
EasyChair Preprint

№ 723

EASIER: Evolutionary Approach for

multi-objective Software archItecturE Refactoring

Davide Arcelli, Vittorio Cortellessa, Mattia D’Emidio and
Daniele Di Pompeo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 12, 2019

EASIER: an Evolutionary Approach for multi-objective
Software archItecturE Refactoring

Davide Arcelli, Vittorio Cortellessa, Mattia D’Emidio, Daniele Di Pompeo
University of L’Aquila, Italy

{davide.arcelli, vittorio.cortellessa, mattia.demidio}@univaq.it

daniele.dipompeo@graduate.univaq.it

Abstract—Multi-objective optimization has demonstrated, in
the last few years, to be an effective paradigm to tackle different
architectural problems, such as service selection, composition
and deployment. In particular, multi-objective approaches for
searching architectural configurations that optimize quality
properties (such as performance, reliability and cost) have been
introduced in the last decade. However, a relevant amount of
complexity is introduced in this context when performance are
considered, often due to expensive iterative generation of per-
formance models and interpretation of results. In this paper we
introduce EASIER (Evolutionary Approach for multi-objective
Software archItecturE Refactoring), that is an approach for
optimizing architecture refactoring based on performance and
on the intensity of changes. We focus on the actionable aspects
of architectural optimization, instead of merely searching over
a set of alternatives. We also start to investigate on the potential
influence of performance antipatterns on such process. We
have implemented our approach on Æmilia ADL, so to carry
out performance analysis and architecture refactoring within
the same environment. We demonstrate the effectiveness and
applicability of our approach through its experimentation on
a case study.

I. INTRODUCTION

Since more than one decade multi-objective optimization
has been applied to several software architecture prob-
lems, and it has demonstrated to be a particularly effective
paradigm on problems that can be natively formulated
through quantifiable metrics. The optimization of quality
attributes nicely fits into this category of problems, because
these attributes (such as performance, reliability, usability)
are meaningful only if expressed through well-defined met-
rics [1]. In fact, the ability of software engineers to satisfy
quality requirements depends on the possibility of comparing
metric values to these requirements.

With regard to architecture quality attributes, the evalua-
tion of performance metrics is a particularly complex pro-
cess, because they emerge from the combination of several
software characteristics, i.e., static, dynamic, deployment
and - in some cases - environmental ones. Beside this,
very few ADLs embed constructs to specify performance

This research was supported by the Electronic Component Systems for
European Leadership Joint Undertaking through the MegaMart2 project
(grant agreement No 737494).

parameters, and even fewer ones provide tools to natively
analyze performance within the same ADL environment. In
most cases, instead, performance models are expressed in
different stochastic notations (like Queueing Networks or
Petri Nets), thus they have to be generated from architectural
specifications through model transformations [2].

Several multi-objective approaches have been introduced,
in the last decade, to optimize the performance of a software
architecture along with other quality attributes, such as
reliability and cost [3], [4]. Many of such approaches are
based on evolutionary algorithms [5] that allow to search
the solution space by (re-)combining solutions.

A common character of these approaches is that they
search among architectural alternatives, without considering
the operational aspects induced by architectural refactoring.
Instead, with software architecture gaining relevance across
the whole lifecycle (even after software release), the path of
architectural refactoring assumes a high relevance that we
aim at considering in this paper.

We here introduce EASIER, that is an Evolutionary
Approach for Software archItecturE Refactoring, aimed at
optimizing metrics related to the performance and to the
distance from the initial architecture. EASIER deals with
genomes that represent sequences of refactoring actions
aimed at leading to optimal architectural alternatives from
an initial one. Moreover, we introduce in this context the
knowledge dwelling in performance antipatterns [6] for
supporting the search process. Performance antipatterns are,
in fact, well-known bad practices that induce performance
degradation. As an initial study in this direction, we intend to
observe whether their introduction could improve the search
process.

Fig. 1 illustrates the EASIER high-level architecture.
The EASIER core is represented by a custom NSGA-II
algorithm [7], namely customNSGAII, that takes as input
an initial software architecture and searches the architectural
space by (re-)combining refactoring actions extracted from
a repository, i.e., the Refactoring Actions Library in Fig.
1. The search process is driven by three main objectives
codified in a fitness function, that are a performance quality
indicator, the architectural distance (that will be expressed

as a measure of the intensity of changes induced by refac-
toring actions), and the number of performance antipatterns
occurring in the software architecture.

Figure 1: The EASIER high-level architecture.

It is important to distinguish here between quality at-
tributes that can be represented by analytical models (e.g., ar-
chitectural cost) and the ones that claim for complex models
to be solved in order to achieve an adequate accuracy with
respect to architectural details (e.g., resource contention-
based performance indices). In our case, an analytical model
underlies the architectural distance, while a Performance
Analyzer is devised (see the bottom of Fig. 1) to analyze
the performance and detect performance antipatterns within
the architecture.

EASIER produces sequences of refactoring actions that
induce, as output, in the form of a Pareto frontier, according
to its evolutionary paradigm. The latter is made of the
architectural alternatives generated by those sequences that
lead to non-dominated solutions.

The EASIER low-level architecture has been designed to
apply our evolutionary algorithm to software architectures
described in different ADLs. In Section III we specify the
entry points left in EASIER for this goal, even though it
is out of this paper scope to evaluate the effort needed for
plugging new ADLs within EASIER. In this paper we have
chosen Æmilia as our ADL context [8], mostly because
the Æmilia context natively enables performance analysis
within its own environment, without the need of generating
performance models in different notations. We have also
exploited an existing approach for performance antipattern
detection in Æmilia [9].

The paper is organized as follows: Section II presents the
related work, Section III illustrates our approach, Section IV
shows its validation on a case study, and Section V concludes
the paper.

II. RELATED WORK

With the continuous evolution of software systems even
after release, automation in software refactoring has become
a critical need along the whole development process [10].
In fact, many studies have been conducted in the context of
model-based software refactoring (see, e.g. [11]–[13]).

However, finding the best sequence of refactoring actions
to be applied to a software artifact, in order to optimize
its quality w.r.t. to a set of metrics (a.k.a. objectives), is
a problem known to be computationally hard, due to the
typically huge space of feasible solutions [14]. Hence, its
exhaustive solution can require large computational time
even for small-sized software artifacts. One way of ad-
dressing this issue consists in formulating the problem as
a search-based problem and tackling it via meta–heuristics
(e.g. evolutionary algorithms) that are able to compute sets
of refactoring actions that are optimal in a Pareto sense.
To this regard, a number of studies have demonstrated the
effectiveness of this strategy [15]–[18].

Several evolutionary algorithms have been introduced, in
the last decade, for software architecture multi-objective
optimization with respect to various quality attributes (e.g.,
reliability, performance or energy [3], [19]–[21]) and with
different degrees of freedom to modify the architecture (e.g.,
service selection, composition or deployment [22], [23]. A
systematic literature review on architecture optimization can
be found in [1].

