EasyChair Preprint
 № 9555

NP on Logarithmic Space

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

NP on Logarithmic Space

Frank Vega ${ }^{1 *}$
${ }^{1 *}$ Research Department, NataSquad, 10 rue de la Paix, Paris, 75002, France.

Corresponding author(s). E-mail(s): vega.frank@gmail.com;

Abstract

\boldsymbol{P} versus $\boldsymbol{N P}$ is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is \boldsymbol{P} equal to $\boldsymbol{N} \boldsymbol{P}$? It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency. However, a precise statement of the \boldsymbol{P} versus $\boldsymbol{N} \boldsymbol{P}$ problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity classes are \boldsymbol{L} and $\boldsymbol{N L}$. Whether $\boldsymbol{L}=\boldsymbol{N} \boldsymbol{L}$ is another fundamental question that it is as important as it is unresolved. We prove that $\boldsymbol{N P} \subseteq \boldsymbol{N S P A C E}\left(\log ^{2} n\right)$ just using logarithmic space reductions.

Keywords: Computational Algorithm, Complexity Classes, Completeness, Polynomial Time, Reduction, Logarithmic Space

MSC Classification: 68Q15, 68Q17

1 Introduction

In 1936, Turing developed his theoretical computational model [1]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [1]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [1]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [1].

Let Σ be a finite alphabet with at least two elements, and let Σ^{*} be the set of finite strings over Σ [2]. A Turing machine M has an associated input

A Millennium Prize Problem

alphabet Σ [2]. For each string w in Σ^{*} there is a computation associated with M on input $w[2]$. We say that M accepts w if this computation terminates in the accepting state, that is $M(w)=" y e s "$ [2]. Note that, M fails to accept w either if this computation ends in the rejecting state, that is $M(w)=" n o "$, or if the computation fails to terminate, or the computation ends in the halting state with some output, that is $M(w)=y$ (when M outputs the string y on the input w) [2].
P is the complexity class of languages that can be decided by deterministic Turing machines in polynomial time [3]. A verifier for a language L_{1} is a deterministic Turing machine M, where:

$$
L_{1}=\{w: M(w, u)=" \text { yes" for some string } u\}
$$

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of $w[2]$. A verifier uses additional information, represented by the string u, to verify that a string w is a member of L_{1}. This information is called certificate. $N P$ is the complexity class of languages defined by polynomial time verifiers [4].

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a logarithmic space computable function if some deterministic Turing machine M, on every input w, halts using logarithmic space in its work tapes with just $f(w)$ on its output tape [1]. Let $\{0,1\}^{*}$ be the infinite set of binary strings, we say that a language $L_{1} \subseteq\{0,1\}^{*}$ is logarithmic space reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{l} L_{2}$, if there is a logarithmic space computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

An important complexity class is $N P$-complete [5]. If L_{1} is a language such that $L^{\prime} \leq_{l} L_{1}$ for some $L^{\prime} \in N P$-complete, then L_{1} is $N P$-hard [3]. Moreover, if $L_{1} \in N P$, then $L_{1} \in N P$-complete [3]. The $N P$-complete class is formally defined by polynomial time reductions [5]. A principal $N P$-complete problem is $S A T$ [5].

A logarithmic space Turing machine has a read-only input tape, a writeonly output tape, and read/write work tapes [1]. The work tapes may contain at most $O(\log n)$ symbols [1]. In computational complexity theory, L is the complexity class containing those decision problems that can be decided by a deterministic logarithmic space Turing machine [4]. NL is the complexity class containing the decision problems that can be decided by a nondeterministic logarithmic space Turing machine [4].

In general, $D S P A C E(S(n))$ and $N S P A C E(S(n))$ are complexity classes that are used to measure the amount of space used by a Turing machine to decide a language, where $S(n)$ is a space-constructible function that maps the input size n to a non-negative integer [6]. The complexity class $\operatorname{DSPACE}(S(n))$ is the set of languages that can be decided by a deterministic Turing machine that uses $O(S(n))$ space [6]. The complexity class $N S P A C E(S(n))$ is the set of languages that can be decided by a nondeterministic Turing machine that uses $O(S(n))$ space [6].

A Millennium Prize Problem

We state the following Hypothesis:

Hypothesis 1 There is an NP-complete language $L_{1} \in N S P A C E\left(\log ^{2} n\right)$ which is closed under logarithmic space reductions in NP-complete.

