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Abstract

Machine Reading Comprehension (MRC) is a
great NLP task that requires concentration on
making the machine read, scan documents, and
extract meaning from the text, just like a human
reader. One of the MRC system challenges is
not only having to understand the context to
extract the answer but also being aware of the
trust-worthy of the given question is possible
or not. Thought pre-trained language models
(PTMs) have shown their performance on lots
of NLP downstream tasks but it still has a lim-
itation in the fixed-length input. We propose
an unsupervised context selector that shortens
the given context but still contains the answers
within related contexts. In VLSP2021-MRC
shared task (Nguyen et al., 2021) dataset, we
also empirical several training strategies con-
sisting of unanswerable question sample se-
lection and different adversarial training ap-
proaches, which slightly boost the performance
2.5% in EM score and 1% in F1 score.

1 Introduction

Machine Reading Comprehension (MRC) is a task
introduced to test the level at which a machine can
understand natural languages by asking the ma-
chine to answer questions based on a given context.
The early MRC systems were designed on a latent
hypothesis that all questions can be answered ac-
cording to a given context, which is not always true
for real-world cases. The current MRC task has re-
quired that the model have to classify unanswerable
and answerable questions to avoid giving plausible
answers. Figure 1 shows an unanswerable example
from UIT-ViQuAD dataset (Nguyen et al., 2021).

PTMs that can capture contextual word embed-
dings such as ELMo (Peters et al., 2018), GPT (Co-
hen and Gokaslan, 2020), or BERT (Devlin et al.,
2019) have proposed and achieved superior results.
But all these PTMs only experiments on English

Figure 1: An unanswerable MRC example in the
VLSP2021-MRC shared task dataset. The highlighted
span text in context is the plausible answer for the ques-
tion.

language (Hermann et al., 2015; Lai et al., 2017;
Rajpurkar et al., 2016, 2018; Nguyen et al., 2016).

The most well-known pre-trained models, such
as BERT (Devlin et al., 2019), are used on fixed-
length input segments of a maximum of 512/1024
tokens owing to the limitation of fixed-length.
Thus, a long input must be partitioned into smaller
segments of manageable sizes. It leads to the loss
of salient cross-segment information, that is, the
context fragmentation problem. (Dai et al., 2019;
Ding et al., 2021) proposed new architecture to
solve this problem.

Adversarial training (AT) (Goodfellow et al.,
2015) is a means of regularizing classification algo-
rithms by generating adversarial noise to the train-
ing data. In the Machine Reading Comprehension
task, (Lee et al., 2019) leveraged AT for learning
domain-invariant representation, which made the
MRC model generalize well to predict answers on
unseen out-of-domain. (Yang et al., 2019) applied
Vitural Adversarial Training to improve the perfor-



mance significantly and universally on SQuAD1.1
(Rajpurkar et al., 2016), SQuAD2.0 (Rajpurkar
et al., 2018) and RACE. (Yang et al., 2021) propose
a novel adversarial training method called PQAT.
The core of PQAT was the virtual P/Q-embeddings,
which were two independent embedding spaces for
passages and questions. According to the benefits
of AT, we decided to apply severals training strate-
gies that can boost the model performance across
in MRC tasks which is discussed further in Section
2.2 and Section 2.3.

Our contributions are summarized as follows:

• We introduce an unsupervised context selector
to solve the long context problem.

• We introduce a simple strategy to gener-
ate unanswerable examples, called Question-
Context Shuffle.

• We experiment with different adversarial
training approaches in MRC.

We evaluate and experiment with the proposed
methods on the dataset released by VLSP2021-
MRC shared task (Nguyen et al., 2021).

2 Background

2.1 Pre-trained Language Models
PTMs on the large unlabeled corpus have shown
impressive performance on lots of downstream
NLP tasks which proves that they can learn univer-
sal patterns. There have been several applications
for using pre-trained language models that can cap-
ture contextual word embeddings, such as ELMo
(Peters et al., 2018), GPT (Cohen and Gokaslan,
2020), or BERT (Devlin et al., 2019) to transfer
the knowledege from pre-training to various down-
stream tasks.

