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Abstract 

In this study, we focus on the spread of COVID–19 on besides of vaccination of 

this disease. Total infected cases of COVID–19 have considered and model it 

by a light/heavy tailed auto–regressive model with innovations belong on the 

flexible class of the two-piece scale mixtures of normal (TP–SMN) family. Also 

considering the covariate variables which are indexed by time are considered 

in the model to more accuracy of modeling. An EM type algorithm has 

considered for finding the maximum likelihood estimations of the model 

parameters. Modelling and prediction of infected numbers of COVID–19 in the 

U.S. has considered and vaccinated numbers of COVID–19 is considered as 

auxiliary (covariate) in the model. 

 

Keywords: Auto–regressive model with covariate; COVID–19 vaccinated 

cases; ECME–algorithm; Infected numbers of COVID–19; ML estimates; Two–

piece scale mixtures of normal family; Vaccinated numbers of COVID–19. 

 

 

1. Introduction  

The rapid spread of the infectious COVID–19 disease has affected whole of the world, and 

preparation and confronting for the prevalence of COVID–19 diseases requires careful 

plans and operating. Some mathematically modeling of the spreading of COVID–19, have 

considered by several mathematician authors, which some of the recent researches are 

given as follows. The confirmed and recovered cases and also death rate of COVID–19 have 
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modeled and forecasted via using asymmetry time series by Maleki et al. [1,2]. The 

cumulative confirmed, recovered and deaths cases of COVID–19 cases for top–16 countries, 

have forecasted via using statistical machine learning models has done by ArunKumar et al. 

[3]. ArunKumar et al. [4] have used gated recurrent units and long short-term memory cells 

and forecast the COVID–19 using the deep layer recurrent neural networks. Lau et al. [5] 

considered SARIMA model on the infectious diseases. Kalantari [6] forecast the COVID–19 

using optimal singular spectrum analysis. Al-qaness et al. [7] forecast the COVID–19 in the 

Russia and Brazil, using efficient artificial intelligence forecasting models. Amruta et al. [8] 

have a study on the SARS–CoV–2 mediated neuro-inflammation and the impact of COVID–

19 in neurological disorders. Luo et al. [9] considered a novel based on traditional Richards 

model and its application in COVID–19. The interested reader can refer to [10-15] to see 

some recent papers published on the COVID–19. 

Time series are useful statistical model to forecast and control the datasets which are 

gathered by time. We can also use some flexible family of distributions with light/heavy 

tails and symmetry/asymmetry behaviors in the structure of the time series models which 

can be more expedient for datasets with outliers or/and skewed behavior, (see [16-24]). In 

this paper we consider a wide class of distributions in the structure of Auto–Regressive 

model with covariate, which is known as two-piece scale mixtures of normal (TP–SMN) 

family of distributions. The useful TP–SMN distributions were introduced by the authors of 

[25,26] and have used in the several statistical models to show the flexibility and 

performances of the family (see [27-30]).  

Using auxiliary (covariate) on the statistical models we can improve the obtained 

results, especially in time series models. One of the main application of the time series 

modelling related to the COVID–19 is to single out the role plaid by the variables of COVID–

19 indexed by time, for example by modelling and forecasting of the number of daily 

confirmed cases.  Obviously by increasing the daily number of vaccination it will effect on 

the daily number of confirmed cases, thus expecting an extensively decay on the confirmed 

cases in the near future. We will model the infected numbers of COVID–19 by a robust time 

series models with vaccinated numbers of COVID–19 as a covariate. We have shown in the 

application section of the work that by using this covariate improves the modelling and 

predictions. 
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The paper is set as follows. Some required aspects of the TP–SMN distributions are 

provided in Section 2. The TP–SMN Auto–Regressive (AR) model with time indexed 

covariate is given in Section 3. In Section 4, the proposed model is fitted on the infected 

numbers of COVID–19 in the U.S. with vaccinated numbers of COVID–19 covariate. Finally 

in in Section 5, some conclusions of the work are provided.   

 

2. The TP–SMN distributions  

Herein, we briefly review main features of the TP–SMN distributions.   