An interesting contribution in this direction was given
in [3], [24], where an evolutionary algorithm for architec-
ture optimization is guided by tactics, which are common
practices applied by experienced software engineers when
designing an architecture (e.g., fast pathing, caching). Out
of a dozen of defined tactics, the authors have implemented
three of them to observe their impact on the search al-
gorithm. However, they refer to component reallocation,
faster hardware and more hardware, so they do not represent
structured refactoring actions, as we intend to do in this
paper. Moreover, their approach starts from an architecture
specified in Palladio Component Model [25] and produces,
through model transformation, a Layered Queueing Network
for sake of performance analysis. Instead, our approach
works entirely within the Æmilia ADL environment, hence
it is not subject to changes of notation that may induce
inaccuracies into the performance model.

Another relevant approach has been introduced in [26],
where architectural patterns are used to support the searching
process (e.g., load balancing, fault tolerance). The authors
introduce a whole framework for architectural design and
quality optimization. This approach suffers of two limita-
tions, that are: the architecture has to be designed in a tool-
related notation and not in a common ADL (as we do in
this paper), and it uses equation-based analytical models
for performance indices that could be too simple to capture

architectural details and resource contention.
An approach taking place in a unique environment for

modeling and analysis has appeared in [4]. A tool is intro-
duced, based on AADL [27], aimed at optimizing different
quality attributes while varying the architecture deployment
and the component redundancy. Our paper works on a dif-
ferent ADL, that is Æmilia, and it introduces more complex
refactoring actions, as well as different target attributes for
the fitness function. In addition, we investigate the role of
performance antipatterns in this context.

Hence, the major novelties of EASIER, with respect to
the existing literature, are that: (i) it works within a unique
environment for architectural modeling and analysis (i.e.,
Æmilia), (ii) it defines novel degrees of freedom aimed at
representing the operational aspects of architectural refactor-
ing, (iii) it introduces new attributes for the fitness function,
that are a performance quality indicator and an architectural
distance metrics, (iv) it starts to investigate the role of
performance antipatterns in this context, and (v) it has been
conceived to host different ADLs.

III. THE EASIER ARCHITECTURE

In this section, we describe the low-level architecture
of EASIER that is schematically illustrated in Fig. 2. The
figure is vertically divided in two swimlanes. On the left, we
report the evolutionary context of the approach, while on the
right we report the ADL context. Fig. 2 is also horizontally
divided in two major swimlanes, i.e. Data and Process. Data
are, in turn, partitioned in: metadata on which architecture
refactoring and algorithm solution are founded, and files and
libraries (i.e. knowledge) directly feeding the process.

A. Evolutionary context

The bottom left side of Fig. 2 illustrates the EASIER
core, that is a multi-objective evolutionary algorithm, namely
customNSGAII. It essentially consists in a customization
of the well-known NSGA-II algorithm [7], which has been
developed to properly take into account the specific nature
of the optimization problem we deal with. In particular,
we adopted JMetal as a building block, which is a well
established object–oriented Java-based framework for multi-
objective optimization with metaheuristics [28] that com-
prises a basic implementation of the NSGA-II algorithm.
The latter has been selected due to its wide adoption in the
software engineering community [29], and to its extension
capabilities. We have also been able to use some of the
available features as they were, in particular the represen-
tation/storage of objectives and solutions, as well as their
manipulation, and the selection operator [7].

Notwithstanding the reused JMetal features, the context
of our optimization problem required to heavily customize
parts of the baseline framework, by tailoring some interfaces
exposed by the latter, as detailed in the following. Before
describing the algorithm and the NSGA-II customizations

introduced in EASIER, however, we describe the main data
which customNSGAII relies on, shown in the top left side
of Fig. 2.

1) Data: customNSGAII exploits the concept of
Solution, which contains the representation of a
genome as a Refactoring that is a sequence of
a number len of architectural RefactoringActions.
Both Refactorings and RefactoringActions have
PreConditions and PostConditions, which are first-
order logical formulae evaluated during the evolution-
ary process to determine their feasibility. The adopted
mechanism for calculating and verifying Refactorings
and RefactoringActions pre- and post-conditions is
an implementation of the one in [30], which essentially
produces Refactoring conditions by elaborating the
conditions of its RefactoringActions. To this aim,
we have developed an approach based on: (i) an ad-
hoc metamodel supporting the definition action pre- and
post- conditions as logic formulae, and (ii) code genera-
tion facilities implementing the mechanism for calculating
and verifying Refactoring conditions while composing
RefactoringActions [30]. We do not provide details-
bec on this aspect because it is out of this paper scope.

It is worth to remark that Refactorings are in-
tended to be “aggregators” of RefactoringActions,
because the latter may exist independently from the for-
mer. RefactoringActions are stored into an ad-
hoc repository named Refactoring Actions Library. A
RefactoringAction represents one of the entry points
of EASIER introduced to plug different ADL contexts, as it
will be illustrated in Section III-B1.

A Solution also contains a reference to the correspond-
ing alternative architecture resulting from the application
of the genome sequence. Such alternative architectures are
assumed to be conforming to a specific ADL. The ap-
plication of each refactoring is necessary to analyze the
performance of the generated architectural alternative, as it
will be described in Section III-A2.

Each Solution has three attributes that together rep-
resent the objectives of our fitness function, namely
ArchDist, PerfQ and #PAs.

To ease an ADL hosting, we introduce a configuration
file to set all the required input parameters. Some of these
are related to the evolutionary process, namely len, pop,
evals, p(xover), and p(mut). In particular, len defines the
genome length, pop (evals, resp.) determines the population
(the number of epochs, resp.) used by of the evolutionary
algorithm, whereas p(xover) and p(mut) represent the
crossover and mutation probabilities, respectively, that affect
the way the solution space is explored.

2) Process: Conformingly to the typical NSGA-II
flow [7], the first iteration of the algorithm consists of a
generation phase, aimed at randomly creating an initial

Figure 2: The EASIER low-level architecture.

population of candidate solutions (i.e. refactorings by len

length) with a pop cardinality. This phase is a customized
step where, every time customNSGAII needs to generate
a new candidate solution, a feasible Refactoring is
generated by incrementally concatenating compatible, ran-
domly generated, RefactoringActions. In particular,
two RefactoringActions ai and ai+1 are said to be
compatible if and only if the preconditions of ai+1 are
not violated by the postconditions of ai. Accordingly, a
Refactoring R is said to be feasible if all its consecutive

RefactoringActions are compatible [30].
After the (custom) generation of the initial population,

solutions are evaluated according to a customized fitness
function that, in EASIER, considers three objectives to
optimize, namely ArchDist, PerfQ and #PAs, which are
defined in the following.

