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Abstract
Heat transfer behavior of unsteady flow of squeezing nanofluid (Copper+water) between two parallel 

plates is investigated. By using the appropriate transformation for the velocity and  temperature, the 

basic equations governing the flow and heat transfer were reduced to a set of ordinary differential 

equations. These equations subjected to the associated boundary conditions were solved analytically 

using Homotopy Perturbation Method and numerically using Runge-Kutta-Fehlberg method with 

shooting technique. Effects on the behavior of velocity and temperature for various values of relevant 

parameters are illustrated graphically. The skin-friction coefficient, heat transfer and Nusselt number  

rate are also tabulated for various governing parameters. The results indicate that, for nanofluid flow, 

the rates of heat transfer and velocity had direct relationship with squeeze number and nanoparticle 

volume fraction they are also a decreasing function of those parameters. 

Keywords : Nanofluid; Homotopy perturbation method; Runge-Kutta-Fehlberg;  

1. Introduction 

     The word nanofluid represents the fluid in which particles of size with order of nanometer 

(diameter < 100 nm) are mixed in the base fluid. The nanoparticles used in nanofluids are generally 

made of metals (Al, Cu), oxides (Al2O3, CuO, TiO2, and SiO2 ), carbides (SiC), nitrides (AlN, SiN), 

and nonmetal (graphite, carbon nanotubes) and the base fluid is usually a conductive fluid, such as 

water or ethylene glycol. Other base fluids are toluene, oil, other lubricants, biofluids, and polymer 

solution. Nanoparticles are present up to 5% volume fraction in nanofluids.The conventional heat 

transfer fluids are poor conductors of heat. Nanofluids make an edge over them because they have 

high heat transfer capability. Since these heating/cooling fluids play a vital role in the development 

of energy efficient heat transfer equipment for energy supply, to raise the thermal conductivity of 

these fluids, nanosized conducting metal particles are added to them. Therefore, their proper  

mailto:amine.elharfouf86@gmail.com


6 th edition of the International Congress of Thermal Sciences AMT'2020. 

 April 14th and 15th, 2020 in Khouribga – Morocco. 

 

understanding is a must to use them efficiently in modern industry. Applications of nanofluids include 

microelectronics, fuel cells, and pharmaceutical processes.  

     Choi and Eastman [1] were the first to propose the term nanofluid that represents the fluid in which 

nanoscale particles are suspended in the base fluid with low thermal conductivity such as water, 

ethylene glycol, and oil. In recent years, many researchers have studied and reported nanofluid 

technology experimentally or numerically in the presence of heat transfer.  

     Heat transfer of a nanofluid flow which is squeezed between parallel plates was investigated 

analytically using Homotopy perturbation method (HPM) by   Sheikholeslami and Ganji [2].They 

reported that Nusselt number has direct relationship with nanoparticle volume fraction, the squeeze 

number and Eckert number when two plates are separated but it has reverse relationship with the 

squeeze number when two plates are squeezed. 

     Most of engineering problems, especially some heat transfer equations are nonlinear, therefore 

some of them are solved using numerical solution and some are solved using the different analytic 

method, such as perturbation method (PM), homotopy perturbation method (HPM), variational 

iteration method (VIM). Therefore, many different methods have recently introduced some ways to 

eliminate the small parameter. One of the semi-exact methods which does not need small parameters 

is the HPM. The homotopy perturbation method proposed and improved by He [3]. The method yields 

a very rapid convergence of the solution series in the most cases. The HPM proved its capability to 

solve a large class of nonlinear problems efficiently, accurately and easily with approximations 

convergency very rapidly to solution. Usually, few iterations lead to high accuracy solution. This 

method is employed for many researches in engineering sciences.         HPM was used for solving 

meany problems such as : nonlinear MHD Jeffery Hamel problem by Moghimi et al. [4].  Mustafa et 

al. [5] analyzed the effect of squeezing nanofluid flow between parallel plates… 

     The main objective of this present study is to investigate nanofluid flow and heat transfer between 

two parallel flat plates without presence of magnetic field. In this study, we have applied Runge-

Kutta- Fehlberg fourth-fifth-order method with shooting technique (RKF45) and homotopy 

perturbation method (HPM), to find the solution of nonlinear differential equations. The effects of 

governing parameters such as squeeze number, and nanoparticle volume fraction on velocity, and 

temperature, aswell as on skin-friction coefficient, Nusselt are investigated.  