Let random variable 𝑋 has renown SMN distributions given in [31] denoted by 

𝑋 ~ 𝑆𝑀𝑁 (𝜇, 𝜎, 𝝂). Then 𝑋 possesses the probability density function (PDF) given by,  

𝑓𝑆𝑀𝑁(𝑥|𝜇, 𝜎, 𝝂) = ∫ 𝜙(𝑥|𝜇, 𝑢−1𝜎2)
∞

0

𝑑𝐻(𝑢|𝝂),    𝑥 ∈ ℝ,                                  (1) 

in which 𝜙(⋅ |𝜇, 𝜎2) is the density of 𝑁(𝜇, 𝜎2) distribution, 𝐻(⋅ |𝝂) indicates the cumulative 

distribution function (CDF) related to the scale mixing variable 𝑢 for each TP–SMN 

members which indexed by the parameters 𝝂.  

The applicable TP–SMN family is defined via the SMN family, which involves 

asymmetric light–tailed two–piece–normal (TP–N), and asymmetric heavy–tailed two–

piece–t (TP–T), two–piece–slash (TP–SL) and two–piece–contaminated–normal (TP–CN) 

distributions and also covers their symmetrically forms. A random variable 𝑌 distributed 

with TP–SMN distributions denoted by  𝑌 ~  𝑇𝑃– 𝑆𝑀𝑁 (𝜇, 𝜎, 𝝂, 𝛾) with the PDF  

 g(𝑦|𝜇, 𝜎, 𝛾, 𝝂) = {
2(1 − 𝛾) 𝑓𝑆𝑀𝑁(𝑦|𝜇, 𝜎(1 − 𝛾) , 𝝂) ,    𝑦 ≤ 𝜇,

 
2𝛾 𝑓𝑆𝑀𝑁(𝑦|𝜇, 𝜎𝛾, 𝝂) ,                             𝑦 > 𝜇,

                                 (2) 

where 0 < 𝛾 < 1 is the skewness parameter, 𝑓𝑆𝑀𝑁(⋅ |𝜇, 𝜎, 𝝂) is the SMN PDF given in (1).  

Mean and variance of  𝑌 ~  𝑇𝑃– 𝑆𝑀𝑁 (𝜇, 𝜎, 𝝂, 𝛾) are 𝐸(𝑌) = 𝜇 − 𝑏𝜎(1 − 2𝛾) and 

Var(𝑌) = 𝜎2[𝑐2𝑘2 − 𝑏2𝑐1
2], respectively, where 𝑏 = √2 𝜋⁄ 𝑘1, 𝑐𝑟 = 𝛾𝑟+1 + (−1)𝑟(1 − 𝛾)𝑟+1 

and 𝑘𝑟 is given in Table 1. It is noteworthy that for 𝛾 = 0.5, the well-known SMN family 

(which is symmetric) has extracted from the TP–SMN family. 
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Table 1.  Some main TP–SMN distributions. 

Distributions  𝑓𝑆𝑀𝑁(⋅),   𝑦 ∈ ℝ 𝑘𝑟 

TP–N 𝜙(𝑦; 𝜇, 𝜎2) --- 

TP–T 
Γ(

𝜈+1

2
)

Γ(
𝜈

2
)√𝜋𝜈𝜎

(1 +
𝑑

𝜈
)

− 
𝜈+1

2
;  𝝂 = 𝜈  (

𝜈

2
)

𝑟 2⁄ Γ (
𝜈 − 𝑟

2
)

Γ (
𝜈
2

)
, 𝜈 > 𝑟 

TP–SL 𝜈 ∫ 𝑢𝜈−1𝜙(𝑦; 𝜇, 𝑢−1𝜎2)
1

0
d𝑢;  𝝂 = 𝜈  

2𝜈

2𝜈 − 𝑟
, 𝜈 >

𝑟

2
 

TP–CN 𝜈𝜙(𝑦; 𝜇, 𝜏−1𝜎2) + (1 − 𝜈)𝜙(𝑦; 𝜇, 𝜎2);  𝝂 = (𝜈, 𝜏)⊤  
𝜈

𝜏𝑟 2⁄
+ 1 −  𝜈 

 