We show the principal consequence of this Hypothesis:

Theorem 1 If the Hypothesis 1 is true, then $N P \subseteq N S P A C E\left(\log ^{2} n\right)$.

Proof Due to L_{1} is closed under logarithmic space reductions in $N P$-complete, then every $N P$ problem is logarithmic space reduced to L_{1}. This implies that $N P \subseteq N S P A C E\left(\log ^{2} n\right)$ since $N S P A C E\left(\log ^{2} n\right)$ is closed under logarithmic space reductions as well.

1.1 The Problems

Now, we define the problems that we are going to use.

Definition 1 SUBSET PRODUCT (SP)

INSTANCE: A list of natural numbers B and a positive integer N.
QUESTION: Is there collection contained in B such that the product of all its elements is equal to N ?

REMARKS: We assume that every element of the list divides N. Besides, the prime factorization of every element in B and N is given as an additional data. $S P \in N P$-complete [5].

Definition 2 Unary 0-1 Knapsack (UK)

INSTANCE: A positive integer 0^{y} and a sequence $0^{y_{1}}, 0^{y_{1}}, \ldots, 0^{y_{n}}$ of positive integers represented in unary.

QUESTION: Is there a sequence of $0-1$ valued variables $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
y=\sum_{i=1}^{n} x_{i} \cdot y_{i} ?
$$

REMARKS: We assume that the positive integer zero is represented by the fixed symbol 0^{0}. UK $\in N L[7]$.

2 Results

In number theory, the p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted $\nu_{p}(n)$. Equivalently, $\nu_{p}(n)$ is the exponent to which p appears in the prime factorization of n.

Theorem $2 S P \in N S P A C E\left(\log ^{2} n\right)$.

Proof Given an instance (B, N) of $S P$, then for every prime factor p of N we could create the instance

$$
0^{y}, 0^{y_{1}}, 0^{y_{1}}, \ldots, 0^{y_{n}}
$$

for $U K$ such that $B=\left[B_{1}, B_{2}, \ldots, B_{n}\right]$ is a list of n natural numbers and $\nu_{p}(N)=$ $y, \nu_{p}\left(B_{1}\right)=y_{1}, \nu_{p}\left(B_{2}\right)=y_{2}, \ldots, \nu_{p}\left(B_{n}\right)=y_{n}$ (Do not confuse n with N). Under the assumption that N has k prime factors, then we can output in logarithmic space each instance for $U K$ such that these instances of $U K$ appears in ascending order according to the ascending natural sort of the respective k prime factors. That means that the first $U K$ instance in the output corresponds to the smallest prime factor of N and the last $U K$ instance in the output would be defined by the greatest prime factor of N. Besides, in this logarithmic space reduction we respect the order of the exponents according to the appearances of the n elements of $B=\left[B_{1}, B_{2}, \ldots, B_{n}\right]$ from left to right: i.e. every instance is written to the output tape as

$$
0^{z}, 0^{z_{1}}, 0^{z_{1}}, \ldots, 0^{z_{n}}
$$

where $\nu_{q}(N)=z, \nu_{q}\left(B_{1}\right)=z_{1}, \nu_{q}\left(B_{2}\right)=z_{2}, \ldots, \nu_{q}\left(B_{n}\right)=z_{n}$ for every prime factor q of N. Finally, we generate a certificate on the work tapes that is a sequence of $0-1$ valued variables $x_{1}, x_{2}, \ldots, x_{n}$ using square logarithmic space such that for the first instance of $U K$ we have

$$
y=\sum_{i=1}^{n} x_{i} \cdot y_{i}
$$

for the second one

$$
z=\sum_{i=1}^{n} x_{i} \cdot z_{i}
$$

and so on...
We can simulate a composition in logarithmic space reduction that simultaneously accept the k instances of $U K$. We can do this since the sequence certificate would be exactly the same for the k instances of $U K$. Every logarithmic space computation uses $O(\log |(B, N)|)$ space where $|\ldots|$ is the bit length function. So, we finally consume $O(k \cdot \log |(B, N)|)$ space exactly in the whole computation that would be square logarithmic space because of $k=O(\log N)$ and thus, the whole computation can be made $O\left(\log ^{2}|(B, N)|\right)$ space.

