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Abstract—This paper proposes an effective fault detection and 

diagnosis (FDD) of Grid-Connected Photovoltaic (GCPV) 

systems. The developed approach combines the advantages of 

both Principal Component Analysis (PCA) model and 

Hierarchical Clustering (HC) scheme. The PCA model is 

applied to extract and select the most informative features 

from GCPV system data. While, the HC metric is used to 

classify the GCPV faults and distinguish between the operating 

healthy and faulty modes. The proposed FDD approach, the so-

called PCA-based HC is experimentally tested and validated 

using GCPV system data. Different case studies are 

investigated in this paper in order to illustrate the efficiency 

and the robustness of the proposed framework. A comparison 

with well-known techniques is also presented. The obtained 

results confirm the high accuracy of the developed technique. 
 

Keywords—Grid-connected PV systems; principal component 
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I. INTRODUCTION 

As with any energy system, photovoltaic (PV) systems 

are subject to failures during operation due to aging effects 

and external/environmental conditions [1]. The PV systems 

usually control in harsh outdoor conditions which make 
them suffering from different faults in the different PV 

components (PV modules, cabling, converters, inverters 

…). To solve these problems, it is essential to implement an 

efficient and comprehensive fault detection and diagnosis 

(FDD) technique [2], [3]. 

Model based, image-based and data-driven are the 

principal approaches used in PV fault diagnosis [4]. Image-

based approaches need specific conditions to be performed 

such appropriate and expensive equipment [5]. Model-based 

approaches use an analytical model of the PV [6]. The 

model-based fault diagnosis is based on computing the error 

between the measured and estimated variables. The main 
advantage of these techniques is that they have a low 

hardware requirement and are related to a varied range of 

PV systems. However, these approaches depend on the 

adequacy of the mathematical model to describe well the 

behaviours of the PV system for which additional sensing 

devices are needed [7]. In fact, the majority of the model-

based approaches proposed for PV system fault diagnosis 

are applied to small scale PV systems [6]. 

Recently, various studies have been concentrating on the 

FDD in PV systems using computational intelligence and 
machine learning techniques. These tools are data-driven 

approaches and are based on historical data collected during 

operation of the PV system [8], [9]. 

Particularly, Principal Component Analysis (PCA) is a 

well-known multivariate statistical method [10], [11], [12], 

[13]. PCA is a dimensionality reduction technique able to 

capture the most dominant variances in the data and it 

describes the principal component subspace and the residual 

subspace by means of a linear transformation [14]. 

In this paper, therefore, we propose an FDD approach 

that merges the benefits of PCA model and Hierarchical 
Clustering (HC) scheme. The developed FDD approach 

is addressed so that the PCA is applied for feature and 

extraction purposes and HC metric is used for fault 

classification. Indeed, the HC metric is one of the most 

applied classifiers in FDD of industrial processes. But its 

use suffers from certain limitations and disadvantages 

when using a single variable at each node without 

considering the correlations between the variables. In 

addition, to perform FDD, the classical HC only uses raw 

information from process data by the direct use of 

measured variables at nodes. The direct raw signals could 

yield to poor diagnosis results due to noise and 
redundancies on data.  

The developed PCA-based HC method aims first to 

reduce the amount of the training data, extract and select 

the most relevant features using PCA based 

dimensionality reduction scheme. Then, the selected 

features are fed to the HC classifier for fault diagnosis 

purposes. The validation is done using a Grid Connected 

Photovoltaic (GCPV) system data. 

The remaining sections of this paper are organized as 

follows: section 2 is devoted to feature extraction and 

selection. In section 3, Fault classification approach is 
presented. Section 4 shows the application results and 

discussions. The last section is devoted to some conclusions 

and findings. 
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II. FEATURE EXTRACTION AND SELECTION 

A. PCA-based feature extraction 

We consider the data matrix 𝑋 ∈ ℜ𝑛×𝑚, collected from a 

process operates under normal conditions with 𝑛samples of 

𝑚variables, these data can be stored a zero mean and unit 

variance matrix 𝑋𝑠 = [𝑋𝑠1
𝑇 𝑋𝑠2

𝑇 ⋯ 𝑋𝑠𝑚
𝑇 ] . The linear 

transformation that projects the data onto the subspaces is 

gives by the following equation 

 𝑇 = 𝑋𝑠𝑃  (1) 