For the very first time that BERT has been intro-
duced, it significantly outperforms previous SOTA
models on eleven NLP tasks in GLUE (Wang et al.,
2018). In terms of monolingual language models
pre-trained for Vietnamese, PhoBERT has been in-
troduced by (Nguyen and Nguyen, 2020) and it has
shown significant improvements in Named Entity
Recognition, Parsing, and Natural Language In-
ference tasks. PhoBERT pre-training approach is
based on RoBERTa (Liu et al., 2019) which opti-
mizes the BERT pre-training procedure for more
robust performance.

Given input con text sequence C =
{c1, c2, ..., cN} and question Q = {q1, q2, ..., qM}

where N is the context length and M is the ques-
tion length. The model has to verify the question is
answerable or not, for each answerable predictions,
the model is enable to output the correct answer
span. The answer span A is either a valid span
A = {ai, a2, ..., aj} where 1 ≤ i ≤ j ≤ N or an
empty A = {}. The input model is the concanation
of C and Q with special tokens [CLS] and [SEP ]
as [CLS] Q [SEP ] P [SEP ]. We employ a
linear layer with Softmax operation and feed
last-layer hidden representation H ∈ RLXd as the
input to obtain the start/end position probability
distributions ps, pe respectively. The training
objective of answer span prediction is defined
as cross entropy loss for the start and end index
position.

lossstart/endidx = − 1

Nk

Nk∑
k

[yks log(p
k
s)+yke log(p

k
e)]

(1)
where Nk is the number of examples, yks and yke
are respectively ground-truth start and end posi-
tion of example k. We also employ linear layer
with Softmax for hCLS ∈ H and use cross en-
tropy as loss function for classification answer-
able/unanswerable question.

lossCLS = − 1

Nk

Nk∑
k

C∑
c

[ykc log(p
k
c )] (2)

where pkc is answerable and unanswerable proba-
bility distributions. C means the number of classes
(C = 2 in this work).

The overview of our method architecture is il-
lustrated in Figure 2 .

2.2 Adversarial Training

(Szegedy et al., 2014) first discovered the existence
of small perturbations to the input images that mis-
lead models to predict wrong labels in the image
classification. They called the perturbed inputs ad-
versarial examples. (Goodfellow et al., 2015) pro-
posed a simple adversarial training method to im-
prove the robustness of the model by training on
both clean examples and adversarial examples. In
NLP tasks, a popular approach to generate pertur-
bations is to perturb word vectors from the embed-
ding layer. In general, adversarial training idea is
formulated as follows:

y = fθ(x) (3)



Figure 2: The overview architecture of our method.

y
′
= fθ(x+ noise) (4)

where θ is our model weight, x is the embedding of
the input sequence and noise is simply a tensor that
is randomly generated with normal distribution.

Motivated by making the MRC model more gen-
eralized with diverse inputs, we apply adversar-
ial learning which simply is a noise layer for the
input. In this work, we utilize R3F (Aghajanyan
et al., 2020) that encourage the model to generalize
with representation changes during training with-
out hurting performance. The adversarial training
loss lossADV is calculated by the following:

lossADV = KL(y, y
′
) +KL(y

′
, y) (5)

where KL is the KL-Divergence. The final loss
function is the summation of mentioned loss with
λ0, λ1 and λ2 are learned weight for each task:

loss = λ0lossCLS+λ1lossstart/endidx+λ2lossADV

(6)

2.3 Domain Agnostic (DA)
Adapting models to a new domain without fine-
tuning is a challenging problem in deep learning.

In this paper, we also experiment with adversarial
training called Domain-agnostic. The adversarial
training is leveraged for learning domain-invariant
representation. Specifically, the MRC model learns
to make the discriminator that classifies the joint
embedding of context and question into the given
T domains. If the discriminator cannot tell the dif-
ference between embeddings from different T do-
mains, the MRC model learns domain-invariant
feature representation.

