Some Remarks on Skula Spaces

Robert Bonnet

August 16, 2020
Some remarks on Skula spaces

https://github.com/kourgeorge/arxiv-style

Robert Bonnet
Laboratoire de Mathématiques (U.M.R. 5127, C.N.R.S.)
Université de Savoie-Mont Blanc
Bâtiment Le Chablais, Campus Scientifique,
F-73376, Le Bourget du Lac CEDEX, France
https://www.lama.univ-smb.fr/pagesmembres/bonnet/
Robert.Bonnet@univ-smb.fr

This lecture is a survey of a joint work with Taras Banack and Wiesław Kubiś entitled

This paper is the continuous of the work well-generated Boolean algebras, in a topological way, started in [3].

Stone duality. If X is a compact and 0-dimensional space then the set $\text{Clop}(X)$ of closed and open (clopen) subsets of X is a Boolean algebra generating the topology of X. Conversely any Boolean algebra B is the algebra of clopen subsets of the compact and 0-dimensional space $\text{Ult}(B) \subseteq \{0,1\}^B$. By duality, we have the following result.

Theorem 1. (§2.3 in [3]) The space $\text{Ult}(B)$ of a Boolean algebra B is Skula if and only if B is well-generated. That is, by the definition: B has a well-founded sublattice generating B. □

1. Skula spaces.

For a topological space X, we say that a family $\mathcal{U} := \{U_x : x \in X\}$ is a clopen selector if each U_x is a closed and open (clopen) subset of X and if \mathcal{U} satisfies:

1. $x \in U_x$ for every $x \in X$ and
2. the relation “$x \leq^\mathcal{U} y$ if and only if $x \neq y$ and $x \in U_y$” is irreflexive and transitive. ■

Therefore a clopen selector $\mathcal{U} := \{U_x : x \in X\}$ for X induces a partial order relation $\leq^\mathcal{U}$ on X, defined by $x \leq^\mathcal{U} y$ if and only if $U_x \subseteq U_y$.

Hence $U_x := \{y \in X : y \leq^\mathcal{U} x\}$ (also denoted by $\downarrow x$) is a clopen principal ideal of X for any $x \in X$ for the order $\leq^\mathcal{U}$.

Remark. The set of U_x’s and their complements generate the topology whenever X is compact.

A space X is Skula if X is a Hausdorff compact space and has a clopen selector. ■

Theorem 2. [2] Let $\mathcal{U} := \{U_x : x \in X\}$ be a clopen selector for a Skula space X. Then

- Every (nonempty) closed initial subset of X is a finite union of U_x’s (notice that X and the U_x’s are compact clopen sets).
- In particular for distinct U_x and U_y in \mathcal{U}, $U_x \cap U_y$ is a finite union of U_z’s.

1. \mathcal{U} is well-founded. Therefore $\langle X, \subseteq \rangle$ has a well-founded rank: $\rk\mathcal{U}(x) = \sup\{\rk\mathcal{U}(y) : y < x\}$. So $\rk\mathcal{U}(x) = 0$ if and only if x is minimal, i.e. $U_x = \{x\}$. Moreover $\rk\mathcal{U}(X) := \sup_{x \in X} \rk\mathcal{U}(x)$.

2. X is scattered, i.e. every nonempty subset of $\text{Ult}(B)$ has an isolated point (for the induced topology). Therefore we can define the Cantor-Bendixson height (htcbX) of $x \in X$. For instance $\text{htcb}_X(x) = 0$ if and only if x is isolated in X. Moreover $\text{htcb}_X(X) := \sup_{x \in X} \text{htcb}_X(x)$. □
Since \(U_x = \{ y \in X : \forall x \leq y \} \) is an initial and clopen subset of \(X \), we have \(\text{ht}_{CB}(U_x) = \text{ht}_{CB}(x) \leq \text{rk}_{WF}(x) = \text{rk}_{WF}(U_x) \) for any \(x \in X \), and so \(\text{ht}_{CB}(X) \leq \text{rk}_{WF}(X) \).