Where 𝑇  is the score matrix. 𝑃 is an 𝑚  by 

𝑚 orthonormal matrix consists of the covariance matrix of 

𝑋𝑠  eigenvectors. The covariance matrix of 𝑋𝑠  using the 

Singular Value Decomposition (SVD) on 𝛷 yields to 

 𝛷 = 𝑃𝛬𝑃𝑇 (2) 

Where 𝛬 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ⋯ , 𝜆𝑚) is a diagonal matrix 

contains the eigenvalues sorted in a decreasing order. 

Equation (1) permits to rewrite 𝑋𝑠 as 

  𝑋𝑠 = 𝑇𝑃𝑇 (3) 

Now the number of principal components is selected 

noted 𝑙, 𝑋𝑠 becomes as  

 𝑋𝑠 = �̂�𝑠 + 𝐸 (4) 

Such that  

  �̂�𝑠 = �̂��̂�𝑇 (5) 

 𝐸 = �̃��̃�𝑇 (6) 

Where 

�̂� ∈ 𝑅𝑚×𝑙 , �̃� ∈ 𝑅𝑚×(𝑚−𝑙)
, �̂� ∈ 𝑅𝑛×𝑙𝑎𝑛𝑑 �̃� ∈ 𝑅𝑛×(𝑚−𝑙) 

B. PCA-based feature selection 

In the literature, numerous methods exist for selecting 

the number of principal components 𝑙 . These methods 

mainly include the cumulative percentage of variances, 

cross validation, scree plot and parallel analysis [14], [15]. 

In this work, the cumulative percentage of variance (CPV) 

criterion [16] has been used. The CPV is a measure of the 

percent variance defined by the first principal components 𝑙. 
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C. Statistical characteristics extraction 

To obtain a good performance of ML classification 

based approaches, it is significance to extract statistical 

behaviour via PCA-based model by exhaustively 

enumerating some possible values. This type of features is 

simple to compute and occasionally efficient and principled 

manner. The features considered as appropriate for faults 

diagnosis in GCPV include the following 𝑇2 statistic 

measures the variations in principal subspace [17], [18]. It is 
given by  

  𝑇2 = 𝑥𝑇�̂��̂�−1�̂�𝑇𝑥  (8) 

Its control limit noted by 𝑇𝛼 decides whether the process 

is healthy and faulty, it is given by 
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Where 𝑛  is the number of observations and 𝑎  is the 

number PCs. 𝐹𝛼(𝑎, 𝑛 − 𝑎) is an 𝐹  -distribution of 𝑎, 𝑛 − 𝑎 

degree of freedom evaluated at given confidence level (1-𝛼). 

The SPE statistic, also known as Q statistic measures the 

projection of the sampled data vector onto the residual 

subspace [19], [20]. It is defined as follows 

 𝑄 = ‖(𝐼 − �̂��̂�𝑇)𝑥‖
2

= 𝑥𝑇(𝐼 − �̂��̂�𝑇)2 (10) 

The control limit of 𝑆𝑃𝐸 noted by  𝑄𝛼 . The process is 
under healthy state if inequality given by 

   𝑆𝑃𝐸 ≤ 𝑄𝛼  (11) 

And          

 𝑄𝛼 = 𝜃1 [𝑐𝛼
ℎ0√2𝜃2

𝜃1
+ 1 +

𝜃2𝜃0(𝜃0−1)

𝜃1
2 ]

1

𝜃0
 (12) 

Where 
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  ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2   (14) 

𝐶𝛼   is the normal deviate corresponding to (1 − 𝛼) 

percentile. 

The combined index is a combination between 𝑇2 and 

𝑆𝑃𝐸 [21], [22]. 

 𝜑 =
𝑆𝑃𝐸(𝑥)

𝑄𝛼
+

𝑇2

𝑇𝛼
 (15) 

III. FAULT CLASSIFICATION USING HIERARCHICAL 

CLUSTERING 

A. Hierarchical Clustering Algorithm 



 

 

 

Hierarchical clustering is viewed as the most significant 

unsupervised learning algorithm, which is utilized to collect 

the unlabeled database in clusters. These clusters are shown 

dendrograms, which are in fact tree representation of points 
relying on similarity or dissimilarity metrics.  

