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Abstract—The rapid spread of electronic commerce increases
the need for more sustainable, easily manageable, new integra-
tions and possibly error tolerant, easily scalable and resource
efficient software in the cargo and distributed structuring sector.
In this study, microservice-based software architecture has been
designed for cargo and distributed structuring sectors, and a
prototype of it has been implemented. The performance of the
prototype has been evaluated and superiority has been observed
over the monolithic services.
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I. INTRODUCTION

Logistics has become an integral part of the life in a
constantly growing and changing world. As the use of elec-
tronic trade becomes widespread, the need for manned and
unmanned transport increases day by day. For an organization
providing service in this sector, it has become complicated
to manage the process, to process and generate information
from the data streaming from different resources and maintain
the sustainability of the system. At the cargo transportation
and distributed structuring sector, a cargo goes through many
steps from its reception until its delivery to the customer. As
shown in Figure 1, these steps may be either independent or
dependent to each other.

Figure 1 includes the reception processes of cargo at the
departure office in the first step, then delivery processes to
departure hubs in the second step, the processes in destination
hubs in the third step, and at the last step the transfer of the
cargo to the destination branch office.

All these steps are managed by electronic applications and
process monitoring is also is performed by these applications
[1].

The cargo management and monitoring applications in
today’s cargo transportation and distributed structuring sector
are generally verified by monolithic services (programming
interface e.g.: WSDL based web services). When executed,
such services do not respond to requirements of the sector in
terms of various metrics such as scalability, performance, ease
of portability, and easy maintainability.

Today, software architectures which can respond to these
requirements are performed using microservice based software

architectures instead of traditional monolithic systems. Sys-
tems developed through microservice based software architec-
ture are freely distributable, easily scalable, having modular
parts easily interoperable, easily portable, and easily maintain-
able systems.

While in monolithic services, the entire service should
be updated and the refreshed version should go live in case
any function is modified; in microservice based systems, this
activity is being performed only at the microservice of the
function to be changed. This is a solution that does not
require the system to be stopped. As long as there is no
change on a microservice communication interface, there is
no need to modify other microservices which are related to
that microservice [2]–[4].

The microservices are generally being run on application
virtualization platforms. Application virtualization platforms
(e.g.: Docker, Linux container etc.) are traceable, customiz-
able, easily scalable, low-resource consuming virtualization
environments. These platforms can be monitored in real time
through the programming interfaces they provide and it is
possible to detect immediate or potential attacks or errors
on microservices working on the platform using collected
data [5], [6]. The application virtualization platforms consume
less resources than operating system virtualization platforms
(virtual machines) and they run faster [7].

Each container in these platforms is a scalable unit and their
proofing threshold desired from the distributed system. There
are tools which allow real-time scalability and management
and orchestration of containers in systems which use an ppli-
cation virtualization platform. Docker Swarm and Kubernetes
technologies are examples of these tools [8].

In scope of this study; as depicted and detailed in Figure 1,
we have performed a case study on designing and developing
all the processes of transporting a cargo; based on a distributed
architecture, capable of meeting the needs of the cargo trans-
portation and distributed structuring sector using an innovative
software architecture.

The software architecture suggested in scope of this study
is a microservice based, scalable software architecture which
has an error proofing feature and which uses application
virtualization platforms. A prototype application of suggested
software architecture was verified for the cargo transportation



and distributed structuring sector. To reveal the availability
and responsiveness of the prototype application, performance
and scalability tests were performed and positive results were
obtained.

In this case study, Chapter II explains literature review,
Chapter III describes the problem, Chapter IV presents the
suggested software architecture, Chapter VI gives details on
the developed prototype of the application, Chapter VI explains
the test that we have conducted on the prototype application.
Chapter VII summarizes the results and experiences obtained
at the end of this study and discusses future work.

II. LITERATURE REVIEW

The aim of traditional monolithic architectures and cor-
porate applications is to provide a high integration among
heterogeneous data sources [9], [10]. And high integration
is achieved through tight-coupling. We observe a number
of monolithic service oriented architecture based systems in
different domains [11]–[24]. Maintaining a high integration
during transfer of a monolithic system to a new environment
becomes difficult. However, the biggest challenge results from
systems which are scalable horizontally within the tight-
coupling [25].