The discriminator is trained to minimize the KL
divergence between uniform distribution over T
classes and discriminator’s prediction:

lossADV = − 1

N

T∑
t=1

Nk∑
k=1

KL(U(l)||P (lkt |hkt ))

(7)
where l is domain category, U(l) is the uniform
distribution over T classes and h is the hidden rep-
resentation of both context and question. Nk is
number of sample of class k and N is total sam-
ples.



3 Method

3.1 Unsupervised Context Selector
Due to the input sequence may exceed the bene-
ficial length of BERT (Devlin et al., 2019) (256
tokens), the losing context results in not only a
missing answer context but also harm the model
by learning a noisy sample. We introduce an un-
supervised context selector that shortens given the
context but still contains the answer within related
contexts. The context selector takes context and
question as input then outputs a shorter version of
the context while ensuring the answer must be in-
cluded. We observe that almost all of the questions
focus on the entities in the question, so we want to
take advantage of these properties to shorten the
context.

Since the linguistic style and syntactic of both
context and question from the dataset are formal,
we decided to use POS-TAGER from 1underthesea
which has been trained on a dataset that has a sim-
ilar distribution of the former dataset. Given the
question, we filter stopwords and use POS-TAGER
from underthesea to get POS output. Then we select
important phrases based on the following output
with tags: ’N’,’Np’,’V’,’Vp’ to finalize a phrase set
N . The context is chunked by sentence segmen-
tation from NLTK (Loper and Bird, 2002), each
sentence is scored by the occurrence of tokens that
are included in the extracted phrases. The sentence
s has t syllable-level tokens would be selected if it
has score score(s) > 2ϵ following:

score(s) = max(f(s) + f(s+ 1); f(s) + f(s− 1))
(8)

f(s) =
∑
t∈N

g(t) (9)

where ϵ =
∑

t∈s;score(t)̸=0 score(t) , g(t) is the
number of co-occurrence of an token t in the given
context and question. We also select the previous
and next sentence of the selected sentence to make
a leading sentence and augment the surrounding
context.

3.2 Question-Context Shuffle
According to Table 2, there is an imbalance be-
tween answerable and unanswerable questions.
This makes the model easily predict plausible an-
swers and mistaken the fact of the given context

1https://github.com/undertheseanlp/
underthesea

answerable unanswerable
Original data 19240 9217
EXAMPLESeasy 0 5975
EXAMPLEShard 0 5975
TOTAL 19240 21167

Table 1: Statistic of classes of training dataset after data
augmentation.

and question. We introduce a simple strategy to
generate unanswerable examples from the training
set, called Question-Context shuffle. This approach
aims to augment more unanswerable samples by
for each given context, we get a random irrelevance
question.

We divide the generated unanswerable sam-
ples into two types are EXAMPLEShard and
EXAMPLESeasy. The EXAMPLEShard are exam-
ples where the question and the passage are in the
same title but different contexts. Otherwise, the ex-
amples that have different titles are categorized into
EXAMPLESeasy. The statistic of the dataset after
pre-processing is presented in Table 1 in which the
total samples of two class has been balanced.

4 Experimental Results

4.1 Set up

We employ RDRSegmenter (Nguyen et al., 2018)
from VnCoreNLP (Vu et al., 2018) to perform
word-level and sentence segmentation on UIT-
ViQuAD dataset (e.g "Những cá_thể xung_quanh
ghi_nhớ tôm tít bằng cách nào ?"). Our experi-
mental models were implemented PyTorch (Paszke
et al., 2019) and utilize Huggingface’s Transform-
ers (Wolf et al., 2020) for pretrained language mod-
els. In our experiments, almost all experiments used
the Shuffle-Context Shuffle strategy to make to
model aware of more data.