This method contains two approaches: Agglomerative 

and Divisive. The Agglomerative takes bottom up 

approach: in which the algorithm begins with taking all 

data points as single clusters and merging them until one 

cluster is obtained. While the Divisive takes top down 

approach: at first, all the data points are presented  in one 

cluster then the algorithm splits it until each data points 

illustrated as single cluster [23], [24]. 

This paper deals with the Agglomerative algorithm, which is 

divided in 3 steps [25]: 

 Average-linkage cluster: the distance from one 
cluster to the other must be the average distance. 

 Complete-linkage cluster: also called maximum 

method, the distance from one cluster to the other must be 

greatest.  

 Single-linkage cluster: also known as minimum 

method, the distance from one cluster to the other must be 

shortest.  

The fault diagnosis approach is addressed such that the Single-

linkage cluster is used for fault classification purposes 

[26], the following steps are illustrated bellow: 

1. Allocate a cluster to each point, such that N clusters 
for N points. 

2. Seek and merge the pair of clusters which are closest 

to each other. 

3. Measure the distances among the new and each of 

the ancient clusters. 

a) Commence with the disjoint clustering having 

level, l(0) = 0 and sequence number n=0. 

b) In the present clustering, we have to find the 
lowest dissimilar pair of clusters say pair (a), (b), 

according to d[(a),(b)] = min d[(u),(v)] where the 

minimum is over all pairs of clusters in the 

current clustering. 

c) Increase the sequence number: n = n+1 and 

merge clusters (a) and (b) into a single cluster to 

form the next clustering n. Set the level of this 
clustering to l(n) = d[(a),(b)]. 

d) The further step is to upgrade the proximity 

matrix, M, by removing the rows and columns 

corresponding to clusters (a), (b) and inserting a 

row and column correspond to the recently formed 

cluster. The proximity among the new cluster, 

indicated (a,b) and old cluster (k) is identified in 

this way: d[(k), (a,b)] = min d[(k),(a)], d[(k),(b)]. 

4. Stop the process when all the data points are in one 

cluster else, go to step 2. 

 

B. Hierarchical Clustering based on Euclidean distance 

This paper deals with the most used metric which is the 

Euclidean distance. This later calculates the root of square 

difference between co-ordinates of data points [27]. 

 𝐷𝑖𝑠𝑡𝑥𝑦 = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)𝑚
𝑘=1

2
 (16) 

C. Proposed methodology 

The proposed methodology involves three major stages 

including feature extraction, feature selection and 
classification. Once the measurements are available 

representing healthy and different possible faulty scenarios 

in the process, a PCA model is built under normal operating 

conditions.  

These data are projected onto a subspace of positive 

right directions by keeping the most captured features 

information. The structure of the obtained PCA model is 

represented by the directions of the subspace projector 

where its dimension is less than that of the original data. The 

PCA used to extract the important features from the GCPV 

system then Hierarchical Clustering is applied to these 
features to implement the fault classification based on 

Euclidean distance. The main steps in the proposed PCA-

based Hierarchical Clustering are summarized in Figure 1 as 

well as in Algorithm 1. 

The steps of the developed approach are summarized in 

the block diagram in Figure 2. At first, we calculate the 

covariance matrix for each data then the average of 

covariance matrix aims to reduce the computing time. 

Therefore, we determine the multivariate statistical charts 

for each data. 

Algorithm 1 PCA-based Hierarchical Clustering 

Input: 𝑁 × 𝑚 data matrix 𝑋 

Training phase 

1. Standardize the training data set, 

2. Determine the covariance matrix for each data set, 

3. Determine the average of covariance matrix, 

4. Determine the SVD decomposition, 

5. Determine the multivariate statistical charts for 

each data, 

6. Compute the minimum distance between each 

data cluster using the Euclidean distance, 

7. Determine the monitoring statistics, 

Testing phase 

1. Standardize the testing data set using the mean 

and the variance computed from the healthy 

training phase, 

2. Determine the multivariate statistical charts (𝑄, 𝑇2 

and the combined 𝜑 statistics), 
3. Compute the minimum distance between each    

data cluster using the Euclidean distance, 

4. Determine the monitoring statistics of the testing data. 



 

 

 

 

Fig. 1. Illustration of PCA based Hierarchical Clustering for GCPV fault 
diagnosis. 