The microservice architecture was introduced to solve
the limited scalability problem of monolithic services. The
microservices are small applications which can be individually
distributed, individually tested and individually scalable and
which have the capability of distributed programming [26].
The microservices should be functional and autonomous ac-
cording to their domains. So, as long as there is no change
on the communication interface, the change in a microservice
does not affect other services [2], [3]. Thus, a loosly-coupled,
flexible, agile service with high cohesion [4].

The microservices are defined as small autonomous ser-
vices. Based on the limits of business these services are
developed as part of the functionality. When developing the
code, one must avoid that it grows up and become messy. The
development of the microservice does not require dependence
on any technology. That means, microservices can be written
in different programming languages. All communication is
performed through the network. In case the input and output
are not changed when a microservice is developed or modified,
the other microservices in communication are not affected by
this change [2].

While the microservice architectures provide many advan-
tages, they also involve some challenges. Anytime an error
occurs, its reasons should be found in a timely manner and
it should be responded very rapidly. This case is called error
isolation. The health status of microservices should be checked
continuously and a very good logging mechanism should
be established. Automation is necessary to take appropriate
measures in case of a potential error in related services. The
microservices should be written as independent as possible
and they should not affect each other in case of any change.
Testing microservices is the most challenging subject on this
architecture. Although microservice architectures can be tested
by automation tools, they increase test complexity [27]. The
essential motivation of microservice architecture is that it
solves the scalability problem in monolithic systems. However

the main problem is experienced during a version update,
running special versions and submitting the requests arriving
to the services to other services [2], [3], [27], [28].

The microservices are generally run on cloud platforms
with light-weight application virtualization technologies. These
technologies are faster than other virtualization methods and
consume negligibly less resources [7]. The most widely used
one of light-weight virtualization platforms is the docker [29]
platform. Docker involves features and tools which might
tackle application challenges of the microservice architecture
[2], [5], [6], [26]. Docker contributes to the microservice archi-
tecture in requirements such as error isolation, portability, con-
venience for automation and security [27], [28]. Additionally,
docker’s resource utilization can be managed and monitored
in real time [30]. Large companies such as New York Times,
arxiv.org, Uber, paypal and ebay use microservice architecture
with docker. In fact, paypal has achieved a developer efficiency
of %50 after switching to microservice architecture. Some
applications have achieved %10-%20 performance efficiency
[31].

While docker application virtualization environment in-
volves several advantages, it also brings benefits on scalability.
However, as the number of application virtualization environ-
ments increase, the utilized resource rate also increases. The
resources should be used efficiently, if the resource utilization
continues to rise. On the other hand, in case resources are not
used anymore, the resources should be updated in terms of sav-
ing them. In order to keep such complicated situations under
control, a solution not depending on application virtualization
environment should be provided [5], [6].

An orchestration mechanism is needed for resource man-
agement, resource planning and service management of docker
containers. The orchestration mechanism must be able to
automate resource updates, define and plan scales, and service
management processes such as load balancing and container
isolation should be supported. At the market, there are orches-
tration mechanisms such as Docker Swarm [32], Kubernetes
[33], Apache Mesos [34] and Cattle [32]; however, as Kuber-
netes is the most successful one in management of complicated
services in larger architectures Kubernetes is preferred [8]. If
it is for different needs in different sized architectures, other
tools may be considered according to their performance and
capacities.

III. PROBLEM DEFINITION

As electronic commerce is used more widely in cargo
transportation and distributed structuring sector, a new need for
integration emerges. A cargo passes through several steps from
its reception until its delivery to the customer in the departure
office, departure hub, destination hub, and destination office.
When the software architecture where the complicated chain
of transactions with high frequency are managed through a
monolithic architecture, the system inadvertently grows up
vertically.

Vertical growth involves challenges such as scalability,
manageability, distribution, etc. Meanwhile, as the used ser-
vices are very interdependent, a small change to be made on
the service might affect the entire service. To deploy a change
made on a small service component or a small integration on



the service to the live system, first the entire service should be
stopped, and then it should be re-deployed and restarted.

Today, the communication between applications used in
each process of a cargo is developed using Service Oriented
Architectures (SOA). Such SOA based systems are used in
transporting high scale cargoes. For example, the company
MNG Kargo which offers service in the cargo transportation
and distributed structuring sector has managed a total of
74,343,435 cargo deliveries on a SOA based software system
in the first 10 months of 2019. It is envisaged that this number
will increase as the electronic trade becomes popular.