In practice, we have three-phase of 2training. In
the first phase, we make the model generalize with
and warm up with the data by setting the λ0 = 0.2,
λ1 = 0.6, and λ2 = 0.2. We observed that the
lossADV is converged after the first phase, we de-
cided to set λ2 = 0 on every next phase. In the
second phase, we aim to make the classification
loss which only saves the checkpoint that has the
lowest loss on the dev set. In the third phase, we fo-
cus on the start/end index loss which considers only
the best checkpoint based on CE loss of start/end

2We also explored classifying answerable questions and
predicting answer spans as two separated modules before train
end-to-end these models, but did not observe any improve-
ments.

https://github.com/undertheseanlp/underthesea
https://github.com/undertheseanlp/underthesea


Train Public Private
# articles names 138 19 19
# passages 4101 557 515
# total ques. 28457 3821 3712
# unanswerable ques. 9217 1168 1116
Avg. context length 178,98 167,60 175,62
Avg. ques length 14,64 14,24 14,43

Table 2: Data analysis of UIT-ViQuAD 2.0 dataset. # stands
for numbers of samples. Public stands for Public testset. Pri-
vate stands for Private testset. The average length unit is cal-
culated in syllable-level.

on dev set. We set the λ0 = 0.9 and λ1 = 0.1 on
the second phase and λ0 = 0.1 and λ1 = 0.9 on
the third phase.

4.2 Dataset

In VLSP2021-MRC shared task (Nguyen et al.,
2021), the dataset is organized into 3 sets are
train/public test/private test has 138/19/19 number
of articles respectively. The analysis of the dataset
is shown in Table 2. Since there is not any dev set,
we decided to categorize the articles in the train-
ing dataset into two main sets based on answerable
and unanswerable questions which make the split
dataset is balanced in categories and no leaked ar-
ticles. Then we randomly split these two sets with
a ratio of 9/1 before uniting them into a train/dev
set based on the mentioned ratio.

4.3 Hyperparameters

In all experiment settings, we use Adam optimizer
(Kingma and Ba, 2015) with a learning rate of
1e-5 without warm-up steps, batch size of 32. In
the inference stage, we set the threshold δ is 0.4
to determine if the question is answerable or not.
For each sample, we set the maximum sequence
length for context and questions to be 230 and 50
respectively. All experiments are launched with a
maximum of 10 epochs and single A100-40GB
GPU device.

4.4 Results

4.4.1 Main Result
We use two main PTMs as backbone are: PhoBERT
that supports a maximum of 256 tokens and XLM-
Roberta that provides a maximum input length is
512 tokens. We observed that monolingual models
(e.g phoBERT (Nguyen and Nguyen, 2020)) per-
form better than multilingual models (e.g mBERT
(Devlin et al., 2019), XLM-Roberta (Conneau
et al., 2020)). Moreover, training monolinguals on
a word-level dataset improves performance signif-

Method Dev Public
EM F1 EM F1

mBERT (baseline) - - 53,55 63,03
PhoBERTbase w/o QAS 43,56 57,24 - -
XLM-R w/o QAS 29,35 51,61 30,50 51,37
PhoBERTbase 45,23 61,18 49,31 60,36
PhoBERTlarge 54,27 69,37 57,16 69,22
PhoBERT⋆

large 59,12 74,29 61,00 74,52
PhoBERT⋆

large+DA 59,89 75,19 62,44 75,24
PhoBERT⋆

large+R3F 59,93 75,35 63,54 75,58
PhoBERT⋆

large+R3F+CS 60,05 75,39 63,54 75,84

Table 3: Results on the UIT-ViQuAD public test set. (R3F,
DA) refers to adversarial training methods with UIT-ViQuAD.
(CS) refers to Context Selector. ⋆ refers to word-level. w/o
QAS refers to without Question-Context shuffle.

Private
Team F1 EM
vs-tus 77,24 66,14
ebisu_uit 77,22 67,43
F-NLP 76,46 64,66
mBERT (baseline) 60,34 49,35
PhoBERT⋆

large + R3F + CS 70,10 56,47

Table 4: Results on Vi-SQuAD private test set. ⋆ refer to
word-level.

icantly due to improved quality of words and re-
duced length of context and question pairs. Using
methods Context Selector and Adversarial Training
also slightly improve performance. Result experi-
ment is shown on Tabel 3.

