
EasyChair Preprint
№ 4190

Implementation of TIER : Table Index Evaluator
and Recommender

Shefali Naik

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 15, 2020

Implementation of TIER : Table Index Evaluator and

Recommender

(Demo Paper)

Shefali Naik
 School of Engineering and Applied

Science, Ahmedabad University

 Ahmedabad Gujarat India
 shefali.naik@ahduni.edu.in

ABSTRACT

Most of the relational database management systems have built-in

tuning tools that recommend indexes to be created on tables. These

tools consider queries of the single database. They do not support

queries that are based on tables of multiple databases within the

same relational DBMS or tables of multiple heterogeneous

relational DBMSs. In this demonstration, the system “Table Index

Evaluator and Recommender (TIER)” is presented which analyzes

and recommends table indexes for queries that retrieve data from

multiple heterogeneous distributed databases. The system takes set

of queries as input, parses queries, analyzes and evaluates existing

indexes and recommends new set of indexes.

CCS CONCEPTS

• Information systems~Relational parallel and distributed

DBMSs • Information systems~Database utilities and tools

• Information systems~Autonomous database administration

• Information systems~Recommender systems

KEYWORDS

Distributed Databases, Index Evaluator, Index Recommender,

Transaction Performance, TIER

1 INTRODUCTION

The applications or transactions that access data from multiple

distributed databases have issues related to distributed concurrency

control, distributed query processing, transparency at different

levels, designing of physical components [5][6], etc. Physical

components occupy space in memory and hence affect the

performance of transaction [4]. Index is one of these components

that require attention. Though indexes do search faster, improper

designing of indexes slow down data manipulation and retrieval.

Most of the RDBMSs provide tuning

tools[9][10][11][12][13][14][15][16][17][18] that recommend

indexes for inputted set of queries. One such tool is Oracle’s SQL

Analyzer that recommend indexes based on inputted workload. The

system demonstrated in this paper evaluates and recommends

indexes for the inputted set of queries that are based on remote

tables. This system is developed in Java language. Data is generated

from Benchmark Factory software and loaded into multiple

databases. Overview of TIER is given in section 2.

2 OVERVIEW OF TIER

TIER [1][3] takes set of queries as input and displays recommended

indexes as output. The recommendation is given based on analysis

of current indexes, number of records in the tables and values in

each field. To analyze the existing indexes, statistics are collected

from the system catalog. The inputted queries are parsed to

generate statistics based on fields referred in WHERE and

HAVING clauses. The statistics is generated based on: no. of times

the field is referred in all the queries and in individual query. From

the inputted queries, details about the foreign key fields is also

displayed. Bulk of data is loaded from Benchmark Factory tables.

To check the correctness of suggested indexes, separate system is

developed, which apply recommended indexes on test database.

The same query is fired on both original and test database to record

the response time before and after new indexes are applied. The

model of TIER is given in Figure 1 [3].

Figure 1 : Model - “TIER: Table Index Evaluator and

Recommender”

Apart from this, the performance of recommended indexes in terms

of response time is measured in Benchmark Factory [20] for

various job runs, different sets of queries and for concurrent user

loads - 1, 2, 4 and 8. To cross check relevance between fields

TIER

DB1 DB2 DBm

Set of
Queries
and Stored
Procedures

Table
Structures

Workload

Frequency
of Queries,
Read and
Write
Operations

Statistics
from
System
Catalog

Analysis
Of

Current
Index

Improved
Index

Suggestion
to

Refine DML

Suggestion
to

Improve Field
Data Types

Performance
Comparison

Memory Space
Management,

Auto
Defragmentation

Database “DB” is
fragmented and

stored on
different

machines and
heterogeneous

DBMSs.

Application 1 Application 2 Application n

DB

Users working in
heterogeneous
distributed database
environment,
accessing data from
different DBMSs.

24th COMAD, January, 2019, Swissotel, Kolkata India S. Naik

referred in queries, Apriori algorithm [19] is implemented, which

is optional. Demonstration of TIER is discussed in Section 3.

3 DEMONSTRATION

Before TIER is executed, it requires distributed environment. The

procedure to do this is given in Section 3.1.

3.1 Multiple Heterogeneous Distributed Database Setup

Set of queries are inputted manually or from file in TIER. When

TIER is loaded, it displays all the tables created by the oracle user

and tables of other databases for which oracle user is given access

through database links. Before database links are created, it is

required to setup distributed database environment. This

environment is created using oracle’s heterogeneous gateway

services [7]. Four databases - Oracle, MySQL, PostgreSQL and MS

Access are connected to fetch data into Oracle using ODBC data

sources. Initialization parameter files for non-oracle databases are

created and, tnsnames.ora and listener.ora files are updated with the

details of data source names. Figure 2 [1] shows oracle user account

“shefali” in which data from table “emp” of PostgreSQL is fetched

using database link “topg” [1][2].