However, there are challenges in these SOA based systems,
because a monolithic system is used and it does not respond
to the requirements of the sector and because the system is not
easily manageable.

In a monolithic system, there is a resource allocated to
the entire system. The unnecessary congestion on a service
which is open to internal or external use overloads the entire
system beyond control. For example; whenever an electronic
trade web site having less cargoes performs many cargo
tracking queries on the system, the load on the system might
increase in an unbalanced way. In such a case, while the
resources might be used for an unimportant operation, the
response time of some important services might take longer
and fail sometimes. Some marketplace customers use some
cargo services periodically more intensely. In times of intense
use, difficulties are experienced in ordinary operations. Lack
of any quotas in the use of services for marketplace customers
leads to extra intensity.

In the cargo transportation and distributed structuring sec-
tor, continuous new integrations and updates on some com-
ponents of the monolithic service architecture are necessary.
After the new integration and update, the entire system should
be stopped and restarted after the update in order to deploy the
software. The stopping of the entire system during deployment,
hinders the whole running cargo distribution process. This is
another problem to be discussed.

In scope of this research, a distributed system-based soft-
ware architecture is suggested which might provide solutions
to problems due to widely used systems based on monolithic
software architecture in management of cargo and transporta-
tion sector processes. The software architecture providing a
solution to above mentioned problems are explained in the
next chapter with details.

IV. PROPOSED SOFTWARE ARCHITECTURE

Figure 1 depicts the processes for a cargo received from the
sender until its delivery to its receiver. We summarize the main
process steps in a cargo’s life cycle as follows: 1) Reception of
Cargo, 2) Measuring-Weighing-Barcode Labeling, 3) Special
Services and 4) Loading. After the cargo goes through the first
stage; it is brought in the second stage to the departure transfer
center. We specify the life cycle steps in the departure transfer
center as follows: 1) Picking Ring Transactions, 2) Sorting,
3) Fast Manifest Reading and 4) Line Vehicle Loading. At
the next step the cargo arrives at the destination hub by line
vehicles. We define the life cycle steps in the destination
transfer hub as follows: 1) Sorting, 2) Fast Manifest Reading,

3) Loading to Branch Office Vehicle and 4) Routing Ring
Operations. After the third stage of a cargo’s life cycle, the
cargo is transferred to the destination branch office by the
branch office vehicle. We group the last stage of the processes
at the destination branch office as follows: 1) Pre-delivery
Preparation, 2) Delivery and 3) Solution Center/Customer
Satisfaction.

Figure 1: Cargo Life Cycle

Our suggested distributed architecture including the spec-
ified cargo transportation life cycle microservices are shown
in Figure 2. 4 rectangles drawn with black lines in the figure
represent cargo processes. The microservices which are likely
to be used beginning from each process are indicated within
these rectangles. In the suggested architecture, each microser-
vice should run on a light-weight application virtualization
platform. The numbers indicated next to the microservices
representing the subprocess show the utilization frequency of
the microservice. At how many copy levels each container
should run is specified based on the frequency of microservices
which are depicted in the architecture in Figure 2.

Orchestration, load balancing, resource management and
horizontal/vertical scaling should be done on microservices
written to manage the cargo processes. An orchestration tool
is required for these operations to be positioned in the part
shown by a blue rectangle as depicted in Figure 2.

V. PROTOTYPE APPLICATION

To demonstrate the usability of the software architecture
introduced in the previous chapter, a prototype application was
developed. The developed prototype application selected as a
case study was used to manage and monitor the processes of
the company MNG Kargo operating in the cargo transportation
and distributed structuring sector.

The architecture of the prototype application created for
cargo transportation and distributed structuring processes at
the company MNG Kargo is presented in Figure 3. In this
architecture, all components of the company MNG Kargo
are running on application virtualization environments as a
microservice. Application virtualization environments can be
run on multiple servers with different locations. Resource
management, planning and service management of application
virtualization environments are provided through Kubernetes.

Black rectangles depicted at the top of Figure 3 represent
the applications used by the company MNG Kargo. Kubernetes



Figure 2: Suggested Application Architecture

cluster is shown by blue dotted lines in Figure 3. The requests
from the applications are received by Kubernetes Ingress
and directed to the services within the cluster and incoming
responses are forwarded to the application. Load balancing is
also done by Ingress.