 

Table 1 : Thermophysical properties of pure water and nanoparticles.

 

 𝜌 (Kg/m3) 𝐶𝑝 (J/kgK) 𝑘 (W/mK) 

Pure water 

Copper (Cu) 

997.1 

8933 

4179 

385 

0.613 

401 
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Figure 1: Flow configuration and coordinate system. 

2. Mathematical Formulation 

We consider an unsteady two-dimensional flow to observe heat andmass transfer of a squeezing 

nanofluid in the middle of two parallel plates extended infinitely and implanted in a system occupied 

with nanofluid (water as a base fluid) and (copper as a nanoparticle). The thermophysical properties 

of the nanofluids are given in Table 1.The distance between two plates is 𝑦 = 𝑙√1 −  𝑡 = ℎ(𝑡) 

where 𝑙 is the initial position (at time 𝑡 = 0). Flow is incompressible with no chemical reaction in 

system. The graphical model support to the present study has been given in Figure 1. The governing 

equations representing flow are as follows : 

 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0    (1)  

𝜌𝑛𝑓 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑃

𝜕𝑥
+ 𝜇𝑛𝑓 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)   (2)  

𝜌𝑛𝑓 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑃

𝜕𝑦
+ 𝜇𝑛𝑓 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)                  (3)  

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) (4)  
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   The associated boundary conditions are given as : 

𝑢 = 0 , 𝑣 = 0 , 𝑇 = 𝑇1      en      𝑦 = 0 (5)  

𝑢 = 0 , 𝑣 =
𝑑ℎ

𝑑𝑡
 , 𝑇 = 𝑇2      en      𝑦 = ℎ(𝑡) 

(6)  

Where : 

 

𝜌𝑛𝑓  =  (1 − ɸ)𝜌𝑓  +  ɸ𝜌𝑝 

(𝜌𝐶𝑝)𝑛𝑓    =  (1 − ɸ)(𝜌𝐶𝑝)𝑓   +  ɸ(𝜌𝐶𝑝)𝑝 

µ𝑛𝑓 =
µ𝑓

(1 − ɸ)2.5
 

𝐾𝑛𝑓

𝐾𝑓
=

𝐾𝑠 + 2𝐾𝑓 − 2ɸ(𝐾𝑓 − 𝐾𝑠)

𝐾𝑠 + 2𝐾𝑓 + 2ɸ(𝐾𝑓 − 𝐾𝑠)
 

(7)  

 

     Equations (2) – (4) can be converted to a systemof nonlinear ordinary differential equations via 

the following similarity variables : 

ƞ =
𝑦

𝑙(1 − 𝑡)
1
2

=
𝑦

ℎ(𝑡)
 (8)  

𝑢 =
𝑥

2(1 − 𝑡)
𝑓′(ƞ) 

(9)  

𝑣 =
−𝑙

2(1 − 𝑡)
1
2

𝑓(ƞ) 
(10)  

𝛩 =
𝑇 − 𝑇2 

𝑇1 − 𝑇2
 

(11)  

 

The transformed equations are : 

 

𝑓′′′′ − 𝑆 (1 − ɸ)2.5(3𝑓′′ + ƞ𝑓′′′ +    𝑓′𝑓′′ − 𝑓𝑓′′′) = 0 

𝛩′′(ƞ) + 𝑆 𝑃𝑟
𝐴2

𝐴3

(𝑓𝛩′ − ƞ𝛩′) = 0 

(12)  
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where 𝐴2, and 𝐴3 are dimensionless constants defined as follows : 

