
EasyChair Preprint
№ 9555

NP on Logarithmic Space

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 27, 2023

A Millennium Prize Problem

NP on Logarithmic Space

Frank Vega1*

1*Research Department, NataSquad, 10 rue de la Paix, Paris,
75002, France.

Corresponding author(s). E-mail(s): vega.frank@gmail.com;

Abstract

P versus NP is considered as one of the most important open problems
in computer science. This consists in knowing the answer of the following
question: Is P equal to NP ? It was essentially mentioned in 1955 from
a letter written by John Nash to the United States National Security
Agency. However, a precise statement of the P versus NP problem was
introduced independently by Stephen Cook and Leonid Levin. Since that
date, all efforts to find a proof for this problem have failed. Another major
complexity classes are L and NL. Whether L = NL is another funda-
mental question that it is as important as it is unresolved. We prove that
NP ⊆ NSPACE(log2 n) just using logarithmic space reductions.

Keywords: Computational Algorithm, Complexity Classes, Completeness,
Polynomial Time, Reduction, Logarithmic Space

MSC Classification: 68Q15 , 68Q17

1 Introduction

In 1936, Turing developed his theoretical computational model [1]. The deter-
ministic and nondeterministic Turing machines have become in two of the most
important definitions related to this theoretical model for computation [1]. A
deterministic Turing machine has only one next action for each step defined
in its program or transition function [1]. A nondeterministic Turing machine
could contain more than one action defined for each step of its program, where
this one is no longer a function, but a relation [1].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the
set of finite strings over Σ [2]. A Turing machine M has an associated input

1

A Millennium Prize Problem

2 NP on Logarithmic Space

alphabet Σ [2]. For each string w in Σ∗ there is a computation associated with
M on input w [2]. We say that M accepts w if this computation terminates in
the accepting state, that is M(w) = ”yes” [2]. Note that, M fails to accept w
either if this computation ends in the rejecting state, that is M(w) = ”no”, or
if the computation fails to terminate, or the computation ends in the halting
state with some output, that is M(w) = y (when M outputs the string y on
the input w) [2].

P is the complexity class of languages that can be decided by deterministic
Turing machines in polynomial time [3]. A verifier for a language L1 is a
deterministic Turing machine M , where:

L1 = {w : M(w, u) = ”yes” for some string u}.

We measure the time of a verifier only in terms of the length of w, so a
polynomial time verifier runs in polynomial time in the length of w [2]. A
verifier uses additional information, represented by the string u, to verify that
a string w is a member of L1. This information is called certificate. NP is the
complexity class of languages defined by polynomial time verifiers [4].

A function f : Σ∗ → Σ∗ is a logarithmic space computable function if some
deterministic Turing machine M , on every input w, halts using logarithmic
space in its work tapes with just f(w) on its output tape [1]. Let {0, 1}∗ be the
infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗ is logarithmic
space reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤l L2, if there is a
logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such that for all
x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.
An important complexity class is NP–complete [5]. If L1 is a language such
that L′ ≤l L1 for some L′ ∈ NP–complete, then L1 is NP–hard [3]. Moreover,
if L1 ∈ NP , then L1 ∈ NP–complete [3]. The NP–complete class is formally
defined by polynomial time reductions [5]. A principal NP–complete problem
is SAT [5].

A logarithmic space Turing machine has a read-only input tape, a write-
only output tape, and read/write work tapes [1]. The work tapes may contain
at most O(log n) symbols [1]. In computational complexity theory, L is the
complexity class containing those decision problems that can be decided by a
deterministic logarithmic space Turing machine [4]. NL is the complexity class
containing the decision problems that can be decided by a nondeterministic
logarithmic space Turing machine [4].

In general, DSPACE(S(n)) and NSPACE(S(n)) are complexity classes
that are used to measure the amount of space used by a Turing machine
to decide a language, where S(n) is a space-constructible function that
maps the input size n to a non-negative integer [6]. The complexity class
DSPACE(S(n)) is the set of languages that can be decided by a deter-
ministic Turing machine that uses O(S(n)) space [6]. The complexity class
NSPACE(S(n)) is the set of languages that can be decided by a nondeter-
ministic Turing machine that uses O(S(n)) space [6].

