scheme multiplied by a number called CFL.
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In the right hand side of equation (5), the convective flux is computed with a sec-
ond order (linear reconstruction, with Bart-Jespersen limiter) upwind scheme.
The dissipative term comprises the computation of a gradient on the faces {i, j}
which is evaluated on a diamond cell (also second order).

In the left hand side, the derivative of the residual, ∂Rki /∂W` consists of the
derivative of convective and diffusive part of the residual. In the following sec-
tions, we present the computations of these derivatives with large or reduced
stencil. In every case, we use the notation i for the current cell and j for a face
neighbor.

3.1.2 Large stencil for convection

The scheme for convection computes the flux, on a face i, j, with two variables
{W r

i ,W
r
j } (r stands for reconstructed value). The derivative of that flux, on a

face i, j, is written in equation (6) only in respect to W r
i .

∂FC(W r
i ,W

r
j )FC(W r

i ,W
r
j )FC(W r

i ,W
r
j )

∂W r
iW
r
iW
r
i

∆W r
iW
r
iW
r
i (6)

With Fc, the numerical flux function. Note that ` is equal to j which means
that the sum in equation (5) is done on all face neighbors.

The reconstruction for W r
i method is a function whose entries are a certain

amount of neighbors. We have:

W r
i (Wi0 , ...,Wik , ...,Win).

k is the index of any neighbour, n is their total amount.
The expression of the increment ∆W r

iW
r
iW
r
i is as follow:

∆W r
iW
r
iW
r
i =

n∑
k

∂W r
iW
r
iW
r
i

∂WikWikWik

∆WikWikWik

By inserting this relation in equation (6), the Jacobian flux times the incre-
ment is given by the following equation:

∂FC(W r
i ,W

r
j )FC(W r

i ,W
r
j )FC(W r

i ,W
r
j )

∂W r
iW
r
iW
r
i

∆W r
iW
r
iW
r
i =

∂FCFCFC
∂W r

iW
r
iW
r
i

.

n∑
k

∂W r
iW
r
iW
r
i

∂WikWikWik

∆WikWikWik (7)

It means that for one face i, j, the derivative in respect to W r
i gives an

amount m2 × in values which are added in the matrix of the implicit linear
system.

3.1.3 Reduced stencil for convection

We approximate the previous equation (7) as follow:

n∑
k=1

∂W r
iW
r
iW
r
i

∂WikWikWik

= 0 ifik 6= i
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So that the derivation of convective flux becomes:

∂FC(W r
i ,W

r
j )FC(W r

i ,W
r
j )FC(W r

i ,W
r
j )

∂W r
iW
r
iW
r
i

∆W r
iW
r
iW
r
i =

∂FCFCFC
∂W r

iW
r
iW
r
i

.
∂W r

iW
r
iW
r
i

∂WiWiWi
∆WiWiWi (8)

In this case, for one face i, j, the derivative in respect to W r
i gives an amount

m2 values which are added in the matrix of the implicit linear system.

3.1.4 Large stencil for diffusion

The stencil of the diffusive flux is determined by the algorithm used for the
derivative of the diffusive variable (Velocity, Temperature ...). The diffusive
coefficient, if not constant, has a simple stencil of computation, contained in the
previous one, therefore, out of interest in this case.
The figure (1) is a diamond cell, built between two cells i, j, the interface of
which is described with the nodes Cl.
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Figure 1:

The derivative is performed thanks to that cells (1). The values at the node
Cl are computed with least square method. Finally, any derivative q on that
cell has the following expression:

(∇q)ij =
∑
k

akakakqk + aiaiai.qi + ajajaj .qj

The values qk are the centered value of cell k, akakak are geometrical coefficients
stemming from both diamond scheme and LSM.

We also can write:

(∇q)ij =

Nn∑
k

α`α`α`q`
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Nn is the number of all the unknowns gathered from both method LSM and
Diamond scheme.

The derivative of the diffusive flux Dij(∇q)ij (Dij the diffusive coefficient,
here taken as a constant),on the face i, j, in respect to W` is as follow:

∂FD(W1, . . . ,WNn)FD(W1, . . . ,WNn)FD(W1, . . . ,WNn)

∂W`W`W`
∆W`W`W` = Dij

Nn∑
k

α`α`α`
f(W`)

W`
∆W`W`W` (9)

With f(W`) = q`, the diffusive variable.

In this case, m2 ×Nn values are added to the matrix.

3.1.5 Reduce stencil for diffusion

In the computation of ∇q)ij , the influence of the cells indices save i, j is ne-
glected, so that the derivative of q is reduced to ∇q)ij = aiaiai.qi + ajajaj .qj and the
derivative of FD in respect to Wi:

∂FD(Wi,Wj)FD(Wi,Wj)FD(Wi,Wj)

∂WiWiWi
∆WiWiWi = Dijαiαiαi

f(Wi)

Wi
∆WiWiWi (10)

In this case 2×m2 elements are added to the matrix.