PerfQ (to maximize). It represents a performance quality

indicator aimed at quantifying the relative performance
improvement induced by a refactoring w.r.t. an initial ar-
chitecture, defined as follows. Let I be the result of a

performance analysis on the initial architecture w.r.t. to a
vector of c performance measures of interest (e.g. through-
puts or utilizations of components of the system), and let Ik
denote the k–th element of this vector (e.g. a throughput
value). Moreover, let F be the result of a performance
analysis, w.r.t. the same measures, on a generic architectural
alternative A, obtained by applying a refactoring to the
initial architecture. Analogously, let Fk denote the k–th
element of F . Then, the performance quality indicator of
A is defined as PerfQ(A) = 1

c (
cP

j=1
p · (Fj�Ij

Fj+Ij
)), where

p 2 {�1, 1} is a multiplying factor that holds: i) 1 if the j–
th measure has to be maximized (i.e., the higher the value,
the better the performance), like the throughput; ii) �1 if
the j–th measure has to be minimized (i.e., the smaller
the value, the better the performance), like response time.
In this way, a decrease (increase, resp.) in the value of a
measure that one would like to minimize (maximize, resp.)
is interpreted as a positive contribution (and viceversa). In
fact, each j–th term of the sum within the computation
of PerfQ(A) will be: i) a positive real when we aim at
minimizing (maximizing, resp.) the j–th measure and such
a measure, in the architectural alternative, exhibits a value Fj

that is smaller (larger, resp.) than that assumed in the original
architecture, i.e. Ij ; ii) a negative or zero value otherwise.
Hence, architectural alternatives whose overall performance
is better (worse, resp.) than the initial one will be associated
with positive (negative, resp.) values of performance quality
indicator, as PerfQ(A) will be a positive real only when the
majority of the terms contribute with positive values. For this
reason, we consider PerfQ as part of our fitness function
(to maximize), so that refactorings leading to architectural
alternatives providing better performance are preferred over
others. Notice that, for performance measures representing
utilizations, p also holds 1 but, similarly to [26], we define a
correction factor �j , to be added to each j–th term above,
whose purpose is to penalize refactorings that push the
utilization too close to its maximum value of 1. In particular,
our algorithm tends to maximize utilization up to a certain
threshold, whereas utilizations higher than this threshold are
rather considered as risky. For sake of our implementation,
we adopt a threshold value of 0.8, but this can be easily
changed within EASIER. In particular, we define:

�j =

8
>><

>>:

�2
Fj�Ij
Fj+Ij

if Fj > 0.8 ^ Ij > 0.8

0.8� Fj if Fj > 0.8 ^ Ij 0.8

Ij � 0.8 if Fj 0.8 ^ Ij > 0.8

0 otherwise ⇤

ArchDist (to minimize). It quantifies the distance of an
architectural alternative A from the initial one, in terms
of intensity of refactoring changes. The distance of A

from an initial one is defined as the sum of the distance
induced by each RefactoringAction ai in the correspond-

ing genome. Note that, in the current version of EAS-
IER, ArchDist(ai) is assumed to be predefined for each
RefactoringAction. The setting of these values is left
to software architects, because they might depend on the
characteristics of the specific ADL and/or the application
domain. ⇤

#PAs (to minimize). It counts the number of perfor-
mance antipatterns (PAs) occurrences within an alterna-
tive architecture. In its current version, EASIER supports
OCL [31] for antipatterns detection rules specification and
verification, which represents yet another entry point. In fact,
these rules depend on the ADL expressiveness, thus they
must be provided when plugging a new ADL context into
EASIER.

To the best of our knowledge, EASIER is the first ap-
proach that considers the number of PAs as an objective
of an evolutionary algorithm’s fitness function. Our intent
is to start investigating whether PAs in EASIER can play
an analogous role of, respectively, architectural tactics in
[24] and architectural patterns in [26], that are guiding the
search process with additional architectural knowledge. In
our case they are negative practices to be avoided, whereas
in the other two cases were positive practices to be adopted.
⇤

After the (custom) evaluation, non-dominated solutions
(i.e. solutions that are better than all others w.r.t. at least one
objective) are ranked according to the notion of crowding
distance [7], and the best ones among them are then selected
and used as reproductive basis for the next iterations. In
particular, in each subsequent iteration, new sets of candidate
solutions are generated by randomly applying (custom)
crossover and mutation operators to the reproductive basis of
the previous step, with probabilities p(xover) and p(mut).

Concerning crossover, in EASIER a (custom) operator
is applied onto two parent Refactorings r1 and r2

selected by tournament [32]. The crossover point x is chosen
(uniformly at random) to be an integer value within the range
[1, len�1]. Then, two children are generated by single-point
crossover-based strategy as follows: the first x actions of r1
are combined with the second len � x actions of r2 and
viceversa, as long as the x–th action of r1 is compatible

with the (x+ 1)–th action of r2. On the contrary, the child
is discarded and one of the parents replaces it.

Concerning mutation, in EASIER we defined a (custom)
operator that randomly choses a RefactoringAction

of the considered Refactoring and replaces
it with another compatible, randomly generated,
RefactoringAction.

After the application of crossover and mutation operators,
the obtained candidate solutions are in turn evaluated and
selected for the next iteration, as for the initial population.
The process proceeds for a number epo of iterations that
is given by evals/pop. After epo iterations, the available
solutions are once more compared each other and the set of

non-dominated ones, namely the Pareto frontier, is returned.
Finally, we remark that each generated architectural alter-

native undergoes a Performance Analysis process in order to
obtain performance indices of interest for the corresponding
architectural model. Such process strictly depends on the
target ADL, which may need some processing before and
after plugging a specific performance analyzer within EAS-
IER. In other words, a “bridge” between customNSGAII and
the Performance Analyzer has to be provided that, in one
direction, calls a solver for the architectural model and, in
the other direction, properly fills back performance measures
into the model.

B. Æmilia ADL context

On the right side of Fig. 2 we show how an ADL context
can be plugged into EASIER. In this description we make
specific reference to Æmilia, that is the ADL we have chosen
for sake of this paper [8].

1) Data: In order to plug a new ADL in EASIER, ADL-
specific refactoring actions have to be provided by software
architects, as specializations of RefactoringAction,
which is defined as an EASIER entry point in the evo-
lutionary context. Hence, ADL-specific refactoring actions
inherit pre- and post-condition attributes that have to be
defined and implemented within the specific ADL context.
As mentioned in Sec.III-A1, we have developed an approach
that eases actions implementation because it grounds on an
ad-hoc metamodel and code generation facilities.

