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Abstract—The multi-sensor Labeled Multi-Bernoulli filter has
the challenge of relying on the NP-hard multi-sensor update
of the Generalized Labeled Multi-Bernoulli filter. This paper
proposes the Fast Product Multi-Sensor Labeled Multi-Bernoulli
filter, which is a filter for multi-sensor systems that solves this task
by performing computationally simpler single-sensor Labeled
Multi-Bernoulli filter updates based on a common prediction for
each sensor. These single-sensor updates are then fused using a
novel and efficient fusion strategy. Furthermore, the proposed
filter is based on the Bayes parallel combination rule and can be
seen as an efficient approximation of the multi-sensor Labeled
Multi-Bernoulli filter. It enables full parallelization of the update
step and benefits from sensor order independence compared to
Iterated Corrector implementations. As a result, the robustness
is increased, which is important for safety reasons, e.g., in au-
tonomous driving. Our approach is evaluated on simulations, and
the results are compared to an Iterated Corrector implementation
of the Labeled Multi-Bernoulli filter.

I. INTRODUCTION

The aim of multi-sensor multi-object tracking is to estimate
the number of dynamic objects and their trajectories based
on measurements from multiple sensors [1]. Furthermore,
multiple sensors are commonly used to reduce the uncertainty
about the objects’ existence and their states [2]. Random Finite
Sets (RFSs) [2] provide a useful mathematical basis for multi-
object tracking and enable the extension of the Bayes filter
to the multi-sensor multi-object case. Well-known filters for
the single-sensor case are the Probability Hypothesis Den-
sity (PHD) [3] filter, the Cardinalized Probability Hypothesis
Density (CPHD) [4] filter, the Generalized Labeled Multi-
Bernoulli (GLMB) filter [5], and the Labeled Multi-Bernoulli
(LMB) filter [6]. The latter is an efficient approximation of
the GLMB filter. For the case of multiple sensors, these
approaches can also be extended [7]–[10]. Besides sub-optimal
track-to-track fusion approaches [2], [11], centralized tracking
architectures offer another way to deal with multiple sen-
sors. Here, the measurements of the sensors are passed to
a Fusion Center (FC) with a centralized tracker [12]. Given
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this architecture, the NP-hard and yet not sufficiently solved
track to multi-sensor measurements association is the main
problem [13].

There are three main strategies to address this challenge:
The Iterated Corrector (IC) approach, sampling-based ap-
proaches, and approaches based on the Bayes Parallel Com-
bination Rule (BPCR) [2]. The IC approach is conceptually
simple and often used. It applies single-sensor updates for
each sensor in turn. However, this is still computationally not
feasible, so in practice, approximations are necessary. How-
ever, these can decrease the filter’s robustness and introduce
a dependency on the sensor-order, which has been shown
in detail for the IC-GLMB filter in [8]. Moreover, the IC
approach can also be applied to the LMB filter allowing for
two realizations, the multi-sensor LMB filter with IC-GLMB
update [10] or the IC-LMB filter with LMB approximation
after each single-sensor update. The latter is an approximation
of the multi-sensor LMB filter and has proven to be very
useful and efficient for practical applications, such as in our
autonomous driving project at Ulm University [14].

The sampling-based Sub-optimal Gibbs Sampling-based
GLMB (SO-Gibbs GLMB) filter [8] belongs to the second
category of multi-sensor strategies. It provides a better tracking
performance than the IC-GLMB filter but sometimes requires
more computation time [10]. Further, parallel computation of
the single-sensor updates is impossible, as for all filters based
on the IC strategy.

Finally, BPCR-based approaches perform a separate update
for each sensor and then fuse the results [7], [9], [10].
This has the advantage that only the track to single-sensor
measurement associations need to be considered, reducing the
computational complexity for each separate update. Addition-
ally, it increases the robustness since the sensor-order becomes
irrelevant, and it allows for a parallel computation of the
single-sensor updates [15]. There are several implementations
already [7], [9], [10], [16], e.g., the Parallel Update multi-
sensor LMB (PU-LMB) filter [10], the Product Multi-Sensor
GLMB (PM-GLMB) filter [9] and the Product Multi-Sensor
LMB (PM-LMB) filter [16]. The latter uses the update of
the PM-GLMB filter, which involves the fusion of GLMB
densities with many hypotheses, but has the advantage of
approximating the fused posterior density as an LMB density.
This reduces complexity and, therefore, computation time.
Further, the performance of the PM-LMB filter is similar
to the PM-GLMB and exceeds that of the IC-LMB filter



and the IC-GLMB filter [16]. The PU-LMB filter [10], in
contrast, performs a fusion of LMB densities, which means
that only the existence probabilities and the spatial densities
of the tracks have to be fused, instead of GLMB hypotheses
as for the PM-LMB filter. This offers the advantage of lower
computational complexity and also a smaller bandwidth during
data transmission. However, the PU-LMB filter cannot resolve
the inherent division of the spatial Gaussian Mixture (GM)
distributions due to their mixture property [10]. Thus, these are
approximated by Gaussians, which comes with a significant
information loss and could severely affect the tracking result.
All approaches mentioned so far have in common that they
need to make a trade-off between tracking performance and
computational complexity.