 

𝐴2 = [(1 − ɸ)  +  ɸ
(𝜌𝐶𝑝)𝑝

(𝜌𝐶𝑝)𝑓
] 

𝐴3 =
𝐾𝑛𝑓

𝐾𝑓
 

(13)  

 
The boundary conditions (5) in the terms of similarity variables (7) become : 

 

𝑓′(0) = 0 , 𝑓(0) = 0 , 𝛩 = 1 at ƞ = 0 

                                𝑓′(1) = 0 , 𝑓(1) = 1 , 𝛩 = 1 at ƞ = 1  
(14)  

where 𝑆 =
𝑙2

2ʋ𝑓
 is the squeeze number, 𝑃𝑟 =

(𝜌𝐶𝑝)𝑓

𝐾𝑓
ʋ𝑛𝑓 is the Prandtl number. 

   The physical quantities of interest are the skin-friction coefficient 𝐶𝑓, the Nusselt number Nu𝑥, 

defined as : 

    𝑐𝑓 =
𝜏𝑤

𝜌𝑛𝑓ʋ𝑤
 

𝑁𝑢𝑥
=

𝑙𝑞𝑤

𝑘𝑓(𝑇1 − 𝑇2)
 

(15)  

 

Where : 

 

    𝜏𝑤 = 
𝑛𝑓

(
𝜕𝑢

𝜕𝑦
)

𝑦=0

 

𝑞𝑤 = −𝑘𝑛𝑓

𝜕𝑇

𝜕𝑦
)

𝑦=0

 

 

(16)  

 

Using (16) in (15), we get : 

 

𝐶𝑓
∗ =

𝑥2

𝑙2
(1 − 𝑡) 𝑅𝑒𝑥

 𝐶𝑓 =
𝑓′′(0)

(1 − ɸ)2.5𝐴1
 

   𝑁𝑢𝑥

∗ = √1 − 𝑡𝑁𝑢𝑥
= −𝐴3𝛩′(0)  

(17)  

 

Where 𝑅𝑒𝑥
=

𝑙5

2𝑥3(1−𝑡)
1
2ʋ𝑓

 the local Reynolds number. 

3. Method of Solution 
To illustrate the basic ideas of this method, we consider the following equation : 

𝐴( 𝑢 ) −  𝑓 (𝑟 ) =  0 , 𝑟 ∈  𝛺 
(18)  
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with the boundary condition of : 

B (u,
∂U

∂n
) =  0   , r ∈  Γ 

(19)  

 

where A is a general differential operator, B a boundary operator, f (r) a known analytical function 

and Γ is the boundary of the domain Ω. 

A can be divided into two parts which are L and N, where L is linear and N is nonlinear. Eq. (13) can 

therefore be rewritten as follows : 

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈  𝛺        
(20)  

Homotopy perturbation structure is shown as follows : 

𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑣) − 𝑓(𝑟)] =  0 
(21)  

 

Where : 

 (r, p): 0,1→R 

In Eq. (21), p  [0 ,1] is an embedding parameter and u0 is the first approximation that satisfies the 

boundary condition. We can assume that the solution of Eq. (15) can be written as a power series in 

p, as following :  

    𝑣 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2 + 𝑝3𝑣3 + ⋯          
(22)  

 

and the best approximation for solution is : 

    𝑢 = 𝑙𝑖𝑚
𝑝→1

𝑣  =  𝑣0 +  𝑣1 +  𝑣2 + ⋯ (23)  

 

4. Implementation of the method 

According to the so-called homotopy-perturbation method (HPM), we construct a homotopy suppose 

the solution of Eq. (17) has the form : 