We envision the plugging mechanism to the
RefactoringAction entry point as being
implemented conformingly to the pattern reported in
Fig. 2: a specialization of RefactoringAction

is first created and then specialized as ADL-specific
refactoring actions. In the Æmilia context, the
RefactoringAction specialization is represented
by the AEmiliaRefactoringAction concept. For
sake of this paper scope, we have developed an initial
pool of predefined refactoring actions for the Æmilia ADL
context, which is currently composed by two actions,
namely CloneAEI and ChangeRate.
CloneAEI is in charge of cloning a srcAEI Æmilia AEI,

given as input, which is randomly selected from the Æmilia
architectural specification. From an architectural point of
view, the straightforward semantics for CloneAEI is the
creation of a copy of srcAEI and the load balancing of
incoming requests between the original component and its
copy. In order to implement CloneAEI, a proper mod-
ification of port types of the source component and its
neighbors (i.e. the AEIs which srcAEI directly interacts
with) is needed. For example, while cloning a srcAEI, the
created clone has to be connected to srcAEI’s neighbors.
This implies that involved neighbors’ ports of type UNI

(i.e. port type with exactly one connection) have to become

OR type (i.e. port type with more than one connection).
Nevertheless, the port type modification does not implies
any change in the internal neighbors’ behavior. Hence,
the CloneAEI action is more complex than similar ones
introduced up today in literature (e.g. change of a component
multiplicity).
ChangeRate modifies a randomly selected rate of an

Æmilia action by multiplying its value by an uniformly
distributed FactorOfChange (FOC). ChangeRate intends
to represent the option of both enhancing and worsening
the performance of a certain action, so that customNSGAII
is enabled to find an optimal balance between slower and
faster actions. Note that the ChangeRate semantics, in the
Æmilia context, is twofold, because it can be charged either
to the software contribution of an action (i.e., modifying
the complexity of the action) or to the hardware one (e.g.,
replacing the engine that executes the action with another
one); however, this does not modify the semantics of the
architecture. The FactorOfChange attribute has been defined
as FOC 2 [0.5, 2], FOC 6= 1, so that the ranges of new
actions can go up to double or down to halve the original
ones. However, this range can be modified without impact
on EASIER 1.

It is worth to notice that such initial pool of actions does
not contain subtractive AEmiliaRefactoringActions
as, e.g., the deletion of an AEI. On the one hand, subtractive
actions would have enlarged the solution space whereas, on
the other hand, they would have introduced a high degree of
complexity in both managing the composition of refactoring
action sequences during the reproduction phases of the
customNSGAII, and in applying the generated sequences.
For this reason, we have chosen to focus on non-subtractive
refactoring actions, thus leaving subtractive ones as a future
research direction.

We have associated ArchDist values to 1.3 and 1 for
CloneAEI and ChangeRate, respectively. This is only
one possible setting of the distance to which refactoring
leads an alternative architecture from the initial one. Other
choices can be made, depending on the ADL and the
application context.

Finally, in order to generate architectural alternatives that
conform to the Æmilia ADL grammar, we have added three
constraints onto a refactoring sequence, that are: (i) an AEI
cannot be cloned more than once in a sequence, otherwise
complex incompatibilities between ports occur; (ii) once
cloned an AEI in a sequence, none of its neighbour AEIs can
be cloned, due to the same reason as before; (iii) each rate
can be changed only once in a sequence, because we want
FOC to limit the range of a rate change in each sequence.

ADL-specific refactoring actions are collected into an
ADL-dependent Refactoring Actions Library, as shown in

1The graphical effects of these two actions on an Æmilia architecture
are visible by comparing Figg. 3 and 6 in Sec. IV.

Fig. 2.
An Æmilia architectural specification is basically a tex-

tual file (.aem), which conforms to a particular grammar
embedding, among topological concepts (i.e., architectural
types, instances and connectors), behavioral semantics of
architectural elements expressed following an internally
defined stochastic process algebra [8]. In order to enable
performance analysis of an Æmilia architectural specifica-
tion, performance measures of interest must be specified
(i.e. throughputs and/or utilizations of AEIs/interactions).
EASIER currently supports one analysis method, among the
ones provided by the Æmilia solver TwoTowers [33], that
is Stationary/Transient Reward-Based Measure Calculator.
For sake of such type of analysis, performance measures
have to be specified into an additional textual file (.rew).
Once performance analysis has been completed, indices are
available into a textual file (.val).

A further ADL-dependent element to provide for plugging
a new ADL in EASIER is represented by PAs detection
rules, which had been defined as first-order logics formulae
[34]. The current EASIER Æmilia context supports the
Pipe&Filter performance antipattern (PaF), which occurs
when the slowest filter, in a “pipe and filter” architecture,
causes a system interaction to have unacceptable through-
put [6]. The original logical formula of PaF in [34] has
been implemented as an OCL rule within the Æmilia context
as follows:9i 2 I, | rate(i) � ThrateLB ^ p(i) = 1 ^
throughput(i) < ThthroughputUB , where: i is an element
of the set I of all Architectural Interactions; p(i) is its
probability of execution; ThrateLB and ThthroughputUB are
threshold values that represent, respectively, a lower bound
for rate(i) and an upper bound for throughput(i), over
which the antipattern occurs. The .ocl file implementing
the PaF detection rule is evaluated against each generated
architectural alternative, and the number of detected PAs
is given as input to customNSGAII during the evaluation
phases.

2) Process: We recall that EASIER evolutionary context
works on solutions containing a reference to the correspond-
ing architectural alternative resulting from the application of
the genome refactoring sequence and conforming to an ADL
metamodel. Hence, in case of Æmilia, textual specifications
need to undergo a technical in-place text-to-model transfor-
mation from the Æmilia grammar to the Æmilia metamodel.
A model-based infrastructure was proposed in [35] to this
goal, providing the Æmilia metamodel and the text-to-
model transformation from textual specifications to models
(.mmaemilia) conforming to such metamodel. These model-
based features are provided within a single environment,
in the context of a pre-existing open-source tool named
TwoEagles [36].

As required in the evolutionary context, we have im-
plemented a bridge, namely TwoEaglesBridge, between

customNSGAII and TwoEagles. TwoEaglesBridge allows to
obtain an Æmilia model annotated with performance indices.
In particular, for each candidate solution generated during
customNSGAII execution, the bridge executes the following
automated steps: (i) It applies the refactoring to the initial
architecture, thus resulting in a Refactored Architectural
Alternative (.mmaemilia); (ii) It applies the model-to-text
transformation of the obtained Æmilia model (.mmaemilia),
which produces a corresponding textual file (.aem) processed
by TwoTowers; (iii) It executes the performance analysis,
that takes as input .aem and .rew files, and computes
performance indices (.val file); (iv) It fills the obtained
performance indices (namely Measures To Indices) into
the model reported by the evolutionary context to enable
the computation of PerfQ and #PAs. (v) It updates the
refactoring genome.

IV. VALIDATION

In order to validate EASIER, we have applied a bench-
mark of different configurations for customNSGAII to the
Æmilia specification of a Fire Tracking System (FTS).

FTS represents a software system that monitors a building
to timely locate an indoor fire and to support firefighters in
case rescue actions are needed. A Wireless Sensors Network
(WSN) monitors the environment with a certain sampling
rate (namely workload). Sample data, through a channel
(CHN), are stored in a database (DB) and analyzed by a
Fire Tracking Application central unit (FTA), which triggers
an alarm in case of a risky situation. Secure communica-
tions between WSN and the firefighter’s desktop application
(called DSK) are guaranteed, hence data collected from
the building need to be decrypted before being processed
by FTA. Decryption is performed by a security component
(SCR), and data are then forwarded back to the FTA, through
a LAN that connects FTA to DB, DSK and SRC.

A. Initial Architecture

While it is obvious that an initial architecture is created
in an architectural design phase, not as much obvious it is
for an existing system. For sake of this paper, we target the
former case, whereas reverse engineering techniques shall
be adopted to apply our approach to the latter case.