To obtain a computationally more efficient and also robust
solution while maintaining good tracking performance, a filter
with the following characteristics is required: A computa-
tionally efficient fusion based on LMB densities, a sensor-
order independent result to obtain robustness, and use of GM
distributions to retain as much information as possible.

This paper proposes the Fast Product Multi-Sensor Labeled
Multi-Bernoulli (FPM-LMB) filter, the first approach that
satisfies all of these requirements. For that, it uses a fusion
approach similar to the PM-LMB, made possible by a refor-
mulation of the division of the spatial GM distribution of the
PU-LMB filter. This allows in contrast to the PU-LMB filter
the exact calculation of the fused spatial density. Furthermore,
the direct fusion of the single-sensor updated LMB densities is
preserved, which enables a faster implementation than with the
PM-LMB filter, since only tracks and not hypotheses need to
be considered. Moreover, the fused existence probabilities can
be calculated using the same strategy as the PU-LMB filter.
This results in a robust filter that performs similarly well to
the IC-LMB filter. Its robustness becomes particularly evident
in challenging situations, e.g., with unknown occlusions or
sensor failures. Such might occur due to security attacks or
environmental effects. Moreover, our filter outperforms the
others in terms of computational time due to its efficient fusion
and a full parallelization of the update step.

This paper is organized as follows: We first summarize our
notation and some necessary background in Section II. Then,
we propose and discuss the FPM-LMB filter in Section III,
followed by a detailed evaluation compared to the IC-LMB
filter in Section IV. Conclusions and an outlook on future
work are finally given in Section V.

II. BACKGROUND AND NOTATION

This section briefly introduces our notation. Subsequently,
the LMB filter corrector equations for the single-sensor and
the multi-sensor case are summarized.

A. Notation

Our notation is based on [9]. Single objects are denoted
using small letters, e.g., single-object states are represented
by a vector x in some state space X, and single-object mea-
surements are represented by a vector z in some measurement

space Z. Multiple objects are modeled on the hyperspace of all
finite subsets F(·) using RFSs [2] and are denoted using cap-
ital letters, like the multi-object state RFS X on F(X) or the
multi-object measurement RFS Z on F(Z). Augmenting the
state vectors by a label ℓ ∈ L yields the labeled single-object
state x = (x, ℓ) and facilitates the estimation of object trajec-
tories. A labeled multi-object state X =

{
x(1), . . . ,x(n)

}
for

n objects is a labeled RFS on the space X× L, where L is a
discrete space. Labeled states and distributions are denoted by
boldface letters. The set of track labels of the labeled RFS is
extracted by L(X) = {L(x) : x ∈ X}, given the projection
L((x, ℓ)) = ℓ.

The active sensor is denoted by s ∈ {1, . . . , V },
where V denotes the number of used sensors. Moreover,
θ(s) = I →

{
0, 1, . . . , |Z(s)|

}
denotes one possible assigne-

ment of the measurements Z(s) to the set I of track
labels. Unique assignments are ensured by the property
θ(s)(i) = θ(s)(i′) > 0 ⇒ i = i′. θ(s)(i) = 0 represents the
misdetection. The space Θ(s) contains all possible assignments
of measurements to track labels. Besides, the multi-sensor
abbreviations z ≜

(
z(1), . . . , z(V )

)
, Z ≜

(
Z(1), . . . , Z(V )

)
,

θ ≜
(
θ(1), . . . , θ(V )

)
and Θ ≜ Θ(1) × · · · ×Θ(V ) are used.

The generalized Kronecker delta function and the inclusion
function supporting sets, vectors, and integers as input argu-
ments are respectively given by

δY (X) ≜

{
1, if X = Y

0, otherwise
and 1Y (X) ≜

{
1, if X ⊆ Y

0, otherwise
.

The multi-object exponential for real-valued functions h is
defined by hX ≜

∏
x∈X h(x), where h∅ = 1 by definition.

The inner product of two functions f(x) and g(x) is abbre-
viated by ⟨f, g⟩ ≜

∫
f(x)g(x)dx. Note that time indices are

omitted to simplify notation. Therefore, predicted densities are
marked by a ‘+’ subscript. The existence probability of an
object is denoted by r. To distinguish RFSs from matrices, the
latters are underlined additionally, like the covariance matrix
P . Further, the spatial density of a single object is denoted
by p. The multi-object state statistics are described using the
multi-object density function π [2].