A Millennium Prize Problem

NP on Logarithmic Space 3

We state the following Hypothesis:

Hypothesis 1 There is an NP–complete language L1 ∈ NSPACE(log2 n) which is
closed under logarithmic space reductions in NP–complete.

We show the principal consequence of this Hypothesis:

Theorem 1 If the Hypothesis 1 is true, then NP ⊆ NSPACE(log2 n).

Proof Due to L1 is closed under logarithmic space reductions in NP–complete,
then every NP problem is logarithmic space reduced to L1. This implies that
NP ⊆ NSPACE(log2 n) since NSPACE(log2 n) is closed under logarithmic space
reductions as well. □

1.1 The Problems

Now, we define the problems that we are going to use.

Definition 1 SUBSET PRODUCT (SP)
INSTANCE: A list of natural numbers B and a positive integer N .
QUESTION: Is there collection contained in B such that the product of all its

elements is equal to N?
REMARKS: We assume that every element of the list divides N . Besides, the

prime factorization of every element in B and N is given as an additional data.
SP ∈ NP–complete [5].

Definition 2 Unary 0–1 Knapsack (UK)
INSTANCE: A positive integer 0y and a sequence 0y1 , 0y1 , . . . , 0yn of positive

integers represented in unary.
QUESTION: Is there a sequence of 0–1 valued variables x1, x2, . . . , xn such that

y =

n∑
i=1

xi · yi?

REMARKS: We assume that the positive integer zero is represented by the fixed
symbol 00. UK ∈ NL [7].

2 Results

In number theory, the p-adic order of an integer n is the exponent of the highest
power of the prime number p that divides n. It is denoted νp(n). Equivalently,
νp(n) is the exponent to which p appears in the prime factorization of n.

Theorem 2 SP ∈ NSPACE(log2 n).

A Millennium Prize Problem

4 NP on Logarithmic Space

Proof Given an instance (B,N) of SP , then for every prime factor p of N we could
create the instance

0y, 0y1 , 0y1 , . . . , 0yn

for UK such that B = [B1, B2, . . . , Bn] is a list of n natural numbers and νp(N) =
y, νp(B1) = y1, νp(B2) = y2, . . . , νp(Bn) = yn (Do not confuse n with N). Under
the assumption that N has k prime factors, then we can output in logarithmic space
each instance for UK such that these instances of UK appears in ascending order
according to the ascending natural sort of the respective k prime factors. That means
that the first UK instance in the output corresponds to the smallest prime factor of
N and the last UK instance in the output would be defined by the greatest prime
factor of N . Besides, in this logarithmic space reduction we respect the order of the
exponents according to the appearances of the n elements of B = [B1, B2, . . . , Bn]
from left to right: i.e. every instance is written to the output tape as

0z , 0z1 , 0z1 , . . . , 0zn

where νq(N) = z, νq(B1) = z1, νq(B2) = z2, . . . , νq(Bn) = zn for every prime factor
q of N . Finally, we generate a certificate on the work tapes that is a sequence of 0–1
valued variables x1, x2, . . . , xn using square logarithmic space such that for the
first instance of UK we have

y =

n∑
i=1

xi · yi,

for the second one

z =

n∑
i=1

xi · zi,

and so on...
We can simulate a composition in logarithmic space reduction that simultane-

ously accept the k instances of UK. We can do this since the sequence certificate
would be exactly the same for the k instances of UK. Every logarithmic space com-
putation uses O(log | (B,N) |) space where | . . . | is the bit length function. So, we
finally consume O(k · log | (B,N) |) space exactly in the whole computation that
would be square logarithmic space because of k = O(logN) and thus, the whole
computation can be made O(log2 | (B,N) |) space.

When we read one 0–1 valued variable xi that is equal to 1 in the first instance
of UK, then we store the current sum that includes adding the unary length of the
element in the position i inside of the list. Next, we do the same for the remaining k−1
instances of UK for the elements in the same position i. We store each current sum
in the contiguous k instances of UK while we simultaneously copy these instances
to the output tape from left to right. After that, we place the input head again in
the first instance of UK and check whether the next 0–1 valued variable xi+1 is
equal to 1 or not on the work tapes (We do not do nothing if the current 0–1 valued
variable is equal to 0). We repeat over and over again this process without moving
the output tape to the left during this composition of logarithmic space reduction
[4]. In fact, we copy to the output tape the consecutive k instances of UK during this
composition of logarithmic space reduction exactly the same number of times that
the 0–1 valued variables in the certificate are equal to 1. Note that, the output tape
of the inner Turing machine is the input tape of the outer Turing machine during
this composition in logarithmic space reduction.