Fig. 3 shows the FTS as an Æmilia flow graph. Rectangles
represent Æmilia Architectural Element Instances (AEIs),
whereas squares represent Æmilia interactions, namely
“ports” between the system and the environment or between
two AEIs. Moreover, arrows represent communication links
between different interactions, while non-connected inter-
actions represent either external ports (e.g., the workload
one) or components’ internal actions (e.g., fta rate and
packet rate). The dashed arrows represent the internal flow
of components. Since the FTA behavior is rather complex,
for sake of simplicity we have labeled its internal flow
sequence with numbers. Note that the rate of each output and

each internal processing interaction is shown in the figure.
Unlabeled interactions are passive ones, hence they do not
have a rate. Practically, this means that only the labeled ones
can be modified by the ChangeRate refactoring action.

Figure 3: Æmilia flow graph of the Fire Tracking System.

B. Experimentation

In this section, we first describe our experimental setup,
and then the obtained results are reported and analyzed.

1) Setup: Among the customizable parameters of
customNSGAII, on the one hand, we focus on #epo, pop,
and #evals, since their tuning affects the distance of the
obtained solutions from the initial architecture. On the other
hand, we do not vary p(xover) and p(mut), as they are
essentially related to the behavior of customNSGAII only. In
particular, we set p(xover) = 0.8 and p(mut) = 0.2 based
on their wide adoption in literature [37], as well as a number
of our trial runs (in the order of one hundred). For sake of
this paper, we have chosen #epo 2 {5, 10, 20} and #pop 2
{4, 8, 16, 32}. As a result, we have obtained 12 different
configurations, with #evals 2 {20, 40, 80, 160, 320, 640}.

The len parameter represents the genome length. This
is an important degree of freedom of EASIER, in that

although long sequences of refactoring could lead to better
solutions in terms of performance, they could also lead to
architectural alternatives very distant from the initial one. We
have set len = 4 for sake of this paper experimentation, as
it has seemed (from trial runs) a good compromise between
execution time and quality of solutions. However, a larger
experimentation to study the effect of this parameter would
be very interesting, and it is part of our future work.

In order to evaluate PerfQ and #PAs objectives, a per-
formance analysis of each generated solutions is needed, and
this introduces a time overhead that increases as the com-
plexity of the architectural specification increases. Hence,
we have defined an upper bound on the execution time
of each run, called plausibility threshold, representing the
maximum time beyond which the execution time of a run is
considered non-plausible and is stopped. For FTS case study,
we have set a plausibility threshold of 12 hours, as driven
by trial runs. Only the executions with #evals = 640 have
violated this threshold, and therefore they do not appear in
our results.

We have also introduced a further configuration parameter,
that is the maximum number of CloneAEI occurrences
into a genome sequence, namely maxCloning. It gives more
flexibility to our approach, because the cloning operation
obviously affects the time required for performance analysis.
In particular, we have observed that the time spent on
performance analysis over-linearly increases as the number
of AEI clones increases. Therefore, again based on trial runs,
in our scenario we have found suited to set maxCloning =
3. Finally, threshold values for PAs detection have to be
tuned. In particular, we have set ThrateLB = 3.486 and
ThthroughputUB = 0.162, corresponding to average values
of rates and interactions throughputs, respectively.

2) Results: The results of our experimental evaluation
are shown in Table I where runs are ordered in #evals

ascending order. In details, Sol ID (1st column) identifies
the configuration as #epo-pop:id, where id is assigned
by EASIER to the solution. All Pareto-optimal solutions
of each configuration are reported. In particular, for each
configuration we report the values of the fitness function
objectives (2nd, 3rd, and 4th columns). We also provide
details of the four refactoring actions associated to each
solution genome in the Pareto front (columns 5th to 16th). In
particular, each action in the sequence of a Pareto solution
is identified by its type (i.e. CloneAEI or ChangeRate),
its target element (i.e. the cloned AEI or the modified rate)
and the applied FOC (in case of ChangeRate).

3) Analysis: In what follows, we analyze the experimen-
tal results w.r.t. the following aspects: (i) execution times, (ii)
quality (i.e. fitness function values) of the Pareto solutions,
(iii) suggested sequences of refactoring.

Execution time: Our data have shown us that, on
average, a single run took 5297s while a single solution
required 27.53s of execution time. In particular, we have

Ta
bl

e
I:

B
en

ch
m

ar
k

re
su

lts
.

So
lI

D
Fi

tn
es

s
fu

nc
tio

n
va

lu
es

A
ct

io
ns

1
2

3
4

Pe
rf

Q
ar

ch
D

ist
#P

A
s

A
ct

io
n

ty
pe

Ta
rg

et
el

em
en

t
FO

C
A

ct
io

n
ty

pe
Ta

rg
et

el
em

en
t

FO
C

A
ct

io
n

ty
pe

Ta
rg

et
el

em
en

t
FO

C
A

ct
io

n
ty

pe
Ta

rg
et

el
em

en
t

FO
C

5-
4:

4
0.

00
8

4.
6

1
C

ha
ng

eR
at

e
ch

an
ne

l
ra

te
1.

93
0

C
ha

ng
eR

at
e

pa
ck

et
ra

te
0.

58
0

C
lo

ne
A

EI
C

H
N

-
C

lo
ne

A
EI

SC
R

-
5-

8:
1

0.
10

2
4.

3
2

C
lo

ne
A

EI
LA

N
-

C
ha

ng
eR

at
e

la
n

se
c

ra
te

1.
41

2
C

ha
ng

eR
at

e
de

c
ra

te
1.

86
6

C
ha

ng
eR

at
e

db
ra

te
1.

81
7

5-
8:

59
-0

.0
17

4.
6

1
C

lo
ne

A
EI

D
B

-
C

ha
ng

eR
at

e
la

n
de

sk
ra

te
1.

65
2

C
lo

ne
A

EI
C

H
N

-
C

ha
ng

eR
at

e
pa

ck
et

ra
te

1.
63

9
10

-4
:1

0
0.

14
6

4.
3

5
C

ha
ng

eR
at

e
la

n
de

sk
ra

te
1.

62
5

C
ha

ng
eR

at
e

la
n

db
ra

te
1.

60
7

C
lo

ne
A

EI
C

H
N

-
C

ha
ng

eR
at

e
de

c
ra

te
1.

79
2

10
-4

:2
3

0.
03

3
4.

6
2

C
lo

ne
A

EI
LA

N
-

C
ha

ng
eR

at
e

la
n

db
ra

te
1.

00
1

C
lo

ne
A

EI
C

H
N

-
C

ha
ng

eR
at

e
de

c
ra

te
1.

57
4

10
-4

:6
5

0.
16

2
4.

6
3

C
ha

ng
eR

at
e

de
c

ra
te

1.
92

8
C

lo
ne

A
EI

C
H

N
-

C
lo

ne
A

EI
D

B
-

C
ha

ng
eR

at
e

la
n

fta
ra

te
1.

86
0

10
-4

:2
8

0.
19

7
4.

3
2

C
lo

ne
A

EI
C

H
N

-
C

ha
ng

eR
at

e
la

n
se

c
ra

te
1.