 

Fig. 2. Detail illustration of PCA-based Hierarchical Clustering for fault 
diagnosis. 

IV. RESULTS AND DISCUSSION 

A. Grid connected PV implementation and data collection 

In this paper, data sets have been collected from an 

emulator of a GCPV system. PV array emulator and grid 

emulator are used instead of real PV array and grid, in order 

to able to inject different faults in these two main parts of 

the GCPV system. Also, they give the flexibility to manage 

the desired system parameters or the outdoor conditions by 

setting the humidity, temperature and irradiation. A block 

diagram of a basic structure of a grid connected PV system 

is represented in Figure 3. 

 

Fig. 3. Block diagram of a basic grid connected PV system. 

The implemented system is a programmable DC Power 

Supply (Solar Array Emulation) Chroma 62150H-1000S, 

which has been used to emulate a real world PV panel due 

to its high performance efficiency and its capacity to 

emulate real PV panel faults. For grid emulation, the 

programmable AC source Chroma 61511 is used and set to 

the three-phase mode to match a real grid system network. 

A DC-DC converter was implemented using a 

chopper. Its main task is to maintain the output current of 

the PV panel emulator to a specific level as much as 
possible. This DC-DC converter has one operation 

depending on the operating mode: In MPPT mode, it 

boosts and amplifies the electrical power to reach the 

maximum power point of the system. After the DC-DC 

converter a DC-AC Inverter is implemented using six 

IGBTs to provide a three-phase signal that will be 

transmitted to the grid emulator system after rectification 

and transformation. 

The control of this system has been implemented 

using the DSpace 1104 environment with Matlab. There 

are two main controllers that have been used and 
implemented. The first controller is the MPPT controller, 

used to trigger the DC-DC converter by sending control 

signals based on the PV output current and voltage. The 

algorithm used for the MPPT is the PSO algorithm. The 

second control is used to maintain the synchronization of 

the three phase DC-AC inverter output current and 

voltage, with the grid parameters in terms of phase, 

frequency and magnitude. The phase synchronization is 

performed using Phase Locked Loop (PLL) algorithm. 

The frequency and magnitude synchronization are 

performed using the Voltage Oriented Control (VOC) 

algorithm combined with Space Vector Pulse Width 
Modulation (SVPWM). VOC and SVPMW are also used 

to control the active and reactive power using the DC-AC 

inverter. 

The data are collected using several sensors at several 
locations of measurement interest, nine variables 

measurements are considered. The recording length of the 

data varies from 5 seconds to 15 seconds, depending on the 

nature of the fault and the damage that can cause when 

proceeding with the injection of some faults in the system. 

These measured variables are described in detailed in the 

table I. 



 

 

 

TABLE I.  DESCRIPTION OF THE MEASURED GCPV SYSYTEM 

VARIABLES 

Measures  Symbol  Index in 

data 

matrix 

Variable description  

 

Grid 

three 
phase 

current  

Ia 

Ib 

Ic 

Variable 

1 

Variable 
2 

Variable 

3 

 

The output three phase 

current of the transformer 
after the DC-AC inverter  

PV 

current  

Ipv Variable 

4 

The output current of the 

PV panel emulator 

 

Grid 

three 

phase 

voltage  

Va 

Vb 

Vc 

Variable 

5 

Variable 

6 

Variable 

7 

 

The output three phase 

voltage of the transformer 

after the DC-AC inverter 

Output 

voltage  

Vout Variable 

8 

The output voltage of the 

DC-DC converter  

PV 

voltage  

Vpv Variable 

9 

The output voltage of the 

PV panel emulator  

 

In this work, the considered faults are experimental 

faults carried out on the GCPV system simulator. The 

experiment was conducted by making changes and injecting 

faults in different components and at different locations to 
ensure a global analysis and complete study Shown in table 

II. Six sets (one healthy mode and five faulty modes) of 

experimental tests have been conducted to assess the fault 

diagnosis approach; they have been realized under different 

operating conditions. 