To sum up, we can create this composition in logarithmic space reduction that
only uses a square logarithmic space in the work tapes such that the sequence

A Millennium Prize Problem

NP on Logarithmic Space 5

of variables is placed on the work tapes due to we can read at once every valued
variable xi and remove it later. Hence, we only need to iterate from the variables of
the sequence from the indexes 1 to n to verify whether we generate an appropriate
certificate according to the described constraints of the problem UK to finally accept
the k instances otherwise we can reject.

In addition, we can simulate the reading of one symbol from the string sequence
of 0–1 valued variables into the work tapes just nondeterministically generating the
symbol in the work tapes using a square logarithmic space [2]. We could remove
each symbol or a square logarithmic amount of symbols generated in the work
tapes, when we try to generate the next symbol contiguous to the right on the
string sequence of 0–1 valued variables. We could generate the certificate from the
inner Turing machine in the composition of logarithmic space reduction and so, the
outer Turing machine would be one-way deterministic during this composition of
computations. In this way, the generation will always be in square logarithmic
space. This proves that SP is in NSPACE(log2 n). □

Theorem 3 NP ⊆ NSPACE(log2 n).

Proof This is a directed consequence of Theorems 1 and 2 because of the Hypothesis
1 is true. Certainly, SP is closed under logarithmic space reductions in NP–complete.
Indeed, we can reduced SAT to SP in logarithmic space and every NP problem could
be logarithmic space reduced to SAT by the Cook’s Theorem Algorithm [5]. □

3 Conclusions

Savitch’s theorem states that for any space-constructible function S(n) ≥
log n, we obtain that NSPACE(S(n)) ⊆ DSPACE(S(n)2) and therefore,
NSPACE(log2 n) ⊆ DSPACE(log4 n) [8]. Since DSPACE(S(n)) can be
solved by a deterministic Turing machine in O(2O(S(n))) time for any space-
constructible function S(n) ≥ log n, then this would mean that NP ⊆ QP
(quasi-polynomial time class). We ”believe” there must exist an evident proof
of NSPACE(log2 n) ⊆ P and thus, we would obtain that P = NP .

Statements and Declarations

Ethics approval and consent to participate

‘Not applicable’.

Consent for publication

The author agrees that if the manuscript is accepted for publication in the
Journal, then this one will be published under the Journal’s Copyright Policy,
including the Agreement therein.

A Millennium Prize Problem

6 NP on Logarithmic Space

Availability of data and materials

‘Not applicable’.

Competing interests

‘Not applicable’. Another different version of this paper will be published by
the MICOPAM 2023 conference proceedings soon.

Funding

‘Not applicable’.

Authors’ contributions

The single author wrote and reviewed the main manuscript text.

References

[1] M. Sipser, Introduction to the Theory of Computation, vol. 2 (Thomson
Course Technology Boston, USA, 2006)

[2] S. Arora, B. Barak, Computational complexity: a modern approach (Cam-
bridge University Press, USA, 2009)

[3] T. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algo-
rithms, 3rd edn. (The MIT Press, USA, 2009)

[4] C.H. Papadimitriou, Computational complexity (Addison-Wesley, USA,
1994)

[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, 1st edn. (San Francisco: W. H. Freeman and
Company, USA, 1979)

[6] P. Michel, A survey of space complexity. Theoretical computer science
101(1), 99–132 (1992). https://doi.org/10.1016/0304-3975(92)90151-5

[7] B. Jenner, Knapsack problems for NL. Information Processing Letters
54(3), 169–174 (1995). https://doi.org/10.1016/0020-0190(95)00017-7

[8] W.J. Savitch, Relationships between nondeterministic and deterministic
tape complexities. Journal of computer and system sciences 4(2), 177–192
(1970). https://doi.org/10.1016/S0022-0000(70)80006-X

https://doi.org/10.1016/0304-3975(92)90151-5
https://doi.org/10.1016/0020-0190(95)00017-7
https://doi.org/10.1016/S0022-0000(70)80006-X

	Introduction
	The Problems

	Results
	Conclusions