Figure 2 : Fetching data from PostgreSQL in Oracle

3.2 Interface of TIER

Figure 3 [1] shows interface of TIER which list all the table of

current oracle user with non-oracle tables displayed with ***

before table name to make user understand that these are the tables

which are distributed and stored on remote databases. These tables

are displayed in the top left section (text area) “Tables (List of

Fields)” of TIER [1].

Figure 3 : Interface of TIER

3.3 How it works

Set of queries are inputted through the top right most section “Input

Queries” of TIER. It is used to input set of queries either manually

or automatically from the file. Once the queries are inputted, by

clicking on “Parse Queries, Analyze and Recommend Index”, the

SQL Parser [8] will parse queries, separate fields used in where and

having clause along with the frequency of fields and display

intermediate result with the final index recommendations in

different text area after analyzing them. Figure 4 [1]shows the

index recommendation generated by TIER [1].

Figure 4 : Index Recommendation

The supportive module which implements Apriori algorithm as

shown in Figure 5 [1], is also provided to find association between

fields of the tables which are used in where and having clauses.

Figure 5 : Implementation of Apriori Algorithm

3.4 Comparison with Oracle’s SQL Analyzer

Oracle’s SQL Analyzer also recommends indexes for the inputted

set of queries, but it does not support queries that are based on

remote tables. The comparison of index recommendation generated

by TIER and SQL Analyzer is displayed in Table 1 [1] for the

following set of inputted queries [1].

1. select substr(p_comment,1,5) from pg_h_part where p_type

= "PROMO PLATED NICKEL" or p_type = "LARGE

BRUSHED TIN" or p_type = "STANDARD ANODIZED

COPPER";

2. select l_shipmode,count(l_partkey) from ms_h_lineitem

group by l_shipmode having count(l_partkey)>10

Implementation of TIER : Table Index Evaluator and

Recommender (Demo Paper)
24th COMAD, January, 2019, Swissotel, Kolkata India

3. select count(*) from ms_h_lineitem where l_shipmode =

"RAIL" or l_shipmode = "MAIL";

4. select distinct * from ac_h_region where r_name = "ASIA"

or r_name = "AMERICA" and r_comment is not null and

r_regionkey = 2;

5. select * from pg_h_nation where n_nationkey = 1 or

n_nationkey = 2;

6. select count(distinct s_name) from ms_h_supplier where

s_suppkey in between 1 and 100;

7. Select l_returnflag,l_linestatus,sum(l_quantity),

sum(l_extendedprice), sum(l_extendedprice * (1-

l_discount)), sum(l_extendedprice * (1-l_discount) *

(1+l_tax)), avg(l_quantity),

avg(l_extendedprice),avg(l_discount), count(*) from

ms_h_lineitem group by l_returnflag, l_linestatus having

sum(l_discount) > 10;

Table 1 : Comparison of output generated from TIER and

SQL Analyzer

Recommendation from TIER :

Create bitmap index b1 on AC_H_REGION(R_NAME)

Create bitmap index b2 on PG_H_PART(P_TYPE)

Create bitmap index b3 on PG_H_NATION (N_NATIONKEY)

Create bitmap index b4 on MS_H_LINEITEM

(L_SHIPMODE)

Create bitmap index b5 on AC_H_REGION (R_REGIONKEY)

Create bitmap index b6 on AC_H_REGION(R_COMMENT)

Create bitmap index b7 on MS_H_SUPPLIER (S_SUPPKEY)

*****The following indexes may be created on multiple

fields.*****

Create unique index m1 on PG_H_PART(P_TYPE)

Create unique index m2 on MS_H_LINEITEM

(L_SHIPMODE,L_PARTKEY,L_DISCOUNT)

Create unique index m3 on PG_H_NATION

(N_NATIONKEY)

Create unique index m4 on MS_H_SUPPLIER (S_SUPPKEY)

Create unique index m5 on AC_H_REGION

(R_REGIONKEY, R_NAME,R_COMMENT)

Recommendation from SQL Analyzer is not generated due

to invalid input of statement :

ERROR at line 1:

ORA-13600: error encountered in Advisor

QSM-00775: the specified SQL statement cannot be stored in

the workload due to invalid table references

ORA-06512: at "SYS.PRVT_ACCESS_ADVISOR", line 1808

ORA-06512: at "SYS.WRI$_ADV_SQLACCESS_ADV", line

180

ORA-06512: at "SYS.PRVT_ADVISOR", line 3636

ORA-06512: at "SYS.DBMS_ADVISOR", line 711

ORA-06512: at line 1

SQL Analyzer recommends indexes for all types of queries based

on single database, but it does not recommend indexes for queries

that are based on remote tables [1].

Figure 6 : Output generated from the module Performance

Comparer

Figure 7 Graphs generated after Run 3 for 14 transactions and 8

user loads for Set of queries specified in Section-3.4

24th COMAD, January, 2019, Swissotel, Kolkata India S. Naik

3.5 Performance Evaluation

The separate module, which will compare performance of the query

before and after, applied the recommended indexes. This module

uses oracle’s cost based optimizer to generate cost, response time

and I/O cost. Figure 6 [1] shows the comparison generated by

performance comparer for the same queries where one is executed

on database before index recommendation and the other is executed

after index recommendation [1].