B. The Labeled Multi-Bernoulli Filter Corrector Equations

The LMB filter [6] is an efficient approximation of the
GLMB filter. It uses the expensive GLMB filter update but
benefits from approximating the predicted and posterior den-
sities as LMB densities. Given the predicted LMB density
π+(X) with spatial distributions p(ℓ)+ (x) and weights w+(I),
the posterior density of the LMB filter yields

π
(
X|Z(s)

)
=
{(
r(s,ℓ), p(s,ℓ)

)}
ℓ∈L(s)

, (1)

where the existence probability and the spatial distribution are
given by

r(s,ℓ) =
∑

(I,θ(s))∈F(L(s))×Θ
(s)
I

w(I,θ
(s))
(
Z(s)

)
1I(ℓ), (2a)



p(s,ℓ)(x) =
∑

(I,θ(s))∈F(L(s))×Θ
(s)
I

w(I,θ
(s))(Z(s)

)
1I(ℓ)p

(θ(s))(x, ℓ|Z(s)
)

r(s,ℓ)
(2b)

with

w(I,θ
(s))
(
Z(s)

)
∝ w+(I)

[
η
(θ(s))
Z(s)

]I
, (2c)

p(θ
(s))
(
x, ℓ|Z(s)

)
=
p
(ℓ)
+ (x)ψZ(s)

(
x, ℓ; θ(s)

)
η
(θ(s))
Z(s) (ℓ)

, (2d)

ψZ(s)

(
x, ℓ; θ(s)

)
=


q
(s)
D (x, ℓ), if θ(s)(ℓ) = 0

p
(s)
D (x,ℓ)g

(
z
θ(s)(ℓ)

∣∣x,ℓ)
κ
(
z
θ(s)(ℓ)

) , if θ(s)(ℓ) > 0

(2e)

η
(θ(s))
Z(s) (ℓ) =

〈
p
(ℓ)
+ (·), ψZ(s)

(
·, ℓ; θ(s)

)〉
. (2f)

Here, the posterior weight is denoted by w(I,θ
(s))(Z(s)

)
. The

state dependent detection and misdetection probabilities of
track ℓ are denoted p

(s)
D (x, ℓ) and q

(s)
D (x, ℓ), respectively.

Further, the single-object measurement likelihood for the as-
sociated measurement zθ(s)(ℓ) is denoted by g

(
zθ(s)(ℓ)|x, ℓ

)
,

η
(θ(s))
Z(s) (ℓ) denotes the label to single-sensor measurement as-

sociation likelihood and is calculated using the generalized
measurement likelihood ψZ(s)

(
x, ℓ; θ(s)

)
. The clutter process

is Poisson distributed and described by the intensity func-
tion κ(·).

Given that the detection and misdetection probabilities
p
(s)
D and q

(s)
D are state independent and the predicted LMB

density is given by p
(ℓ)
+ (x) =

∑J
(ℓ)
+

j=1 α
(ℓ,j)
+ N (x; x̂

(ℓ,j)
+ , P (ℓ,j))

with predicted component means x̂
(ℓ,j)
+ , covariances P (ℓ,j),

and weights α(ℓ,j)
+ , the LMB filter updated density yields

p(θ
(s))
(
x, ℓ|Z(s)

)
=

J
(ℓ)
+∑

j=1

α̃(s,ℓ,j,θ
(s))
(
Z(s)

)
N
(
x; x̂(s,ℓ,j,θ

(s)), P (s,ℓ,j)
)
, (3)

where the weight and the depending normalization constant
are given by

α̃(s,ℓ,j,θ
(s))
(
Z(s)

)
=
α
(ℓ,j)
+ ν

(s,ℓ,j,θ(s))
Z(s)

η
(θ(s))
Z(s) (ℓ)

(4)

η
(θ(s))
Z(s) (ℓ) =

J̃
(ℓ)
+∑

j̃=1

α
(ℓ,j̃)
+ ν

(s,ℓ,j̃,θ(s))
Z(s) . (5)

Like in [16], the mixture component to measurement associa-
tion likelihood is abbreviated by

ν
(s,ℓ,j,θ(s))
Z(s) =


q
(s)
D , if θ(s)(ℓ) = 0,
p
(s)
D N

(
z
θ(s)

(ℓ);z
(s,ℓ,j)
+ ,S(s,ℓ,j)

)
κ
(
z
θ(s)(ℓ)

) , if θ(s)(ℓ) > 0.

(6)

Here, z(s,ℓ,j)+ is the predicted measurement and S(s,ℓ,j) is the
corresponding innovation covariance.

Following the same argumentation as in [6] for the LMB
filter, the equations for the multi-sensor LMB filter follow in
a straight manner. They equal those of the single-sensor case,
except for the use of the multi-sensor notation instead of the
single-sensor notation, i.e., θ instead of θ(s), Z instead of Z(s),
etc.