A key feature of using the well-known algorithm to estimate the statistical models 

using the TP–SMN distributions is that we can utilize the TP–SMN distributions in the form 

mixture distribution with two–components and distinct supports in (3). So let 

𝑌 ~  𝑇𝑃– 𝑆𝑀𝑁 (𝜇, 𝜎, 𝝂, 𝛾), then the PDF given in (2) is represented as:  

g(𝑦|𝜇, 𝜎1, 𝜎2, 𝝂) = 2𝜋𝑓𝑆𝑀𝑁(𝑦|𝜇, 𝜎1, 𝝂)𝐼(−∞,𝜇](𝑦) + 2(1 − 𝜋)𝑓𝑆𝑀𝑁(𝑦|𝜇, 𝜎2, 𝝂)𝐼(𝜇,+∞)(𝑦),     (3) 

where 𝜋 =
𝜎1

𝜎1+𝜎2
, 𝜎1 = 𝜎(1 − 𝛾) and 𝜎2 = 𝜎𝛾, and the parameters 𝜎  and 𝛾 (respectively 

scale and slant) in (2) are meliorated as 𝜎 = 𝜎1 + 𝜎2 and 𝛾 = 𝜎2 (𝜎1 + 𝜎2)⁄ . 

By employing the latent variables 𝑍𝑗; 𝑗 = 1,2, in terms of the mixture components (3), 

the proposed TP–SMN variable 𝑌 can be represented in the stochastic form  

{
𝑌|𝑍1 = 1 ~ 𝑆𝑀𝑁(𝜇, 𝜎1, 𝝂)𝐼𝑇(𝑦𝑖),    

 
𝑌|𝑍2 = 1 ~ 𝑆𝑀𝑁(𝜇, 𝜎2, 𝝂)𝐼𝑇𝑐(𝑦𝑖),   

                                                     (4) 

where 𝑇 = (−∞, 𝜇) and 𝑆𝑀𝑁(⋅)𝐼𝑇(⋅) denotes the SMN–distributions which are truncated 

on the interval 𝑇, and the random vector 𝒁 = (𝑍1, 𝑍2)⊤ with the probability mass function 

(PMF) given by: 

𝑃(𝒁 = 𝒛) = 𝜋𝑧1(1 − 𝜋)𝑧2;    𝑧1, 𝑧2 = 0,1,                                             (5) 
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and is denoted by  𝒁 ~ 𝑀(1, 𝜋, 1 − 𝜋). Note that each component-label variable 𝑍𝑖 , 𝑖 = 1,2 

has also a Bernoulli distribution and 𝑍1 + 𝑍2 = 1. 

3. TP–SMN Auto–Regressive with covariates model  

The Auto–Regressive model with covariates and order 𝑝 based on the TP–SMN innovations, 

indicated using TP–SMN–ARX(𝑝) model via intercept is considered and expressed by  

𝑌𝑡 = 𝜇 + ∑ 𝛼𝑗𝑌𝑡−𝑗

𝑝

𝑗=1

+ ∑ 𝛽𝑘𝑋𝑘𝑡

𝑚

𝑘=1

+ 𝜀𝑡,   𝑡 = 0, ±1, ±2, …,                                (6) 

where 𝜶 = (𝛼1, … , 𝛼𝑝)
⊤

 and 𝜷 = (𝛽1, … , 𝛽𝑚)⊤ are respectively the Auto–Regressive and 

covariates coefficients vectors,  and {𝜀𝑡} is a i.i.d. noises distributed sequence as  

𝜀𝑡 

 
𝑖𝑖𝑑
~
 

 𝑇𝑃 –  𝑆𝑀𝑁 (0, 𝜎, 𝝂, 𝛾),   𝑡 = 0, ±1, ±2, … .                                (7) 

Considering the ARX model (6) with parameters 𝚯 = (𝜶, 𝜷, 𝜇, 𝜎1, 𝜎2, 𝝂)⊤, to have a more 

appropriate form, the model can be represented by 𝑌𝑡 = 𝜇 + 𝜶⊤𝒀𝑡−1 + 𝜷⊤𝑿𝑡 + 𝜀𝑡, for which 

𝒀𝑡−1 = (𝑌𝑡−1, … , 𝑌𝑡−𝑝)
⊤

, 𝑿𝑡 = (𝑋1𝑡, … , 𝑋𝑚𝑡)⊤ and 𝒀 = (𝑌−𝑝+1, … , 𝑌0, 𝑌1, … , 𝑌𝑛 , 𝑿1
⊤, … , 𝑿𝑛

⊤)
⊤

 as 

the sample vector.  