Figure 8 Figure 8 Job-2 for given set of queries for User load 1,

4 and 8 – run 1, run 2 and Run 3 (7 transactions = 14 queries)

Besides this, the performance after index recommendation is also

measured in benchmark factory for different jobs, different runs

and different user loads [1]. Sample test run done in benchmark

factory is shown in Figure 7 [1].

Many jobs are created for the given set of queries (transactions)

which refers remote tables. Figure 8 [1] shows the graphical

representation of of Run 1, Run 2 and Run 3 for one of these jobs

with User loads 1, 4 and 8 for each run.

4 CONCLUSION

The system parses, evaluates and recommends indexes for simple

distributed queries, which could be enhanced for complicated

queries. The modules to analyze and recommend other physical

components for distributed database such as Partitions and

Materialized Views could also be developed. The demonstration

of the TIER is given on the following links :

https://www.youtube.com/watch?v=52Z1HyLUdOA

https://www.youtube.com/watch?v=6fO26sF2pRY&t=160s

REFERENCES

[1] http://hdl.handle.net/10603/213859

[2] Naik, S. (2017, August). Ensuring Database and Location Transparency in

Multiple Heterogeneous Distributed Databases. In International Conference on

Future Internet Technologies and Trends (pp. 157-163). Springer, Cham.

[3] Naik, S. (2017, December). TIER: Table index evaluator and recommender—A

proposed model to improve transaction performance in distributed heterogeneous

database. In Soft Computing and its Engineering Applications (icSoftComp),

2017 International Conference on (pp. 1-8). IEEE.

[4] Naik, S. (2014). Concepts of database management system. Dorling Kindersley.

[5] Özsu, M. T., & Valduriez, P. (2011). Principles of distributed database systems.

Springer Science & Business Media.

[6] Shefali, N., & Samrat, K. (2015). Revisited performance issues in concurrent

transaction execution in distributed database management system. Int. J. Curr.

Eng. Sci. Res, 2(4), 23-26.

[7] https://docs.oracle.com/cd/E11882_01/server.112/ e11050.pd

[8] Parsing Set of Queries to Obtain Parse Matrix for Table Index Evaluator and

Recommender, In Press

[9] Bruno, Nicolas & Chaudhuri, Surajit. (2007). An Online Approach to Physical

Design Tuning. 826-835. 10.1109/ICDE.2007.367928.

[10] Trung Tran, Quoc & Jimenez, Ivo & Wang, Rui & Polyzotis, Neoklis &

Ailamaki, Anastasia. (2015). RITA: an index-tuning advisor for replicated

databases. 1-12. 10.1145/2791347.2791376.

[11] Dash, Debabrata & Ailamaki, Anastasia. (2018). CoPhy: Automated Physical

Design with Quality Guarantees.

[12] Agrawal, S., Chaudhuri, S., Kollar, L., Marathe, A., Narasayya, V., & Syamala,

M. (2005, June). Database tuning advisor for microsoft sql server 2005.

In Proceedings of the 2005 ACM SIGMOD international conference on

Management of data(pp. 930-932). ACM.

[13] Valentin, G., Zuliani, M., Zilio, D. C., Lohman, G., & Skelley, A. (2000). DB2

advisor: An optimizer smart enough to recommend its own indexes. In Data

Engineering, 2000. Proceedings. 16th International Conference on (pp. 101-110).

IEEE.

[14] Maier, C., Dash, D., Alagiannis, I., Ailamaki, A., & Heinis, T. (2010, March).

Parinda: an interactive physical designer for postgresql. In Proceedings of the

13th International Conference on Extending Database Technology (pp. 701-704).

ACM.

[15] Schwartz, B., Zaitsev, P., & Tkachenko, V. (2012). High performance MySQL:

optimization, backups, and replication. " O'Reilly Media, Inc.".

[16] Lahdenmaki, T., & Leach, M. (2005). Relational Database Index Design and the

Optimizers: DB2, Oracle, SQL Server, et al. John Wiley & Sons.

[17] Gurry, M. (2002). Oracle SQL Tuning Pocket Reference: Write Efficient SQL. "

O'Reilly Media, Inc.".

[18] Pedrozo, Wendel & Gomes Vaz, Maria Salete. (2014). A Tool for Automatic

Index Selection in Database Management Systems. Proceedings - 2014

International Symposium on Computer, Consumer and Control, IS3C 2014.

1061-1064. 10.1109/IS3C.2014.277.

[19] Wasilewska, A. (2007). Apriori algorithm. Lecture Notes, http://www. cs.

sunysb. edu/~ cse634/lecture_notes/07apriori. pdf, accessed, 10.

[20] https://www.quest.com/products/benchmark-factory/