III. THE FAST PRODUCT MULTI-SENSOR LABELED
MULTI-BERNOULLI FILTER

This section focuses on a new Product Multi-Sensor (PM)
version of the LMB filter. It proposes the FPM-LMB filter,
which applies the BPCR to a reformulation of the fused spatial
density of the PU-LMB filter and therefore enables the exact
update of spatial densities for GMs. Moreover, it uses the
fusion of LMB densities and also the strategy of the PU-LMB
filter to update the existence probabilities. In the following, we
first discuss the reformulation of the fused spatial density of
the PU-LMB filter, then describe the application of the BPCR,
which results in the parallel computation of the single sensor
spatial densities, and finally derive the FPM-LMB filter.

A. Parallel Calculation of the Spatial Posteriors

To solve the division of GMs in the equation of the PU-LMB
filter, we use a strategy similar to that used for the PM-LMB
filter to calculate the spatial density. This also makes parallel
computation possible. Therefore, a representation is needed
that includes the product over the single-sensor measurement
likelihood as in the multi-sensor multi-object Bayes filter
corrector equations [2].

Proposition 1. Given the single-sensor posterior spatial dis-
tribution in (2b), the spatial density yields

p(ℓ)(x)=
1

η
(ℓ)
Z

(
p
(ℓ)
+ (x)

)1−V V∏
s=1

p(s,ℓ)(x)=
p
(ℓ)
+ (x)ψ̂Z(x, ℓ)

η
(ℓ)
Z

(7a)

where the middle part is equivalent to (67) in [10] and

ψ̂Z(x, ℓ) =

V∏
s=1

|Z(s)|∑
m=0

ψZ(s)(x, ℓ;m)

η
(m)

Z(s)(ℓ)
β(s,ℓ,m)

(
Z(s)

)
, (7b)

η
(ℓ)
Z =

〈
p
(ℓ)
+ (·), ψ̂Z(·, ℓ)

〉
, (7c)

where

β(s,ℓ,m)
(
Z(s)

)
=
∑

(I,θ(s))∈F(L(s))×Θ
(s)
I

δθ(s)(ℓ)(m)1I(ℓ)w
(I,θ(s))(Z(s)

)
r(s,ℓ)

. (7d)

Here p(ℓ)+ is the predicted spatial distribution, ψ̂Z(x, ℓ) is the
generalized track label to multi-sensor measurement associ-
ation likelihood, which includes the product over the single-
sensor measurement likelihoods, and η

(ℓ)
Z is the multi-sensor

normalization constant, which corresponds to the label to
multi-sensor measurement association likelihood.



Proof: First a different representation of (2b) is derived.
Substitution of (2d) in (2b) and reformulation yields

p(s,ℓ)(x) =
∑

(I,θ(s))∈F(L(s))×Θ
(s)
I

1I(ℓ)w
(I,θ(s))(Z(s)

)
r(s,ℓ)

p
(ℓ)
+ (x)ψZ(s)

(
x, ℓ; θ(s)

)
η
(θ(s))
Z(s) (ℓ)

(8a)

= p
(ℓ)
+ (x)

|Z(s)|∑
m=0

ψZ(s)(x, ℓ;m)

η
(m)

Z(s)(ℓ)
β(s,ℓ,m)

(
Z(s)

)
. (8b)

The sum in (8a) sums over all GLMB hypotheses with weight
w(I,θ

(s))(Z(s)
)

including a single-sensor posterior spatial den-
sity of the track with label ℓ. This results from the update
with measurement assignment θ(s)(ℓ) and occurs in several
hypotheses. In summary, only one measurement association
is considered for a possible single-sensor posterior spatial
distribution. Therefore, the summation in (8a) can be reformu-
lated to a summation over the measurements if the Kronecker
delta function is used to ensure that only those hypotheses
are summed that also contain the appropriate measurement
association for the label. This is done in (8b), where the
Kronecker delta function in (7d) ensures equality to (8a).
Furthermore, the misdetection corresponds to m = 0. In other
words, a summand in (8b) contains a single-sensor posterior
spatial density resulting from the update with the measurement
z
(s)
m . This is then weighted with β(s,ℓ,m)

(
Z(s)

)
, which is the

sum of the weights of all hypotheses in which this density
occurs.

Substituting of (8b) into the middle part of (7a) yields

p(ℓ)(x) =
1

η
(ℓ)
Z

(
p
(ℓ)
+ (x)

)1−V

·
V∏

s=1

p
(ℓ)
+ (x)

|Z(s)|∑
m=0

ψZ(s)(x, ℓ;m)

η
(m)

Z(s)(ℓ)
β(s,ℓ,m)

(
Z(s)

)
. (9)

Cancelling the predictionresults in

p(ℓ)(x)=
p
(ℓ)
+ (x)

η
(ℓ)
Z

V∏
s=1

|Z(s)|∑
m=0

ψZ(s)(x, ℓ;m)

η
(m)

Z(s)(ℓ)
β(s,ℓ,m)

(
Z(s)

)
, (10)

which then yields (7b).