When we read one $0-1$ valued variable x_{i} that is equal to 1 in the first instance of $U K$, then we store the current sum that includes adding the unary length of the element in the position i inside of the list. Next, we do the same for the remaining $k-1$ instances of $U K$ for the elements in the same position i. We store each current sum in the contiguous k instances of $U K$ while we simultaneously copy these instances to the output tape from left to right. After that, we place the input head again in the first instance of $U K$ and check whether the next $0-1$ valued variable x_{i+1} is equal to 1 or not on the work tapes (We do not do nothing if the current $0-1$ valued variable is equal to 0). We repeat over and over again this process without moving the output tape to the left during this composition of logarithmic space reduction [4]. In fact, we copy to the output tape the consecutive k instances of $U K$ during this composition of logarithmic space reduction exactly the same number of times that the $0-1$ valued variables in the certificate are equal to 1 . Note that, the output tape of the inner Turing machine is the input tape of the outer Turing machine during this composition in logarithmic space reduction.

To sum up, we can create this composition in logarithmic space reduction that only uses a square logarithmic space in the work tapes such that the sequence
of variables is placed on the work tapes due to we can read at once every valued variable x_{i} and remove it later. Hence, we only need to iterate from the variables of the sequence from the indexes 1 to n to verify whether we generate an appropriate certificate according to the described constraints of the problem $U K$ to finally accept the k instances otherwise we can reject.

In addition, we can simulate the reading of one symbol from the string sequence of $0-1$ valued variables into the work tapes just nondeterministically generating the symbol in the work tapes using a square logarithmic space [2]. We could remove each symbol or a square logarithmic amount of symbols generated in the work tapes, when we try to generate the next symbol contiguous to the right on the string sequence of $0-1$ valued variables. We could generate the certificate from the inner Turing machine in the composition of logarithmic space reduction and so, the outer Turing machine would be one-way deterministic during this composition of computations. In this way, the generation will always be in square logarithmic space. This proves that $S P$ is in $N S P A C E\left(\log ^{2} n\right)$.

Theorem $3 N P \subseteq N S P A C E\left(\log ^{2} n\right)$.

Proof This is a directed consequence of Theorems 1 and 2 because of the Hypothesis 1 is true. Certainly, $S P$ is closed under logarithmic space reductions in $N P$-complete. Indeed, we can reduced $S A T$ to $S P$ in logarithmic space and every $N P$ problem could be logarithmic space reduced to $S A T$ by the Cook's Theorem Algorithm [5].

3 Conclusions

Savitch's theorem states that for any space-constructible function $S(n) \geq$ $\log n$, we obtain that $N S P A C E(S(n)) \subseteq D S P A C E\left(S(n)^{2}\right)$ and therefore, $N S P A C E\left(\log ^{2} n\right) \subseteq D S P A C E\left(\log ^{4} n\right)$ [8]. Since $D S P A C E(S(n))$ can be solved by a deterministic Turing machine in $O\left(2^{O(S(n))}\right)$ time for any spaceconstructible function $S(n) \geq \log n$, then this would mean that $N P \subseteq Q P$ (quasi-polynomial time class). We "believe" there must exist an evident proof of $N S P A C E\left(\log ^{2} n\right) \subseteq P$ and thus, we would obtain that $P=N P$.

Statements and Declarations

Ethics approval and consent to participate

'Not applicable'.

Consent for publication

The author agrees that if the manuscript is accepted for publication in the Journal, then this one will be published under the Journal's Copyright Policy, including the Agreement therein.

A Millennium Prize Problem

Availability of data and materials

'Not applicable'.

Competing interests

'Not applicable'. Another different version of this paper will be published by the MICOPAM 2023 conference proceedings soon.

Funding

'Not applicable'.

Authors' contributions

The single author wrote and reviewed the main manuscript text.

References

[1] M. Sipser, Introduction to the Theory of Computation, vol. 2 (Thomson Course Technology Boston, USA, 2006)
[2] S. Arora, B. Barak, Computational complexity: a modern approach (Cambridge University Press, USA, 2009)
[3] T. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edn. (The MIT Press, USA, 2009)
[4] C.H. Papadimitriou, Computational complexity (Addison-Wesley, USA, 1994)
[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st edn. (San Francisco: W. H. Freeman and Company, USA, 1979)
[6] P. Michel, A survey of space complexity. Theoretical computer science 101(1), 99-132 (1992). https://doi.org/10.1016/0304-3975(92)90151-5
[7] B. Jenner, Knapsack problems for NL. Information Processing Letters 54(3), 169-174 (1995). https://doi.org/10.1016/0020-0190(95)00017-7
[8] W.J. Savitch, Relationships between nondeterministic and deterministic tape complexities. Journal of computer and system sciences 4(2), 177-192 (1970). https://doi.org/10.1016/S0022-0000(70)80006-X