Considering the non–stochastic part 𝑌−𝑝+1, … , 𝑌0 of the sample 𝒀, the (conditional) 

likelihood function related to the TP–SMN–ARX(𝑝) model is given by 

ℓ(𝚯|𝒀, 𝑿) = ∑ log g𝑌𝑡|𝒀𝑡−1= 𝒚𝑡−1,𝑿𝑡=𝒙𝑡
(𝑦𝑡|𝜶⊤𝒚𝑡−1 + 𝜷⊤𝒙𝑡 + 𝜇, 𝜎1, 𝜎2, 𝝂)

𝑛

𝑡=1

.            (8) 

Because of complexities of the SMN–densities (1), finding the ML estimates related to 

the TP–SMN–ARX(𝑝) model parameters via (8) are difficult process. But considering an 

appropriate hierarchically representation of the TP–SMN distributions on besides of the 

established ARX model, obtaining the ML estimates of parameters can be desired by an EM–

type scheme at the follows. 

Consider the complete data 𝑫 = (𝒀⊤, 𝑿⊤, 𝑼⊤)⊤, with observed part of the data 

(𝒀⊤, 𝑿⊤)⊤ and  missing (latent) part of the data 𝑼 = (𝑈1, … , 𝑈𝑛)⊤ and 𝒁𝑡 = (𝑍𝑡1, 𝑍𝑡2)⊤;  𝑡 =

1,2, … , 𝑛. Then, regarding to the mixture representation (4), the PMF in (5) and the well-
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known stochastic representation of SMN distributions in Andrews and Mallows [31], the 

TP–SMN–ARX model using (6) can be represented in the hierarchically manner  

𝑌𝑡|𝒀𝑡−1 =  𝒚𝑡−1, , 𝑿𝑡 = 𝒙𝑡, 𝑈𝑡 = 𝑢𝑡 , 𝑍𝑡𝑖 = 1 

 
 𝑖𝑛𝑑.
~
 

  𝑁(𝜶⊤𝒚𝑡−1 + 𝜷⊤𝒙𝑡 + 𝜇, 𝑢𝑡
−1𝜎𝑖

2 )𝐼𝑇𝑡
(𝑦𝑡)2−𝑖𝐼𝑇𝑡

𝑐(𝑦𝑡)𝑖−1, 

𝑈𝑡|𝑍𝑡𝑖 = 1 

 
 𝑖𝑛𝑑.
~
 

  𝐻(𝑢𝑡 
|𝝂),                                               

𝒁𝑡 

 
 𝑖𝑖𝑑.
~
 

  𝑀(1, 𝜋, 1 − 𝜋),                                                                                                                                 (9) 

where 𝑖 = 1,2, 𝑇𝑡 = (−∞, 𝜶⊤𝒚𝑡−1 + 𝜷⊤𝒙𝑡 + 𝜇) for 𝑡 = 1,2, … , 𝑛 and 𝑁(⋅)𝐼𝑇(⋅) is the normal 

distribution truncated on the domain 𝑇. 

An ECME algorithm generated by Liu and Rubin [32] and the hierarchical form of the 

TP–SMN–ARX model in (9) is utilized in to extract the ML estimates of the parameters.  

Regarding the hierarchical form (9), conclude the conditional completed log–likelihood 

function attributed to the TP–SMN–ARX(p) model given by 

ℓ(𝚯) = −𝑛 log(𝜎1 + 𝜎2) −
1

2
∑ ∑ 𝑊𝑡𝑖 (

𝑌𝑡−𝜶⊤𝒀𝑡−1−𝜷⊤𝑿𝑡−𝜇

𝜎𝑖
)

2
2
𝑖=1

𝑛
𝑡=1 + ∑ ∑ 𝑍𝑡𝑖 log ℎ(𝑈𝑡|𝝂)2

𝑖=1
𝑛
𝑡=1 ,  

where 𝚯 = (𝜶⊤, 𝜷⊤, 𝜇, 𝜎1, 𝜎2, 𝝂)⊤ and 𝑊𝑡𝑖 = 𝑈𝑡𝑍𝑡𝑖  for  𝑡 = 1,2, … , 𝑛 and   𝑖 = 1,2. Defining the 

quantities �̂�𝑡𝑖 =  𝐸[𝑍𝑡𝑖|�̂�, 𝒀, 𝑿] and �̂�𝑡𝑖 = 𝐸[𝑈𝑡𝑍𝑡𝑖|�̂�, 𝒀, 𝑿], and according to the properties of 

the conditional expectation,  �̂�𝑡𝑖 = �̂�𝑡𝑖�̂�𝑡𝑖  is obtained where �̂�𝑡1 = 𝐼(−∞,�̂�⊤𝒚𝑡−1+�̂�⊤𝒙𝑡+�̂�](𝑦𝑡) for 