Use of GMs for the spatial densities and additional ap-
plication of the BPCR to (10) comparable to the PM-LMB
filter then provides the PM form. Furthermore, it preserves
the parallel calculation of the single-sensor posterior spatial
distributions shown in the following. This requires the follow-
ing lemma:

Lemma 1. Let us assume that the single-sensor update yields
a quantity ζs,m. For this, the prior was associated with the
measurement z(s)m of sensor s, and θ(s) denotes a single-object
track label to measurement association, i.e., not the set-based

multi-object association. Then, the following applies:

∑
θ∈Θ

V∏
s=1

ζs,θ(s) =

V∏
s=1

|Z(s)|∑
m=0

ζs,m . (11)

Proof: Considering the detailed formulation of the left
side in (11) yields∑
θ∈Θ

V∏
s=1

ζs,θ(s) =
∑

θ(1)∈Θ(1)

· · ·
∑

θ(V )∈Θ(V )

ζ1,θ(1) · . . . · ζV,θ(V )

= ζ1,0 · . . . · ζV,0 + ζ1,0 · . . . · ζV−1,0 · ζV,1

+· · ·+ ζ1,|Z(1)| · . . . · ζV,|Z(V )| =
V∏

s=1

|Z(s)|∑
m=0

ζs,m.

Here, both sides provide all possible measurement permuta-
tions of the sensors.

Then the following proposition holds:

Proposition 2. Given that the detection and misdetection
probabilities p

(s)
D and q

(s)
D are state independent and that

the spatial distribution of a predicted object follows a GM
distribution as defined in Section II-B, the GM version of the
multi-sensor posterior spatial distribution in (7a) is given by

p(ℓ)(x)=

J
(ℓ)
+∑

j=1

∑
θ∈Θ

α(ℓ,j,θ)(Z)

η
(ℓ)
Z

N
(
x; x̂(ℓ,j,θ), P (ℓ,j,θ)

)
, (12a)

where the respective GM component weights and the normal-
ization constant are given by

α(ℓ,j,θ)(Z) = C
(ℓ,j,θ)
Z

V∏
s=1

α(s,ℓ,j,θ
(s))(Z(s)

)
(
α
(ℓ,j)
+

)(V−1)
, (12b)

η
(ℓ)
Z =

〈
p
(ℓ)
+ (·), ψ̂Z(·, ℓ)

〉
=

J
(ℓ)
+∑

j=1

∑
θ∈Θ

α(ℓ,j,θ)(Z) . (12c)

Moreover, C
(ℓ,j,θ)
Z is a normalization constant and

α(s,ℓ,j,m)
(
Z(s)

)
is the respective GM component weight

of the single-sensor posterior spatial density. Their mean and
covariance are obtained by the Information Matrix Fusion
(IMF) formulas [12]:

P (ℓ,j) =

((
P

(ℓ,j)
+

)−1

+

V∑
s=1

I(s,ℓ,j)

)−1

, (13)

x(ℓ,j,θ) = P (ℓ,j)

((
P

(ℓ,j)
+

)−1

x
(ℓ,j)
+ +

V∑
s=1

i(s,ℓ,j,θ
(s))

)
, (14)

where the information matrix and information vector with
measurement matrix H(·) and measurement uncertainty matrix
R(·) are given by

I(s,ℓ,j) =
(
H(s,ℓ,j)

)T(
R(s,ℓ,j)

)−1

H(s,ℓ,j), (15)



i(s,ℓ,j,θ
(s)) =

(
H(s,ℓ,j)

)T(
R(s,ℓ,j)

)−1

z(θ
(s)). (16)

Proof: Insertion of (3) into (2b) and using the same
reformulation as shown in (8) then yields

p(s,ℓ)(x)=

J
(ℓ)
+∑

j=1

|Z(s)|∑
m=0

α(s,ℓ,j,m)
(
Z(s)

)
N
(
x; x̂(s,ℓ,j,m), P (s,ℓ,j)

)
(17)

for the single-sensor posterior density, where

α(s,ℓ,j,m)
(
Z(s)

)
= α̃(s,ℓ,j,m)

(
Z(s)

)
β(s,ℓ,m)

(
Z(s)

)
. (18)

The factor β(s,ℓ,m)
(
Z(s)

)
is given in (7d) and α̃(s,ℓ,j,m)

(
Z(s)

)
is the respective GM weight of the GLMB posterior density
in (3).