    𝐻(𝑓, 𝑝) = (1 − 𝑝)[𝑓′′′′ − 𝑓0
′′′′(0)] + 𝑝[𝑓′′′′ + 𝑆 𝐴1(1 −

ɸ)2.5[3𝑓′′ + ƞ𝑓′′′ +         𝑓′𝑓′′ − 𝑓𝑓′′′]] = 0 

𝐻(𝛩, 𝑝) = (1 − 𝑝)[𝛩′′ − 𝛩0
′′(0)] + 𝑝 {𝛩′′ + 𝑆 𝑃𝑟

𝐴2

𝐴3

[𝑓𝛩′ − ƞ𝛩′]} = 0 

(24)  

 

We consider f and as follows : 
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𝑓(ƞ) = 𝑓0(ƞ) + 𝑝𝑓1(ƞ) + ⋯  = ∑ 𝑓𝑖(ƞ)

𝑁

𝑖=0

 

   𝛩(ƞ) = 𝛩0(ƞ) + 𝑝𝛩1(ƞ) + ⋯  = ∑ 𝛩𝑖

𝑁

𝑖=0

(ƞ) 

(25)  

 

                                          

with substituting f , 𝛩 from equations (20-21) into equations (18-19) and some simplification and 

rearranging based on powers of p–terms, we have : 

p0 : 

f iv = 0 

𝛩0
′′ = 0 

 

(26)  

 

And boundary conditions are : 

𝑓(0) = 0,𝑓′(0) = 0,𝑓(1) = 1,   𝑓′(1) = 0 ,  𝜃(0) = 1 et 𝜃(1) = 0 
(27)  

 

P1 : 

𝑓1
𝑖𝑣 − 1.102087119𝑆(ƞ𝑓0

′′′ + 3𝑓0
′′ + 𝑓0

′𝑓0
′′ − 𝑓0𝑓0

′′′) = 0 

𝛩1
′′ + 0.9201899729𝑃𝑟𝑆(𝛩0

′ 𝑓0 − ƞ𝛩0
′ ) = 0 

 

(28)  

 

And boundary conditions are : 

𝑓(0) = 0,𝑓′(0) = 0,𝑓(1) = 1,   𝑓′(1) = 0 ,  𝜃(0) = 1 et 𝜃(1) = 0 
(29)  

 

Solving equations (28) and (26) with boundary conditions, we have : 

𝑓0 = −2ƞ3 + 3ƞ2 

𝛩0 = −ƞ + 1 
(30)  

𝑓1 =
3306261357

500000000
𝑆 (

1

105
ƞ7 −

1

30
ƞ6 −

1

60
ƞ5 +

1

8
ƞ4)

−
472323051

625000000
ƞ3𝑆 +

157441017

800000000
ƞ2𝑆 

𝛩1 = −
9201899729

10000000000
𝑆𝑃𝑟 (

1

10
ƞ5 −

1

4
ƞ4 +

1

6
ƞ3) +

9201899729

600000000000
𝑆𝑃𝑟ƞ                       

(31)  
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The terms 𝑓𝑖(ƞ), 𝛩𝑖(ƞ) when i>2 are too large that is mentioned graphically. 

The solution of this equation, when p→1, will be as follows : 

𝑓(ƞ) = 𝑓0(ƞ) + 𝑝𝑓1(ƞ) + ⋯  = ∑ 𝑓𝑖(ƞ)

𝑁

𝑖=0

 

𝛩(ƞ) = 𝛩0(ƞ) + 𝑝𝛩1(ƞ) + ⋯  = ∑ 𝛩𝑖

𝑁

𝑖=0

(ƞ) 

(32)  

 

5. Results and discussion 

    In this paper, Runge-Kutta and HPM Method is applied to solve the problem of the 

magnetohydrodynamic squeezing flow of nanofluid between parallel plate. The effects of active 

parameters such as squeeze number, nanoparticle volume fraction are investigated. 