�̂�𝑡2 = 1 − �̂�𝑡1 and �̂�𝑡𝑖 = 𝐸[𝑈𝑡|�̂�, 𝑦𝑡, 𝑥𝑡, 𝑍𝑡𝑖 = 1] for the TP-SMN-ARX members, are 

considered by 

• TP–N–ARX model:     �̂�𝑡𝑖 = 1,                                               

• TP–T–ARX model:     �̂�𝑡𝑖 =
�̂�+1

�̂�+𝑑𝑡𝑖
,                                       

• TP–SL–ARX model:   �̂�𝑡𝑖 =
2�̂�+1

𝑑𝑡𝑖

𝑃1(�̂�+3 2⁄ ,𝑑𝑡𝑖 2⁄ )

𝑃1(�̂�+1 2⁄ ,𝑑𝑡𝑖 2⁄ )
,    

• TP–CN–ARX model:  �̂�𝑡𝑖 =
�̂�

2�̂�𝑒−�̂�𝑑𝑡𝑖 2⁄ +(1−�̂�)𝑒−𝑑𝑡𝑖 2⁄

�̂��̂�𝑒−�̂�𝑑𝑡𝑖 2⁄ +(1−�̂�)𝑒−𝑑𝑡𝑖 2⁄ , 

where 𝑑𝑡𝑖 = (
𝑦𝑡−�̂�⊤𝒚𝑡−1−�̂�⊤𝒙𝑡−�̂�

�̂�𝑖
)

2

 and 𝑃𝑥(𝑎, 𝑏) denotes the evaluated cumulative distribution 

function (CDF) of the Gamma(𝑎, 𝑏) distribution at point 𝑥. 
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Determination of Q–function as of 𝑄(𝚯|�̂�(𝑘)) = 𝐸𝜽[ℓ(𝚯)|�̂�(𝑘), 𝒀, 𝑿] is the E–Step of the 

ECME–algorithm on the (𝑘 + 1)th algorithm’s iteration as  

 

𝑄(𝚯|�̂�(𝑘)) = −𝑛 log(𝜎1 + 𝜎2) −
1

2
∑ ∑ �̂�𝑡𝑖

(𝑘)
(

𝑌𝑡 − 𝜶⊤𝒀𝑡−1 − 𝜷⊤𝑿𝑡 − 𝜇

𝜎𝑖
)

22

𝑖=1

𝑛

𝑡=1

+ ∑ ∑ 𝐸[𝑍𝑡𝑖 log ℎ(𝑈𝑡|𝝂)|�̂�(𝑘), 𝒀, 𝑿]

2

𝑗=1

𝑛

𝑖=1

, 

where �̂�𝑡𝑖
(𝑘)

= 𝐸[𝑈𝑡𝑍𝑡𝑖|�̂�(𝑘), 𝒀, 𝑿] = �̂�𝑡𝑖
(𝑘)

�̂�𝑡𝑖
(𝑘)

 and hereafter consider  �̂�𝑡
(𝑘)

= ∑ �̂�𝑡𝑖
(𝑘)

𝜎𝑖
2(𝑘)

⁄2
𝑖=1 . 

Conditional maximizations of the ECME–algorithm on the (k + 1)th algorithm’s 

iteration as follows: 

CM–step of the algorithm for coefficients: 

�̂�(𝑘+1) = (∑ �̂�𝑡
(𝑘)

𝒀𝑡−1𝒀𝑡−1
⊤

𝑛

𝑡=1

)

−1

∑ �̂�𝑡
(𝑘)

(𝑌𝑡 − �̂�⊤(𝑘)𝑿𝑡 − �̂�(𝑘))𝒀𝑡−1

𝑛

𝑡=1

,                                        

�̂�(𝑘+1) = (∑ �̂�𝑡
(𝑘)

𝑿𝑡𝑿𝑡
⊤

𝑛

𝑡=1

)

−1

∑ �̂�𝑡
(𝑘)

(𝑌𝑡 − �̂�⊤(𝑘+1)𝒀𝑡−1 − �̂�(𝑘))𝑿𝑡

𝑛

𝑡=1

,                                           

CM–step of the algorithm for intercept (location parameter): 

�̂�
(𝑘+1)