46
0

C
ha

ng
eR

at
e

la
n

de
sk

ra
te

1.
04

2
C

ha
ng

eR
at

e
de

c
ra

te
1.

98
8

5-
16

:8
3

0.
20

6
4.

0
5

C
ha

ng
eR

at
e

la
n

fta
ra

te
1.

69
1

C
ha

ng
eR

at
e

la
n

db
ra

te
0.

70
3

C
ha

ng
eR

at
e

la
n

se
c

ra
te

1.
75

9
C

ha
ng

eR
at

e
de

c
ra

te
1.

99
6

5-
16

:1
13

0.
13

4
4.

0
1

C
ha

ng
eR

at
e

la
n

fta
ra

te
0.

89
7

C
ha

ng
eR

at
e

la
n

db
ra

te
1.

25
0

C
ha

ng
eR

at
e

db
ra

te
0.

68
4

C
ha

ng
eR

at
e

de
c

ra
te

1.
65

4
10

-8
:1

22
0.

07
6

4.
0

5
C

ha
ng

eR
at

e
la

n
se

c
ra

te
1.

73
5

C
ha

ng
eR

at
e

db
ra

te
0.

61
9

C
ha

ng
eR

at
e

fta
ra

te
0.

54
8

C
ha

ng
eR

at
e

de
c

ra
te

1.
25

4
10

-8
:1

15
0.

00
4

4.
0

2
C

ha
ng

eR
at

e
la

n
se

c
ra

te
1.

57
3

C
ha

ng
eR

at
e

db
ra

te
1.

95
6

C
ha

ng
eR

at
e

fta
ra

te
1.

03
2

C
ha

ng
eR

at
e

la
n

db
ra

te
0.

86
8

10
-8

:1
25

0.
16

4
4.

0
3

C
ha

ng
eR

at
e

Sh
ow

M
ap

ra
te

1.
66

0
C

ha
ng

eR
at

e
la

n
fta

ra
te

1.
22

1
C

ha
ng

eR
at

e
de

c
ra

te
1.

87
0

C
ha

ng
eR

at
e

fta
ra

te
1.

31
8

10
-8

:6
3

0.
15

5
4.

3
2

C
ha

ng
eR

at
e

ch
an

ne
l

ra
te

0.
54

1
C

lo
ne

A
EI

D
SK

-
C

ha
ng

eR
at

e
de

c
ra

te
1.

98
9

C
ha

ng
eR

at
e

fta
ra

te
1.

15
3

20
-4

:4
0

0.
18

6
4.

0
1

C
ha

ng
eR

at
e

w
sn

ra
te

0.
87

0
C

ha
ng

eR
at

e
de

c
ra

te
1.

91
0

C
ha

ng
eR

at
e

ch
an

ne
l

ra
te

1.
34

2
C

ha
ng

eR
at

e
la

n
db

ra
te

1.
28

4
5-

32
:2

9
0.

19
3

4.
0

2
C

lo
ne

A
EI

SC
R

-
C

ha
ng

eR
at

e
pa

ck
et

ra
te

0.
56

6
C

lo
ne

A
EI

FT
A

-
C

ha
ng

eR
at

e
Sh

ow
M

ap
ra

te
1.

37
7

5-
32

:5
0.

17
1

4.
6

2
C

ha
ng

eR
at

e
pa

ck
et

ra
te

0.
81

3
C

ha
ng

eR
at

e
db

ra
te

1.
05

2
C

ha
ng

eR
at

e
la

n
fta

ra
te

0.
85

8
C

lo
ne

A
EI

FT
A

-
5-

32
:4

8
0.

16
7

4.
3

1
C

ha
ng

eR
at

e
C

H
N

-
C

ha
ng

eR
at

e
la

n
db

ra
te

0.
54

5
C

ha
ng

eR
at

e
fta

ra
te

0.
77

3
C

ha
ng

eR
at

e
de

c
ra

te
1.

93
2

10
-1

6:
19

4
0.

27
4

4.
6

1
C

ha
ng

eR
at

e
de

c
ra

te
0.

51
9

C
lo

ne
A

EI
FT

A
-

C
ha

ng
eR

at
e

la
n

de
sk

ra
te

1.
97

7
C

lo
ne

A
EI

SC
R

-
10

-1
6:

24
1

0.
28

7
4.

6
4

C
ha

ng
eR

at
e

de
c

ra
te

1.
92

5
C

lo
ne

A
EI

FT
A

-
C

lo
ne

A
EI

SC
R

-
C

ha
ng

eR
at

e
la

n
db

ra
te

1.
35

5
10

-1
6:

20
8

0.
18

4
4.

6
2

C
ha

ng
eR

at
e

w
sn

ra
te

0.
64

2
C

lo
ne

A
EI

FT
A

-
C

lo
ne

A
EI

SC
R

-
C

ha
ng

eR
at

e
la

n
se

c
ra

te
1.

77
7

10
-1

6:
26

3
0.

17
1

4.
6

1
C

ha
ng

eR
at

e
w

sn
ra

te
1.

98
6

C
lo

ne
A

EI
FT

A
-

C
lo

ne
A

EI
SC

R
-

C
ha

ng
eR

at
e

la
n

se
c

ra
te

1.
93

3
20

-8
:1

47
0.

18
6

4.
0

3
C

ha
ng

eR
at

e
la

n
db

ra
te

1.
50

1
C

ha
ng

eR
at

e
de

c
ra

te
1.

92
9

C
ha

ng
eR

at
e

la
n

fta
ra

te
0.

89
4

C
ha

ng
eR

at
e

fta
ra

te
0.

96
3

20
-8

:2
45

0.
29

3
4.

6
1

C
lo

ne
A

EI
SC

R
-

C
lo

ne
A

EI
FT

A
-

C
ha

ng
eR

at
e

de
c

ra
te

1.
87

6
C

ha
ng

eR
at

e
la

n
se

c
ra

te
1.

22
3

10
-3

2:
50

5
0.

29
3

4.
6

1
C

lo
ne

A
EI

SC
R

-
C

ha
ng

eR
at

e
de

c
ra

te
1.

92
2

C
lo

ne
A

EI
FT

A
-

C
ha

ng
eR

at
e

fta
ra

te
0.

62
5

20
-1

6:
50

4
0.

28
1

4.
6

4
C

lo
ne

A
EI

FT
A

-
C

ha
ng

eR
at

e
fta

ra
te

1.
20

7
C

lo
ne

A
EI

SC
R

-
C

ha
ng

eR
at

e
de

c
ra

t
1.

90
4

20
-1

6:
34

9
0.

27
9

4.
6

1
C

lo
ne

A
EI

SC
R

-
C

lo
ne

A
EI

FT
A

-
C

ha
ng

eR
at

e
Sh

ow
M

ap
ra

te
0.

08
9

C
ha

ng
eR

at
e

de
c

ra
te

1.
81

4

observed that TwoTowers resulted (as expected) to be the
most time-consuming component of EASIER, as it has taken
around 69% of the 58262s total running time.