    Figure. 2 shows the effect of increasing the squeeze number S on the profile of the velocity, the 

latter increasing to the movable plate is in the middle of the initial distance between the plates, then 

it decreases slightly and tends towards zero when the two plates are glued together, and we also 

observe that the speed decreases with increasing values of S.   

    It can easily be seen in Figure 3 that the value of the temperature near the bottom surface of the 

plate decreases steadily with the increase of the value of S, and that as we move away from the lower 

surface of the plate, this value increases. 

    Figure 4 shows the effect of increasing the volume fraction on the velocity profile, which increases 

to the moving plate in the middle of the initial distance between the plates, then decreases slightly 

and tends to zero when the two plates are glued together, and we also observe that the speed decreases 

with increasing values of φ. 

    Given the previous temperature curve, there is practically no change in the temperature profile 

when φ varies, but there is an effect well shown in the table 2, initially present an increase in the 

values of the volume fraction of the nanoparticles φ, the temperature decreases, and after a fixed 

distance from the lower surface of the plate, it increases slightly.  

    From Table 3 it is evident that the coefficient of friction and the Nusselt number are proportional 

to 𝑆, and it is observed that the parameters 𝐶𝑓
∗ increase with increasing values of S and 𝑁𝑢

∗ decrease 

as S increases. 

    In Table 4 it is evident that the coefficient of friction and the Nusselt number are inversely 

proportional to , 𝐶𝑓
∗ and 𝑁𝑢

∗ decreases as  increases. 
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Figure. 3 : velocity and temperature profils for different squeeze number values (S). 

 

Figure. 4 : velocity and temperature profils for different volume fraction values (). 

Table.2 : Temperature value for different values of . 
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Table.3: Variation of 𝐶𝑓
∗  and  𝑁𝑢

∗ for different values of S. 

 

 
                         

 

 

 

 

Table.3: Variation of 𝐶𝑓
∗  and  𝑁𝑢

∗ for different values of . 

 

 

 

 

 

 

 

 

 

 

 

ƞ 

N = 3,  S = 1 

 = 0.00  = 0.01  = 0.02  = 0.03  = 0.04 

 

 = 0.05 

 

Θ Θ Θ Θ Θ Θ 

0 1 1 1 1 1 1 

0.1 0.9089796135 0.9086112279 0.9079192365 0.9082580644 0.9075939228 0.9072813605 

0.2 0.815073728 0.8135108681 0.8124090419 0.8129481537 0.8118921319 0.8113961267 

0.3 0.7137466214 0.7131637223 0.7120736244 0.7126065942 0.7115633264 0.7110743294 

0.4 0.6083624809 0.6080035292 0.6073333522 0.6076608342 0.6070201245 0.6067202682 

0.5 0.5000000001 0.5000000001 0.4999999997 0.5000000004 0.4999999996 0.4999999996 

0.6 0.3916375189 0.391996471 0.3926666473 0.3923391662 0.3929798746 0.3932797318 

0.7 0.2862533788 0.2868362781 0.2879263752 0.2873934062 0.2884366725 0.2889256704 

0.8 0.1859012994 0.1864891321 0.187590958 0.1870518467 0.1881078676 0.1886038731 

0.9 0.0910203874 0.0913887706 0.187590958 0.0917419333 0.0924060768 0.09271864 

1 0 0 0 0 0 0 

S 
N = 4,  = 0.02 

𝐶𝑓
∗ 𝑁𝑢

∗ 

0.5 5.61973 0.88071 

1 5.78950 0.84032 

1.5 5.95406 0.80209 

2 6.11394 0.76587 

 

N = 3 ,    S = 1 

𝐶𝑓
∗ 𝑁𝑢

∗ 

0 6.34632 0.90222 

0.01 6.04486 0.87082 

0.02 5.78950 0.84032 

0.03 5.57157 0.81069 

0.04 5.38450 0.78190 

0.05 5.22323 0.75391 
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