To a Skula space \(X \) we can associate its Vietoris hyperspace \(H(X) \), that is a “free join-semilattice over \(X \) in the category of continuous join semilattice spaces”.

We define the **Vietoris hyperspace** \(H(X) \) over \(X \) as follows:

- \(H(X) \) is the set of all nonempty closed initial subsets of \(\langle X, \leq \rangle \).
- For \(F, G \in H(X) \), we set \(F \leq G \) if and only if \(F \subseteq G \).
- The topology \(\tau \) on \(H(X) \) is the topology generated by the sets \(U^+ := \{ K \in H(X) : K \subseteq U \} \) and \(V^- := \{ K \in H(X) : K \cap V \neq \emptyset \} \)

where \(U \) and \(V \) are any clopen initial subsets and clopen final subsets in \(X \), respectively.

Theorem 3. [2] Let \(X \) be a Skula space. Then \(H(X) \) is a Skula space and

1. \((A, B) \mapsto A \lor B := A \cup B \) is a continuous semilattice operation on \(H(X) \).
2. \(X \) is topologically embeddable in \(H(X) \) by the increasing continuous map \(\eta : x \mapsto \downarrow x := U_x \).
3. The join semilattice generated by \(\eta(X) \) in \(H(X) \) is topologically dense in \(H(X) \).

Theorem 4. [2] Let \(X \) be a Skula space and let \(\mathcal{U} \) be a clopen selector for \(X \). Then \(\text{ht}_{CB}(X) \leq \text{rk}_{WF}(X) < \omega^{\text{ht}_{CB}(X)+1} \) and \(\text{rk}_{WF}(H(X)) \leq \omega^{\text{rk}_{WF}(X)} \).

2. **Canonical Skula spaces.**

A space \(X \) is a **canonical Skula space** if \(X \) has a clopen selector \(\mathcal{U} := \{ U_x : x \in X \} \) satisfying one of the following equivalent properties for each \(U_x \in \mathcal{U} \):

1. There is an ordinal \(\alpha \) such that the \(\alpha^{\text{th}} \)-Cantor-Bendixson derivative \(D^\alpha(U_x) \) of \(U_x \) is the singleton \(\{ x \} \).
2. \(\text{rk}_{WF}(U_x) = \text{ht}_{CB}(U_x) \) and \(U_x \) is unitary (meaning that \(D^\beta(U_x) \) is a singleton for some \(\beta \)).

Examples. Every continuous image of a compact ordinal space \(\alpha + 1 \) (with the order topology) is canonically Skula. The class of canonically Skula spaces is closed under finite product.

Theorem 5. [2] Let \(X \) be a canonical Skula space. Then \(H(X) \) is a canonical Skula space.

Moreover we can compute \(\text{ht}_{CB}(X)(V) = \text{rk}_{WF}(X)(V) \) for every \(V \in H(X) \).

Remark.
1. There is a compact and 0-dimensional space which is not Skula [3].
2. There is a Skula space which is not canonically Skula [3].

3. **Poset spaces.**

For a partially ordered set (poset) \(P \) we denote by \(IS(P) \) the set of initial subsets of \(P \) endowed with the pointwise topology. So \(IS(P) \), as compact subspace of \(\{0, 1\}^P \), is compact and 0-dimensional, and we can see \(H(P) := IS(P) \) as the “Vietoris hyperspace” of the poset \(P \).

Proposition 6. [1] Theorems 1,3] Let \(P \) be a poset. The space IS\((P)\) is Skula if and only if

1. \(P \) is a narrow, i.e. any antichain is finite, and
2. \(P \) is order-scattered, i.e. does not contain a copy of the rationals chain \(\mathbb{Q} \).

Recall that a well-quasi ordering (wqo) is a narrow and well-founded poset. From the above result, M. Pouzet asks for the following question.

Question (M. Pouzet). Let \(P \) be a well-quasi ordering. Is IS\((P)\) canonically Skula?

We do not know the answer of this question even if \(P \) is covered by finitely many well-orderings.

References