3.1.6 Boundaries in the implicit scheme

In the expression given in the previous sections, some of the increment ∆W`,
appear to be a ghost cell, which can’t be considered as an unknown.
Yet, we know that any ghost value W`W`W` is a function of the adjacent inner cell
W`adW`adW`ad , W`W`W` = f(W`adW`adW`ad)
Therefore, any ghost increment is modified as follow:

∆W`W`W` =
∂W`W`W`

∂W`adW`adW`ad

∆W`adW`adW`ad

4 Navier-Stokes with turbulence

We apply the implicit method to the Navier-Stokes equations: ρt +∇.(ρ.uuu) = 0
(ρ.uuu)t +∇.(ρ.uuu⊗ uuu) +∇p−∇.¯̄τ = 0
(ρ.e)t +∇.(ρ.h.uuu)−∇.(¯̄τ.uuu− qqq) = 0

With uuu the velocity, ρ the density, e the total energy equal to ui + ‖uuu‖2
2 .

ui the internal energy.
h the total enthalpy equal to e+ p

ρ .

qqq the heat flux modeled by Fourier’s law:qqq = −k∇T (k the thermal conductiv-
ity).
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The medium is a Newtonian fluid, we have: ¯̄τ = 2µ ¯̄D + λ∇.uuu.11.
µ the dynamic viscosity, λ = − 2

3µ, the second dynamic viscosity.

The strain rate tensor is ¯̄D = 1
2 (∇uuu+ (∇uuu)t)

Two additional conservative equations are added to catch turbulence phe-
nomena. A SST model is used in this case.{

(ρk)t +∇.(ρ.uuuk) = ∇.((µL + σk.µT )∇k) + τF .D − β∗ρωk
(ρω)t +∇.(ρ.uuuω) = ∇.((µL + σω.µT )∇ω) + Cωρ

µT
τF .D − βρω2 + 2(1− f1)

ρσω2

ω ∇ω∇k

With k the turbulent energy, ω = ε
β∗k the specific dissipation, f1 damp-

ing function,µT turbulence viscosity and β, beta∗, Cω, σk, σω constants of SST
model.

4.1 Computational algorithm

We use the following computational algorithm:

1. Firstly, we compute the compressible variables ~W k+1 from Navier-Stokes
equations (1) which yields to a new time level (tk+1).

2. Secondly, we compute the turbulent variables considering the compressible
variable as constant of the time step (tk+1).

3. Finally, we calculate the turbulent viscosity from turbulent equation used
in Navier-Stokes equations.

5 Results

5.1 2D flat plate

A free laminar stream flows over a flat plate in the close region of which the
velocity, reduced to zero at the surface, develops into a viscous boundary layer
for small Reynolds number and turn into a turbulence boundary layer further on
the plate. Figure (5.1) shows the evolution of the skin friction along the plate,
following the development of the boundary layer. The velocity profile in first
graph of this figure is drawn when the turbulent boundary layer is sufficently
developed.
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Velocity profile at the absciss x = 0.8 Skin friction

With u+ = u
uτ

, normalized velocity, y+ = yuτ
ν normalized ordinate (u hori-

zontal velocity, uτ =
√

τw
ρ , τw the viscous stress at the wall).

Rex = ρux
µ is the Reynolds number along the plate and Cf = τw

1
2ρu

2
∞

skin friction.

The green line represents the results given by the numerical computation,
others lines are theoretial asymptotes (see in [2]) toward which the solution con-
verges according to the physical configuration.

We give in the table (5.1), the CFL number (see in section 3.1.1), the time
step corresponding to physical time and the computational time.

CFL Time step Time CPU
Reduced stencil 35000 0.93 s 40 min
Large stencil 35000 0.93 s 215 min

Grid size : 32000 elements.

5.2 2D hill

In this case, a horizontal free stream flows over a hill. After the obstacle, a
separation in the flow appears, which we can observe on the figure (5.2) with
negative values of the horizontal velocity and a plateau in the pressure coefficient
profile.
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Velocity profile at the absciss x
H = 0.35 Pressure coefficient

With H = 0.04m, eight of the hill and the pressure coefficient Cp = p−p∞
1
2ρu

2
∞

.

CFL Time step Time CPU
Reduce stencil 50000 1.9e-2 s 250 min
Large stencil 50000 1.9e-2 s 2240 min

Grid size : 35000 elements.
Both profiles are in accordance to the experimantal data, detailed in the

paper [3]

5.3 3D bump

As in the previous case, a horizontal free stream flows over a 3D bump.

The computation is performed with the following parameters:
R = 287.15, µ = 2.69× 10−5, Pr = 0.72.

p0 = 101325, ρ0 = 1.177, Re = 3× 106, U∞ = 69

k∞ = 0.675
u2
∞
Re , ω∞ = 75u∞L

turbulent energy on plane x = 1.2 Pressure on the surface
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CFL Time step Time CPU
Reduce stencil 10000 2.68e-2 s 310 min
Reduce stencil 10000 2.68e-2 s a lot!

This results are computed on a rough grid (40 × 20 × 20), hence the ap-
proximative results. We display nonetheless the shape of turbulent energy and
pressure which corresponds to the results given on the following web page:

Turbulence Modeling Resource

6 Conclusion

The accuracy of results is the same for both methods, only in the stationnary
phase. Transitionary phenomena are not treated in this article, such studies yet
can be found in the article [1].
The serie of test cases has shown that both type of implicit schemes, with
reduce and large stencil, allow to increase the time step 100-50000 times higher,
according to the test case, than an explicit scheme. The CPU times of an explicit
schme are not relayed in that article; some preliminary computation with an
ideal flow has yet shown that the ratio between CPU for explicit and implicit
has the ordre of the CFL number.
The CPU times differ importantly between both schemes. For the large stencil,
the CPU times is in averaged 8 times bigger than in case of reduce stencil which
means that this last scheme is the most efficient.
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