Substituting (7b) and the predicted density into (7a) yields

p(ℓ)(x) =
1

η
(ℓ)
Z

( J
(ℓ)
+∑

j=1

α
(ℓ,j)
+ N

(
x; x̂

(ℓ,j)
+ , P (ℓ,j)

)

·
V∏

s=1

|Z(s)|∑
m=0

ψZ(s)(x, ℓ;m)

η
(m)

Z(s)(ℓ)
β(s,ℓ,m)

(
Z(s)

))
(19)

and 1− V fold expansion with the predicted GM component
yields

p(ℓ)(x) =
1

η
(ℓ)
Z

( J
(ℓ)
+∑

j=1

(
α
(ℓ,j)
+ N

(
x; x̂

(ℓ,j)
+ , P (ℓ,j)

))(1−V )

·
V∏

s=1

|Z(s)|∑
m=0

α
(ℓ,j)
+ β(s,ℓ,m)

(
Z(s)

)
η
(m)

Z(s)(ℓ)

· ψZ(s)(x, ℓ;m)N
(
x; x̂

(ℓ,j)
+ , P (ℓ,j)

))
. (20)

Applying the fundamental Gaussian identity [17] to (20) in the
same way like in (6) of [15] for the PM-GLMB filter yields

p(ℓ)(x) =
1

η
(ℓ)
Z

J
(ℓ)
+∑

j=1

(
α
(ℓ,j)
+ N

(
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+ , P (ℓ,j)
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·
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|Z(s)|∑
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α
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(
Z(s)

)
η
(m)

Z(s)(ℓ)
ν
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Z(s)

· N
(
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)
. (21)

Using (4) and (18) then results in

p(ℓ)(x) =
1

η
(ℓ)
Z

J
(ℓ)
+∑

j=1

(
α
(ℓ,j)
+ N

(
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+ , P (ℓ,j)
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·
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(
Z(s)

)
N
(
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)
.

(22)

Using (11) and subsequent moving of the 1 − V fold of the
prediction part into the sum then yields

p(ℓ)(x) =
1

η
(ℓ)
Z

J
(ℓ)
+∑

j=1

(∑
θ∈Θ

(
α
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+ N
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·
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)
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(23)

Subsequent application of the BPCR, as in formula (13) in [15]
yields

p(ℓ)(x) =
1

η
(ℓ)
Z

J
(ℓ)
+∑

j=1

∑
θ∈Θ

C
(ℓ,j,θ)
Z N

(
x; x̂(ℓ,j,θ), P (ℓ,j)

)
·
(
α
(ℓ,j)
+

)(1−V ) V∏
s=1

α(s,ℓ,j,θ
(s))
(
Z(s)

)
, (24)

which equals (12a) when (12b) is substituted. Furthermore
this step also enables the use of the IMF formulas (13) and
(14) for the means and covariances of the spatial densities.
These formulas resemble those of the PM-GLMB filter since
the LMB typically retains the spatial density of the GLMB
filter [6]. Finally, note that the integration of (24) yields (12c)
and that the constant C(ℓ,j,θ)

Z also results from applying the
BPCR and can be calculated via (16) in [15].

B. Definition of the Fast Product Multi-Sensor Labeled Multi-
Bernoulli Filter and Implementation Details

The FPM-LMB filter combines the proposed exact fusion
approach of the spatial densities derived in Section III-A
with the fusion of the existence probabilities of the PU-LMB
filter [10]. Therefore, the fused existence probability is equal
to that in (68) in [10] and is given by

r(ℓ) =
1L(s)(ℓ)η

(ℓ)
Z (r

(ℓ)
+ )(1−V )

∏V
s=1 r

(s,ℓ)

C
(ℓ)
p

(25)

where

C(ℓ)
p =(1− r

(ℓ)
+ )(1−V )

V∏
s=1

(1− r(s,ℓ))

+ η
(ℓ)
Z (r

(ℓ)
+ )(1−V )

V∏
s=1

r(s,ℓ). (26)

In other words, the sensors calculate the single-sensor LMB
posteriors based on a common predicted density, which
are subsequently fused using (12a) for the spatial densities
and (25) for the existence probabilities.

The advantage of computing the spatial densities as in
Section III-A via the IMF equations is that it circumvents
the approximation of the spatial distributions, which would be
required with the PU-LMB filter due to the division of GMs.
Note that the FPM-LMB filter calculates the fused posterior
density exactly. In other words, the mean and covariance of
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Fig. 1. Schematic overview of the distributed architecture of the FPM-LMB
filter. Every single sensor calculates a posterior distribution based on a
common prediction. The result is then fused at the FC. Further pruning and
truncation are used to achieve a computationally efficient implementation.

the GM components are equivalent to the result of the optimal
multi-sensor GLMB update.