Quality of Solutions: First, we observe that the av-
erage size of the Pareto frontier is 2.36 solutions per con-
figuration. Moreover, w.r.t. the three objectives, we noticed
that in the resulting set of Pareto solutions: i) the maximum
(average, resp.) value of PerfQ is 0.29 (0.17, resp.); ii) the
minimum (average, resp.) value of ArchDist is 4.00 (4.36,
resp.), which means slightly more than one CloneAEI per
element of the Pareto set, on average; iii) the minimum
(average, resp.) value of #PAs is 1.00 (2.23, resp.), against
the value of 3 in the original FTS, which means a decreasing
of about 26%, on average.

In addition, our experiments show that the solutions
found by EASIER, in terms of suggested combinations
of refactoring actions, are rather different by each other,
i.e. EASIER provides diversity in the Pareto frontier. In
particular, 24

26 ⇡ 0.92 = 92% solutions were pairwise
different by at least one refactoring action in the sequence.

We like to remark that, as shown in Fig. 4, PerfQ follows
a logarithmic trend vs. the number of iterations #evals,
while ArchDist and #PAs objectives do not exhibit such
a distinguished relationship. This suggests that EASIER is
able to go towards global optima only for PerfQ while
extending #evals, as we will discuss further in this section.

Figure 4: Trend of objectives vs number of evaluations.

A more detailed comparison of all Pareto solutions is
drawn in Fig. 5, where: 1

ArchDist is on the x-axis, PerfQ is
on the y-axis, 1

#PAs determines the bubble size and bubbles
having the same color belong to the same frontier. Therefore,
best solutions are expected to be large bubbles residing in the
top-right corner of the figure. In addition, boxes with bolded
labels define a “super” Pareto frontier, containing non-
dominated solutions overall the whole benchmark, which are
thus likely to reach a global optima.

At the top-left corner, solutions with the highest PerfQ

occur, which have been obtained with the highest #evals,

i.e. 160 and 320, and this is coherent with the trend of
PerfQ shown in Fig. 4. These solutions also show highest
values of ArchDist, thus inducing the idea that, in order to
sensibly improve the architecture performance it is necessary
to largely deviate from the initial architecture. As a side
observation, most of such solutions also exhibit the lowest
values of #PAs.

On the right side of the figure, we observe solutions
having the lowest values of ArchDist, which can be of
particular interest for software architects that search for
low distance solutions that minimally impact on refactoring
effort and complexity. Although most of these solutions
have been obtained with a low number of evaluations (i.e.,
#evals = 80), and they show a PerfQ which is at least
40% lower than the highest values, a considerable amount
among them lead a 20% performance improvement. This can
be of great interest in cases where such improvement can be
satisfactory for software architects, because these solutions
nicely combine this characteristic with a low distance from
the initial architecture.

Suggested actions: In Table I we can observe that, in
general, the more frequent refactoring actions are actually
the more effective ones in terms of performance. In par-
ticular, the most effective action is definitely the dec rate
increment (often doubled up), followed by the cloning of
the SCR component it belongs to. This is in line with the
fact that SCR actually represents a potential bottleneck in
the initial FTS, because its rate is the lowest one. Moreover,
we observe that each time the SCR cloning is suggested, the
FTA cloning is suggested as well. Although this is difficult
to come by intuition, as for SCR, it seems a reasonable
implication. In fact, FTA is the unique AEI communicating
with SCR, and the rate of the LAN in the middle is not
sufficiently high to manage their communication rates at the
SCR-side (i.e. lan sec rate increment). Besides, we observe
that CHN cloning has been mostly suggested by running
EASIER with a small #evals (e.g. 40) and the obtained
PerfQ very likely depend on the other actions in the
sequences with CHN.

For sake of illustration, in Fig. 6 we draw the flow graph
of a Pareto solutions from Table I, i.e. the grey row of the
table.

C. Threats to validity

In this section we identify the major limitations of EAS-
IER, which might induce potential threats to its validity.

Experimental setting: our experimental results show that,
in the Æmilia context, EASIER spends most of the time on
performance analyses, i.e. while waiting for TwoEagles to
compute PerfQ and #PAs. To mitigate this threat, we
have introduced a plausibility threshold in the experimental
setup (see Section IV-B1).

Generalization of results: We have widely tested the
approach on a single Æmilia architectural specification,

Figure 5: Comparison of Pareto frontiers across different runs.

hence we do not know its effectiveness on other case study,
even though the current results are promising. However, the
FTS architecture used here has been selected, for size and
quality, out of around 30 graduate student projects.

Refactoring actions: In this paper we have assumed
predefined, fixed, ArchDist for refactoring actions. This is
an aspect that needs more investigation, by providing some
guidelines to set these values in different ADL contexts and,
possibly, in different application domains. Moreover, in the
current Æmilia Refactoring Actions Library, only additive
actions are considered. This may represent a limitation in
the refactoring possibilities. However, designing and imple-
menting delete actions is a complex task, due to the fact
that they heavily impact on the feasibility of a refactoring
in terms of pre and post conditions.

Pareto solutions: A multiobjective optimization process
has two main goals: 1) convergence to the Pareto-optimal set,
and 2) diversity in the considered intermediate solutions [7].
Our results suggest that diversity is maintained within the
Æmilia context and that the longer customNSGAII runs
(i.e. #evals increases), the more the performance quality of
Pareto solutions increases. However, a deeper investigation
of these two aspects will be needed to assess the robustness
of our approach.

PA detection: Thresholds calibration is a crucial task for
PAs detection. Adopting a simplistic strategy (i.e. based on

average values), like we did in this paper, however, does
not jeopardize EASIER validity, since adding complexity
to thresholds calibration would just result in more inclu-
sive/exclusive detection policies. However, EASIER current
implementation does not calculate thresholds for architec-
tural alternatives before counting the PAs occurrencing on
the latter one, as it always applies the original thresholds
for PA detection. This might affect the precision of the
detection procedure, and it is very likely the motivation
for the fluctuation in the values of #PAs across Pareto
solutions. Therefore, threshold (re-)calibration is certainly
an issue to be investigated in future.

V. CONCLUSION

In this paper we have presented EASIER, an evolutionary
approach for architecture refactoring based on performance
aspects. The first experimental results of our approach are
promising in terms of its applicability in practice. Beyond
the directions that could mitigate the threats to validity
introduced in Section IV-C, we also intend to pursue the
following objectives in the future: (i) Experimentation while
scaling over the architecture size and across different values
of its main parameters, with a particular emphasis on the
genome length; (ii) Implementation of more performance
antipatterns detection rules and an automated mechanism
that supports such implementation process; (iii) Validation

Figure 6: Flow graph of Sol ID : 20-8:245 from Table I.

of the approach over different ADL contexts; (iv) Extension
of the fitness function to metrics related, for example, to
budget aspects (e.g. refactoring cost), as well as to other
non-functional properties (e.g. reliability).

REFERENCES

[1] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Mee-
deniya, “Software Architecture Optimization Methods: A
Systematic Literature Review,” IEEE Trans. on Softw. Eng.,
vol. 39, no. 5, pp. 658–683, 2013.