=
∑ �̂�𝑡

(𝑘)
(𝑌𝑡 − �̂�⊤(𝑘+1)𝒀𝑡−1 − �̂�⊤(𝑘+1)𝑿𝑡)𝑛

𝑡=1

∑ �̂�𝑡
(𝑘)𝑛

𝑡=1

.                                                                     

CM–step of the algorithm for scale parameters: 

Solving the stressed cubic equations 𝜎𝑖
3 + 𝑝𝜎𝑖 + 𝑞 = 0, conclude the update 

�̂�𝑖
(𝑘+1)

 for 𝑖 = 1,2, where 𝑝 = −
1

𝑛
∑ �̂�𝑡𝑖

(𝑘)
(𝑋𝑡 − �̂�⊤(𝑘+1)𝒀𝑡−1 − �̂�⊤(𝑘+1)𝑿𝑡 − �̂�(𝑘+1))

2𝑛
𝑡=1 , for 

which 𝑞 = 𝑝𝜎2
 𝐼(𝑖=1) + 𝑝𝜎1

 𝐼(𝑖=2). It is noteworthy that 𝑝 < 0 implies 𝑞 < 0, therefor the 

proposed cubic equation possesses a positive unique just root. 

CML–step of the algorithm for scale mixing parameters:  
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𝝂(𝑘+1) = argmax𝝂ℓ (�̂�⊤(𝑘+1), �̂�⊤(𝑘+1), �̂�
(𝑘+1)

, �̂�1
(𝑘+1)

, �̂�2
(𝑘+1)

, 𝝂|𝒀, 𝑿),                                     

where the log-likelihood function ℓ(⋅|𝒀, 𝑿) is in (8).   

A sufficient convergence rule for the algorithm iterates is satisfied when 

|ℓ(�̂�(𝑘+1)|𝒀, 𝑿) ℓ(�̂�(𝑘)|𝒀, 𝑿)⁄ − 1| ≤ 𝜀, for the known values of the  tolerance 𝜀. In the work 

we employed 𝜀 = 10−2, while choosing the tolerance values may vary in other statistical 

models. 

4. Application 

This section investigates the infected numbers of COVID–19 since 19–Jan–2021 to 27–

Mar–2021 related to the U.S. (see Fig 1) and vaccinated numbers of COVID–19 in there and 

in the corresponding time (see Fig 2), and fit the TP–SMN–ARX  to the proposed datasets. 

After some suitable transformations in Brockwell and Davis [33], the stationary data 

which are ready to modeling are obtained and plotted in Fig 3. Using some model selection 

criteria and considering the PACF (partial auto-correlation function) diagram, shown in Fig 

4 conclude that the best TP–T–ARX(5) model was fitted to the stationary series of the 

infected numbers of COVID–19 in the form of 

TP–SMN–ARX model: 

𝑌𝑡 = −9139.5940 − 0.6390 𝑌𝑡−1 − 0.4393 𝑌𝑡−2 − 0.4123 𝑌𝑡−3 − 0.4340 𝑌𝑡−4 − 0.3338 𝑌𝑡−5

+ 0.0029 𝑋𝑡 + 𝜀𝑡,  

where  𝜀𝑡  ~  𝑇𝑃– 𝑇(0, 𝜎 = 23211.9000, 𝛾 = 0.5582, 𝜈 = 3.0939). 

Gaussian–ARX model: 

𝑌𝑡 = −1995.2399 − 0.6627 𝑌𝑡−1 − 0.3799 𝑌𝑡−2 − 0.3730 𝑌𝑡−3 − 0.3878 𝑌𝑡−4 − 0.2617 𝑌𝑡−5

+ 0.0036 𝑋𝑡 + 𝜀𝑡,  

where  𝜀𝑡  ~  𝑁(0, 𝜎 = 17888.5400). 
 

According to log-likelihood and Akaike information criterion (AIC) criteria, which are 

recorded in Table 2, the TP–T–ARX model is more reasonable than ordinary Gaussian–ARX 

model. The ACF (auto–correlation function) diagram of estimated innovations (residuals) is 

shown in Fig. 5 (Left), and also the histogram of estimated innovations for which the 
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estimated heavy–tailed TP–T density is superimposed on it, is given in Fig. 5 (Right). Fig. 5 

shows some reasonability of the proposed estimated model to the stationary series of 

infected numbers of COVID–19 related to the U.S.  

 
Fig 1. Infected numbers of COVID-19 plot related to U.S. since 19-Jan to 27-Mar in 2021. 