TABLE II.  DESCRIPTION AND CHARACTERISTIC OF THE DIFFERENT 

LABLED FAULTS INJECTED 

Fault 

label  

Fault 

Side  

Fault type  Fault description  

 

Fault 

1 

AC 

Side 

Three 

phase 

inverter 

fault  

Damage of one IGBT at a 

time among the total of 6 

IGBTs inside the three-phase 

inverter 

 

 

Fault 
3 

 Grid 

external 

connection 
fault  

Critical external fault at the 

grid output level. This can be 

caused by loss or poor grid 
connection, sudden grid 

disconnection. The system 

will switch to a load for 

protection reasons  

 

Fault 

2 

 PV sensor 

fault  

Damage, malfunction or 

poor connection of the 

current sensor at the PV 

output 

Fault 

4 

DC 

Side 

 PV array 

level fault 

Permanent partial shading of 

10% to 20% 

 

Fault 

5 

  Critical external fault due to 

loss of connection / sudden 

disconnection / open circuit  

In order to carry out the different experiments for fault 

classification purposes, experimental data variables are 

collected. The GCPV healthy stat us is assigned to class 𝐶0 
and the other five operating modes are assigned to 

classes 𝐶𝑖  (𝑖 = 1, . . . ,5), respectively, as reported in table III. 

To get a good performance of diagnosis-based 

approaches, it is important to extract the best statistical 

characteristics from the used data set. Therefore, the 

objective of the proposed technique is to only keep the 

most important characteristics to save time in the fault 

classification procedure. In the current study, Hotelling’s 

𝑇2 statistic, squared prediction error SPE ( 𝑄 ) statistic, 

combined index 𝜑  are used to select the final efficient 

features. Examples of these features are illustrated in 

Figures 4, 5 and 6. 

TABLE III.  CONSTRUCTIONL OF DATABASE FAULT DIAGNOSIS 

SYSTEM 

Class State  Training 
Data  

Testing 
Data 

C0 Healthy  3000 2999 

C1 F1 3000 2999 

C2 F2 3000 2999 

C3 F3 3000 2999 

C4 F4 3000 2999 

C5 F5 3000 2999 

 

B. Fault classification results 

Data set of GCPV system under healthy operating 

conditions is normalized to zero mean and unit variance and 

then used to build a PCA model. A key issue to identify a 

PCA model is to select the adequate number principal 

components. The number of retained principal components 𝑙 
has a significant impact on each step of the process 

modelling and monitoring scheme. The criterion used to 
select this number is the cumulative percentage of variances 

(CPV) with 90% as an explained variance threshold. The 

retained number of PCs using the PCA is equal to 3. 

 

Fig. 4. 𝑄, 𝑇2 and 𝜑 statistics for the healthy operating mode. 

 
Fig. 5. 𝑄, 𝑇2 and 𝜑 statistics under the faulty operating mode 2 



 

 

 

 

Fig. 6. 𝑄, 𝑇2 and 𝜑 statistics under the faulty operating mode 4. 

After extracting and selecting the most informative 

features from the data set, Hierarchical Clustering is applied 

to these features for fault classification purposes; the main 

aim is to measure the distance between the features of the 

data obtained under  normal and faulty states.  

The diagram, illustrated by Figure 7, is shown the 

corresponding dendrograms to the 𝑄 , 𝑇2  and the 

combined index 𝜑. Begin with the left side of the figure, 

corresponding to the 𝑄, in which the class C0 (1) and C3 

(4) combine together and form a cluster, Then a 

dendrogram is created, the hight is decided according to 

the Euclidean distance among the classes. In the 

following step, C4 (5) and C5 (6) form a cluster by 

creating the corresponding dendrogram. Moreover new 

dendrograms are created that combine the similar classes 

C0 (1), C3 (4) and C1 (2) in one dendrogram. Then two 

clusters get merged into one. In the end, the final 

dendrogram is created that combines all the classes 

together. 