With this, the overall structure of the FPM-LMB filter,
which belongs to the class of distributed implementations of
the centralized estimator, is defined and illustrated in Fig. 1.
Specifically, the FC calculates a global predicted LMB density,
which also includes the birth of tracks. The result is distributed
to the V sensors, which each compute a single-sensor LMB
filter update using the single-sensor GLMB filter update step.
These are then fused in the FC, which yields the global
posterior density that is then used for the next iteration.
Furthermore, track extraction is realized by selecting all tracks
with an existence probability above a certain threshold.

Since the number of GLMB components grows exponen-
tially with the number of track labels |L(s)| during the update,
truncation is required [6]. This can be done using the Murty
ranked assignment algorithm [18], which evaluates only the
most significant M components and has already been success-
fully used in [5]. Furthermore, pruning strategies are applied to
the spatial distributions to limit the computational complexity,
which also increases with the GM component number of the
tracks. Therefore, GM components with a weight below a
threshold ϑGM are removed before and after the fusion and
tracks with an existence probability r(ℓ) less than a threshold
ϑr are deleted after the fusion. Furthermore, a hypothesis
sampling is used during the LMB-to-GLMB transformation
if the cardinality exceeds a certain number N . As already
discussed in [15], the constant C(l,j,θ)

z takes a value close to
one in theory, but cannot be calculated in a numerically stable
way. Thus, it is set to one in the implementation as usual.

IV. EVALUATION

The performance of the proposed FPM-LMB filter is evalu-
ated using two different simulation scenarios. The first is based
on the linear scenario of [15] and compares the results of the
filters for different sensor numbers. The second scenario equals
the first but simulates a severe sensor failure to demonstrate
the robustness against multiple consecutive sensor failures of
our proposed filter. We compare our results to the results of the
IC-LMB filter. Both filters share the same LMB filter update
implementation and, thus, use the same parameters.
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Fig. 2. Ground truth trajectories of the objects in the observed area. The start
and end points are marked by circles and triangles, respectively.

A. Simulation Setup

The basic configuration of both scenarios is shown
in Fig. 2, where in the 2D surveillance area with
[−800, 800]m× [−800, 800]m, a maximum of 10 objects
move simultaneously with constant speed. Furthermore, the
state vector x = [px, vx, py, vy] contains the position and
velocities of the respective track in x and y direction. Both
filters use a Constant Velocity (CV) motion model [19] with
sampling time T = 1 s, standard deviation of the discrete
white noise sequence σa = 0.2m s−2, and survival prob-
ability pS = 0.98 in the prediction. Newly born tracks
can only arise at static birth regions

[
p
(i)
B,x, p

(i)
B,y

]
, which

are marked by circles in Fig. 2 and modeled by an LMB

density with πB

{
rB , p

(i)
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}6

i=1
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. The state vector of a birth track

is given by x
(i)
B =

[
p
(i)
B,x, 0, p

(i)
B,y, 0

]
and the correspond-

ing covariance is Q
B
= diag([15m, 5m s−2, 15m, 5m s−2])2.

Moreover, six synchronous omnidirectional sensors with con-
stant detection probability pD perform the detection of the
objects. These sensors deliver positional measurements with
measurement noise covariance R = diag([0.36m2, 0.36m2]).
The clutter of each sensor follows a Poisson distribution with
a mean number of λc = 7 measurements, which are uniformly
distributed over the observed area. The truncation parameter
is set to M = 3000, and the pruning parameters are set
to ϑr = 0.01 and ϑGM = 0.001. Track extraction is done
by selecting all tracks with existence probability r(ℓ) > 0.5.
Hypotheses sampling during the transformation from LMB-to-
GLMB is done for cardinalities above N = 8. For the IC-LMB
filter, pruning of tracks and GM components takes place after
each single-sensor update. The results of both scenarios are
averaged over 100 Monte Carlo (MC) runs each and evaluated
using the Optimal Sub-pattern Assignment metric (OSPA) and
the OSPA-on-OSPA (OSPA(2)) metrics [20], with OSPA order
p = 1, cut-off c = 2 and window length w = 20.

B. Linear Scenario

This scenario compares the results of the two filters for two
cases, one using all six sensors and the other using only two
sensors. A detection probability of pD = 0.67 was chosen.
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Fig. 3. Cardinality estimation of the FPM-LMB filter and the IC-LMB filter
for the Linear Scenario averaged over 100 simulation runs.
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Fig. 4. OSPA and OSPA(2) error of both filters for the Linear Scenario
averaged over 100 simulation runs.