Infected numbers of COVID-19 in the U.S.
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Fig 2. Vaccinated numbers of COVID-19 plot related to U.S. since 19-Jan to 27-Mar in 2021. 

 
Fig 3. Differenced transform the infected numbers of COVID-19 plot. 
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Fig 4. PACF of the differenced data (stationary). 

To investigate the suitability and goodness of fit tests for the proposed fitted TP–SMN–

ARX model, P–values of the Box–Pierce and Ljung–Box tests on the estimated innovations 

are recorded in Table2. Note that the large P–values (near to one) of the proposed tests on 

the estimated innovations of TP–T–ARX model, demonstrate the reasonability proposed 

fitted TP–SMN–ARX model. Also comparing the corresponding P–values of the proposed 

tests on the ordinary Gaussian–ARX model, show the better performances of the TP–SMN–

ARX model (see Table 2). 

Table 2. P-values of the Box–Pierce and Ljung–Box tests on the residuals of the TP–SMN–ARX and ordinary Gaussian–
ARX  models. 

Model TP–T–ARX Gaussian–ARX 

Log-likelihood -664.5078 -729.1800 

AIC 1350.0790 1474.3600 

Test Box–Pierce Ljung–Box Box–Pierce Ljung–Box 

P–values 0.9882 0.9625 0.9613 0.8821 
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Fig 5. Sample ACF diagram of the estimated innovations of the fitted model (Left) Histogram of the estimated 

innovations of the fitted model via superimposed estimated TP-T density (Right). 

 

To shoe further reasonability of the fitted model, we predicted the 10 data of the 

infected cases (2021-Mar-15 up to 2021-Mar-24), then fitted the TP–SMN–ARX models on 

them and forecast these data. Table 3 contains the predictions with and without covariate 

and 95% confidence intervals for them. Also Fig. 6, show the forecasted values based on the 

modelling with and without covariate which superimposed the diagram of the real values 

of infected numbers of COVID-19 related to U.S. Percent Relative Prediction Error (PRPE) 

of the predicted values via the model with covariate is 0.0762 % while is 0.1469 % for the 

model without covariate. So the results and Fig. 6 shows the importance of the covariate 

(considering the vaccination) on the modelling and predictions of the infected cases.  

 

Table 3. Real values of the infected numbers of COVID-19 related to the U.S. since 2021-Mar-15 to 2021-Mar-24 with and 
without vaccinated numbers covariate and predictions with 95% confidence interval. 

COVID-19 in 
the U.S. Date Real value 

Prediction 
without 

covariate 

Prediction 
with   

covariate 
     Lower C.I. Upper C.I. 

infected 
cases 

2021-03-15 30181273 30154131 30175035 30148628 30214710 

2021-03-16 30234911 30219435 30222759 30184850 30263368 

2021-03-17 30298419 30256412 30285499 30248798 30324452 

2021-03-18 30361971 30338946 30355790 30318956 30394125 
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2021-03-19 30487505 30415297 30414364 30341297 30492385 

2021-03-20 30534590 30648341 30593349 30537136 30672910 

2021-03-21 30581123 30541449 30596553 30547796 30659999 

2021-03-22 30641164 30581496 30621390 30582911 30663694 

2021-03-23 30708302 30672908 30686643 30649897 30727696 

2021-03-24 30776056 30756192 30769650 30703639 30810684 

 

5. Conclusion 

Coronaviruses are a wide category that affects gastrointestinal, hepatic, neurological 

and respiratory systems. Extended vaccination might reduce the prevalence of COVID–19 

diseases. In our methodology, by considering a robust class of time series models with 

covariate, to model the infected numbers of COVID–19 in the U.S. with the vaccinated 

COVID–19 cases as the covariate. Performances of the proposed fitted model show that it 

would be better considering the vaccinated numbers of COVID–19 as the covariate, to 

predict infected numbers of COVID–19. Also there exist other desirable results that can be 

obtained by the model described in this paper, for example mobility data (indexed by time, 

for example in the daily form) can be a covariate to better modelling and prediction of the 

death rate of COVID–19. The free source R software [34] version 4.0.5 with a core i7 760 

processor 2.8 GHz is used to implements the algorithms.  
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Fig 6. The experimental values and predicted infected numbers of COVID-19 related to the U.S. time series plots since 

2021-Mar-15 up to 2021-Mar-24 with and without vaccinated numbers covariate. 
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