In the middle of the same figure, corresponding to the 

𝑇2. First of all, C1 and C5 form a cluster then a dendrogram 
is created, followed by C3 which is merged into the same 

cluster, similarly for C0. Then C2 and C4 combine into one 

cluster, forming a new dendrogram. Finally, all classes get 

merged into one. 

While in the right side of the same figure, the classes C0-

C3-C1 and C4-C5 are all under one dendrogram. We finish 

when cluster is left and finally bring everything together. 

Figures 8 and 9 show the results of the application of 

PCA based-Hierarchical clustering for testing data. We 

can show from the results that technique is able to 

distinguish between classes. In such a way that this step 

deals with adding a new cluster 7 on the right which is 
consists of selecting the correct class, which represents 

the correctly classified and high accuracy observations 

for healthy condition (C0) and faulty conditions (C1 to C5) 

for 𝑄, 𝑇2 and 𝜑. 

 

Fig. 7. Dendrogram for healthy mode Training (𝑄, 𝑇2 and 𝜑). 

 

Fig. 8. Dendrogram for class 2 (𝑄, 𝑇2 and 𝜑).  

 

Fig. 9. Dendrogram for class 4 (𝑄, 𝑇2 and 𝜑). 

In this study, Hierarchical Clustering is tested, its 

performance in term of accuracy via 𝑄, 𝑇2 and 𝜑 statistical 
features. Table IV and VI represent the observations 

correctly classified for the healthy condition (C0) and faulty 

conditions (C1 to C5). 

Clearly, the PCA based Hierarchical Clustering achieves 

the best overall performance with an accuracy with 100% 

for 𝑄  and 𝜑 . In addition, the developed approach have a 

high performance in term of accuracy, which is mainly due 
to the similarity between all extracted features that cannot 

be distinguished. 

Therefore, the proposed technique is considered as a 

good alternative for faults classification due to its high 

accuracy and reliability for 𝑄  and 𝜑 . However, Table V 

represents the incorrectly classified observations for fault 1 

and fault 4 (C1 and C4) with an accuracy 0% for 𝑇2. 

TABLE IV.  MATCHING MATRIX OF THE PROPOSED METHOD FOR 𝑄 

Accuracy        

C0 100% 0% 0% 0% 0% 0% 

C1 0% 100% 0% 0% 0% 0% 

C2 0% 0% 100% 0% 0% 0% 

C3 0% 0% 0% 100% 0% 0% 

C4 0% 0% 0% 0% 100% 0% 

C5 0% 0% 0% 0% 0% 100% 

 

TABLE V.  MATCHING MATRIX OF THE PROPOSED METHOD FOR 𝑇2 

Accuracy        

C0 100% 0% 0% 0% 0% 0% 

C1 0% 0% 0% 0% 0% 0% 

C2 0% 0% 100% 0% 0% 0% 

C3 0% 0% 0% 100% 0% 0% 

C4 0% 0% 0% 0% 0% 0% 

C5 0% 0% 0% 0% 0% 100% 

 



 

 

 

TABLE VI.  MATCHING MATRIX OF THE PROPOSED METHOD FOR 𝜑  

Accuracy        

C0 100% 0% 0% 0% 0% 0% 

C1 0% 100% 0% 0% 0% 0% 

C2 0% 0% 100% 0% 0% 0% 

C3 0% 0% 0% 100% 0% 0% 

C4 0% 0% 0% 0% 100% 0% 

C5 0% 0% 0% 0% 0% 100% 

 

V. CONCLUSION 

In this paper, the problem of faults detection and 

diagnosis for Grid-Connected PV (GCPV) system was 
considered. The developed technique was based on the 

Principal Component Analysis (PCA) and Hierarchical 

Clustering (HC) classifier. It was addressed so that the PCA 

technique was applied for features extraction and selection 

purposes and the HC was used for faults classification. The 

proposed approach was developed to diagnose the GCPV 

systems under normal and faulty conditions. Different 

scenarios were investigated in order to show the robustness 

and the efficiency of the developed approach. The technique 

was tested and examined using simulated GCPV data 

representing different operating conditions. The developed 
approach showed good diagnosis and higher classification 

accuracy for 𝑄 and 𝜑 under different operating modes. 
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