Overall, both filters perform similarly well for both cases,
as can be seen in the cardinality plot in Fig. 3 and the OSPA
error plots in Fig. 4. At the latter, it is also obvious that the
estimation of the object state is also similar. In the case of
two sensors, the result of both filters is worse overall due
to the lower measurement information, which is consistent
with theory. However, the FPM-LMB filter sometimes tends
to overestimate the cardinality when tracks are born, while the
IC-LMB filter always tends to underestimate the cardinality in
this case. The overestimation of the FPM-LMB filter is caused
by the static birth model. This creates a track at each timestep
for all places of birth. Due to the slow velocity of the objects,
measurements can sometimes be meaningfully associated with
several tracks, especially close to the birth regions. Then, the
FPM-LMB filter can keep track of multiple concurrent tracks,
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Fig. 5. Cardinality estimation of the FPM-LMB filter and the IC-LMB
filter for the Linear Scenario with Severe Sensor Failure averaged over 100
simulation runs.
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Fig. 6. OSPA and OSPA(2) error of both filters for the Linear Scenario with
Severe Sensor Failure averaged over 100 simulation runs.

while only one prevails in the IC-LMB filter, in contrast. Thus,
the PM-LMB filter shows slightly more label switches using
the static birth model, which reflects in the minimally worse
OSPA(2) metric. Moreover, the FPM-LMB filter tends to detect
disappearing tracks little later than the IC-LMB filter.

C. Linear Scenario with Severe Sensor Failure

Now we want to investigate the behavior in case of several
sensor failures, e.g., caused by security attacks, a (temporary)
sensor failure, or a failure of the communication channel.
Therefore, in this scenario, two of the six sensors from the
linear scenario do not provide any detections in the period
44 < k < 56. For the IC-LMB filter, this corresponds to the
failure of the first two sensors in this time range. In addition,
to emphasize the different behavior of the two filters in this
case, a higher detection probability of pD = 0.9 was chosen
in this scenario. The results up to time step 44 are similar
to those of the linear scenario for the same arguments given
there. However, the differences between the filters are even
smaller here due to the higher detection probability.



TABLE I
COMPUTATION TIME SAVINGS OF THE FPM-LMB FILTER RELATIVE TO

THE IC-LMB FILTER

Scenario Two sensors Six sensors

Linear Scenario −22.33% −41.89%
Linear Scenario with Sensor Failure — −43.41%

Hence, we focus on the sensor failures in the following.
The cardinality plot in Fig. 5 shows the behavior of the filters
as expected in the introduction and Section III. Due to the
iterative update and pruning after each single-sensor update,
the IC-LMB filter tends to assume that tracks have already
disappeared or are not born at all. Therefore, it significantly
underestimates the cardinality from the beginning of the
sensors’ failure compared to the FPM-LMB filter. Due to the
static birth model, once deleted, tracks cannot reappear even if
there are matching measurements, which is why the cardinality
estimate remains worse even after the end of the sensor failure.
The FPM-LMB filter, on the other hand, shows the expected
robust behavior, since it considers all sensor measurements
simultaneously and does not make any premature decisions.
This behavior can also be seen in the plots of the OSPA and
OSPA(2) error in Fig. 6, which show a lower error for the
FPM-LMB filter from the moment the two sensors fail.

D. Computation Time

To show the efficiency of the fusion, the percentage devi-
ations of the calculation time of the IC-LMB filter compared
to the FPM-LMB filter are listed in Table I for both sim-
ulated scenarios. Both filters share the same code for birth,
prediction, update, and track extraction. The main difference
is in the update, which is iteratively executed by the IC-LMB
filter and parallelly calculated with subsequent fusion in the
FPM-LMB filter. In the latter case, the computation time of
the parallel sensor update is equal to the computation time of
the slowest single-sensor update, independent of the number
of sensors. We performed all simulations on an AMD Ryzen
7 3800X processor. The results in Table I show that our filter
outperforms the IC-LMB filter with respect to execution time.
For a higher number of sensors, this computing time saving
compared to the IC-LMB filter and, thus, efficiency gain even
increases.

V. CONCLUSION

In this paper, we derived the FPM-LMB filter that performs
similarly to the IC-LMB filter with respect to tracking results.
However, in more challenging scenarios with sensor failures,
the proposed FPM-LMB shows much higher robustness and
independence from sensor-order compared to the IC-LMB
filter. Furthermore, its update computation time is independent
of the number of sensors, which, together with the efficient
fusion, results in a lower computation time compared to
the IC-LMB filter. This has been demonstrated in detailed
evaluations. Moreover, the new filter offers the advantage
of a fusion of LMB densities using GMs, where mean and
covariance of the GM components correspond to the result of

the optimal multi-sensor GLMB update. At the same time, the
estimation of the existence probability is the same as in the
PU-LMB filter, so the FPM-LMB filter can be considered as
its extension. For easier application, we also provided details
for computationally efficient implementation.

In future work, we aim to extend our filter by dynamic birth
models to reduce label-switching. Finally, with these exten-
sions, we plan to evaluate the filter on real-world applications.
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