In terms of the private test set, our method has
exceeded the baseline +9.76 in F1 score and +7.12
in Exact Match score. However, our method still
shows limitations compare to top-3 teams and we
would discuss them in Section 4.5. The result of
the top-3 team and our result in the private test is
illustrated in Table 4.

4.4.2 Context Selector

We also evaluate our unsupervised Context Selector
on the train set which is shown in Table 5. The
probability that the shortened context contains an
answer shows competitive results compared to the
raw input. In terms of the average context length,
the Context Selector helps the model to receive
salient sentences only by reducing from 324,32
tokens to 169,2 tokens. The result shows that the

Input prob. contains ans avg. length
Raw input 1.0 178,98
Raw input∗ 1.0 324,32
Context Selector 0.92 110,27
Context Selector∗ 0.90 169,2

Table 5: Results of Context Selector on Vi-SQuAD train set.
∗ refers samples that has context length > 256 syllable tokens



Context Selector has crucially reduced the context
length while retaining the answer in the filtered
context.

4.5 Error Analysis

We also examined the errors of our method in the
dev dataset that decrease the evaluation score sig-
nificantly. The major errors are:

Span error: We found that about 40% of errors
are span errors. More specifically, the start and end
index from the model prediction usually is shifted
from the correct ground truth. We hypothesis that
this span error may come from the annotator’s bias.
It is difficult for the model to be aware of sam-
ples with ambiguous answer text. Table 6 shows a
few span error examples that we have analyzed in
VLSP2021-MRC shared task.

Misclassify answerable/unanswerable: About
35% of errors are failures of misclassifying answer-
able and unanswerable questions. According to our
experiment on dev set, the best threshold δ to clas-
sify either the answerable question or not is 0.4. It
means that our model does not generalize for the
classification of the question when encountering
out-of-domain questions.

Context Selector: Since we use the context se-
lector to shorten the context length for each input
sequence, the performance of the whole pipeline
still depends on the context selector output result.
We observe that the context selector dealt with
straightforward questions well (e.g: "Tên của vua
Nam_Hán là gì ?"). However, it has two main draw-
backs are not exploiting the training data and de-
pending on manual rules. This makes the context
selector unable to acknowledge the entities in the
dataset domain and the ability to handle multi-hop
questions is limited. Moreover, the surrounding
context of the answer may no sufficient or related
to the answer in the filtered context which may hurt
the model on prediction.

5 Conclusion

We introduce applied Context Selector to over-
come the large context problem, which is a promi-
nent limitation of PTMs. We introduce Question-
Passage shuffle to solve imbalanced data by gen-
erating unanswerable examples. In addition, we
investigated the effect of some adversarial train-
ing methods on the VLSP2021-MRC shared task
dataset. We also show error analysis which helps
future studies in MRC or interested research uti-

Question:"Lịch sử của Ba Tư được ghi chép vào
năm nào?"
Label:"khoảng năm 3200 TCN"
Pred:"năm 3200 TCN"
Question:"Hiện tại, một cuộc tranh cãi đang
nổ ra về vấn đề nào"
Label:"nguồn gốc các tên gọi của thực thể - Iran
và Persia"
Pred:"nguồn gốc các tên gọi của thực thể - Iran
và Persia (Ba Tư)"
Question:"Mâu thuẫn giữa Iran và Mỹ ngày càng
leo thang ở vấn đề nào?"
Label:"chương trình hạt nhân của Iran"
Pred:"Vấn đề chương trình hạt nhân của Iran"

Table 6: Examples of error analysis in VLSP-2021 MRC.
Label refers to Grouth-truth of the question. Pred refers to
predictions of the model with given question.

lize our method. Our experiments demonstrate that
adversarial training methods improve the MRC
model, over the pre-trained model 1%.
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