Figure 3 depicts a server with 4 nodes. Within each node,
there are docker containers. And there are microservices within
docker containers. Colorful rectangles represent microservices.
The rectangles include the subject of activity for the microser-
vice and at the right-hand side of rectangles there is a numer-
ical value indicating the importance of that microservice. The
numerical value 10 indicates the mostly required microservice
and the value 1 indicates the least required microservice.

Each node was established to manage a different process
of the cargo. Node1 is used in managing the operations to
receive the cargo from the customer, Node2 cargo for sorting
operations and Node3 for managing the delivery processes
of the cargo. Microservices established in Node4 are needed
during these three processes. Therefore, these nodes shall be in
communication with each other. Furthermore, all microservices
shall be capable of linking to a single database and a distributed
file system.

Management of resources for docker containers and nodes
is performed by Kubernetes. The resource management is done
by increasing or decreasing the CPU and memory amounts
used by Docker containers and nodes. The resource manage-
ment can be done by two methods, i.e. horizontal scaling
(Horizontal Pods Autoscaler) and vertical scaling (Vertical
Pods Autoscaler) by Kubernetes automatically. Scaling rules
are specified, when Kubernetes Pods are installed. Kubernetes
reads these rules every 30 seconds as default and if the rule
applies, the horizontal scaling is performed immediately. A
copy of Kubernetes Pod is created by horizontal scaling.
Therefore, a copy of the docker container, thus a copy of
microservice is created. Kubernetes follows the same way,
when downwards scaling is performed. In vertical scaling,
a process similar to horizontal scaling applies. Scaling rules
are specified during setup. These rules are read once in 10
seconds and if the rule applies, then scaling is performed, and
Kubernetes Pod is restarted.

When the nodes run at full capacity and a new pod (it may
be considered as a new microservice within the docker) is to
be created, cluster scaling (Cluster Autoscaler) is performed
and the pod is instigated by creating a new node. However,
these rules should also apply for this operation. For example,
if there is a rule such as "Perform the operation, if 2 new pods
are waiting in the queue” a new node is created when two pods
are waiting in a queue. When node scaling is performed, the
rules are checked every 30 seconds as the default setting. When
any node waits for 10 minutes downscaling is performed.

Figure 3: Prototype Application Architecture

VI. PERFORMANCE EVALUATION

In this chapter, experiments are explained for indicating
the appropriateness of the suggested architecture in cargo
transportation and distributed structuring sector. The exper-
iments are for the performance of monolithic services and
microservices. For the experiments, a flask application was
written. In this application, 21048576 mathematical operations
are calculated, and the results of these operations are returned.
Then, this application was run on the docker container and
the images of containers were taken. This is the dummy
microservice to be used in experiments.

In order to perform the experiments machines with 2 equal
nodes and with a total 2vCPUs, 4 GB memory and 100 GB
resource were leased from the service provider Digital Ocean
and kubernetes orchestration tool were installed on them. To
simulate a monolithic service, a docker container image within
the dummy microservice which we have developed using flask
was instigated on kubernetes. To test the monolithic system,
Test-1 usage status was applied as indicated in Figure 4.
To measure the simulated monolithic system performance,



2,4,8,16,32,64,128 and 256 requests were submitted asyn-
chronously, and the response times were measured. The same
performance measurement process was repeated by creating
a copy of the container which includes the application as
indicated in Figure 4 Test-2. Finally, as depicted at usage status
in Figure 4 Test-3. The process was established so that there
are 3 containers including the application and the response
times to asynchronous requests were measured. The graphic
showing response times to asynchronous requests in various
numbers are provided for 3 different configurations in Figure
5.

Figure 4: Test Cases Used for Experiments

Figure 5: Experimental Results

VII. RESULTS AND FUTURE WORKS

In scope of this study, a microservice based software
architecture was suggested for the cargo transportation and dis-
tributed structuring sector. A prototype of suggested software
architecture was verified, and some performance tests were
done.

The effect of horizontal scaling and load balancing on per-
formance was tried to be measured by the tests performed. We
have observed that horizontal scaling has lowered the response
time, as the number of asynchronous requests increased. There-
fore, horizontal scaling has increased the performance, as the
number of asynchronous requests increased.

Our future work shall include, artificial intelligence sup-
ported horizontal and vertical scaling, prevention of continuous
scaling at overload such as ddos attacks and research and
development activities which require learning from streaming
data towards efficient use of resources.
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