[2] V. Cortellessa, A. D. Marco, and P. Inverardi, Model-Based

Software Performance Analysis. Springer, 2011.
[3] A. Martens, H. Koziolek, S. Becker, and R. Reussner, “Au-

tomatically improve software architecture models for perfor-
mance, reliability, and cost using evolutionary algorithms,” in
ICPE, 2010, pp. 105–116.

[4] A. Aleti, S. Björnander, L. Grunske, and I. Meedeniya,
“Archeopterix: An extendable tool for architecture optimiza-
tion of AADL models,” in MOMPES, 2009, pp. 61–71.

[5] C. Blum and A. Roli, “Metaheuristics in combinatorial
optimization: Overview and conceptual comparison,” ACM

Comput. Surv., vol. 35, no. 3, pp. 268–308, 2003.
[6] C. U. Smith and L. G. Williams, “More new software perfor-

mance antipatterns: Even more ways to shoot yourself in the
foot,” Computer Measurement Group Conference, 2003.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE

Trans. Evol. Comput., vol. 6, pp. 1–16, Apr. 2002.
[8] M. Bernardo, L. Donatiello, and P. Ciancarini, “Stochastic

Process Algebra: From an Algebraic Formalism to an Archi-
tectural Description Language,” in Performance Evaluation of

Complex Systems Techniques and Tools, 2002, pp. 236–260.

[9] M. De Sanctis, C. Trubiani, V. Cortellessa, A. Di Marco,
and M. Flamminj, “A model-driven approach to catch per-
formance antipatterns in ADL specifications,” Inf. Softw.

Technol., vol. 83, pp. 35–54, 2017.
[10] W. G. Griswold and W. F. Opdyke, “The birth of refactoring:

A retrospective on the nature of high-impact software engi-
neering research,” IEEE Software, vol. 32, no. 6, pp. 30–38,
2015.

[11] D. Arcelli, V. Cortellessa, and D. D. Pompeo, “Performance-
driven software model refactoring,” Inf. Softw. Technol.,
vol. 95, pp. 366 – 397, 2018.

[12] A. Ghannem, G. El-Boussaidi, and M. Kessentini, “Model
refactoring using interactive genetic algorithm,” in SSBSE,
2013, pp. 96–110.

[13] M. Misbhauddin and M. Alshayeb, “UML model refactoring
- a systematic literature review,” Empir. Softw. Eng., vol. 20,
no. 1, pp. 206–251, 2015.

[14] T. Mariani and S. R. Vergilio, “A systematic review on search-
based refactoring,” JIST, vol. 83, pp. 14 – 34, 2017.

[15] M. Mohan, D. Greer, and P. McMullan, “Technical debt
reduction using search based automated refactoring,” J. Syst.

Softw., vol. 120, pp. 183–194, 2016.
[16] R. Mahouachi, M. Kessentini, and M. Ó Cinnéide, “Search-

Based Refactoring Detection Using Software Metrics Varia-
tion,” in SSBSE, 2013, pp. 126–140.

[17] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb, “Multi-
view refactoring of class and activity diagrams using a multi-
objective evolutionary algorithm,” pp. 1–29, 2015.

[18] A. Ouni, M. Kessentini, H. Sahraoui, M. Ó. Cinnéide, K. Deb,
and K. Inoue, “A Multi-Objective Refactoring Approach to
Introduce Design Patterns and Fix Anti-Patterns,” in SSBSE,
2015, pp. 1–16.

[19] R. Li, R. Etemaadi, M. T. M. Emmerich, and M. R. V. Chau-
dron, “An evolutionary multiobjective optimization approach
to component-based software architecture design,” in IEEE

CEC, 2011, pp. 432–439.
[20] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske,

“Architecture-driven reliability and energy optimization for
complex embedded systems,” in QoSA, 2010, pp. 52–67.

[21] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, and
R. Reussner, “A hybrid approach for multi-attribute qos
optimisation in component based software systems,” in QoSA.

[22] F. Rosenberg, M. B. Müller, P. Leitner, A. Michlmayr,
A. Bouguettaya, and S. Dustdar, “Metaheuristic optimization
of large-scale qos-aware service compositions,” in IEEE SCC,
2010, pp. 97–104.

[23] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and
R. Mirandola, “Qos-driven runtime adaptation of service
oriented architectures,” in ESEC/FSE, 2009, pp. 131–140.

[24] A. Koziolek, H. Koziolek, and R. Reussner, “PerOpteryx:
automated application of tactics in multi-objective software
architecture optimization,” in QoSA, 2011, pp. 33–42.

[25] S. Becker, H. Koziolek, and R. H. Reussner, “The Palladio
component model for model-driven performance prediction.”
JSS, 2009.

[26] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malek, and J. P.
Sousa, “A framework for utility-based service oriented design
in SASSY,” in WOSP/SIPEW, 2010, pp. 27–36.

[27] P. H. Feiler and D. P. Gluch, Model-Based Engineering with

AADL - An Introduction to the SAE Architecture Analysis and

Design Language, ser. SEI series in software engineering.
Addison-Wesley, 2012.

[28] A. J. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the
jmetal multi-objective optimization framework,” in GECCO

Companion, 2015, pp. 1093–1100.
[29] A. S. Sayyad, T. Menzies, and H. Ammar, “On the value of

user preferences in search-based software engineering: A case
study in software product lines,” in ICSE, 2013, pp. 492–501.

[30] M. Ó Cinnéide and P. Nixon, “Composite refactorings for
Java programs,” in European Conference Object-Oriented

Programming, 2000.
[31] J. B. Warmer and A. G. Kleppe, The object constraint

language: getting your models ready for MDA. Addison-
Wesley Professional, 2003.

[32] A. Eiben and S. Smit, “Parameter tuning for configuring
and analyzing evolutionary algorithms,” Swarm Evol Comput,
vol. 1, no. 1, pp. 19 – 31, 2011.

[33] M. Bernardo, “Twotowers: User manual.” [Online]. Available:
http://www.sti.uniurb.it/bernardo/twotowers/manual.pdf

[34] V. Cortellessa, A. Di Marco, and C. Trubiani, “An approach
for modeling and detecting software performance antipatterns
based on first-order logics,” SoSyM, vol. 13, no. 1, pp. 391–
432, 2014.

[35] V. Cortellessa, M. D. Sanctis, A. D. Marco, and C. Trubiani,
“Enabling performance antipatterns to arise from an adl-based
software architecture,” in WICSA/ECSA, 2012, pp. 310–314.

[36] M. Bernardo, V. Cortellessa, and M. Flamminj, “TwoEagles:
A Model Transformation Tool from Architectural Descrip-
tions to Queueing Networks,” in EPEW, 2011, pp. 265–279.

[37] A. Arcuri and G. Fraser, “Parameter tuning or default values?
An empirical investigation in search-based software engineer-
ing,” Empir. Softw. Eng., vol. 18, no. 3, pp. 594–623, 2013.

http://www.sti.uniurb.it/bernardo/twotowers/manual.pdf

	Introduction
	Related Work
	The EASIER Architecture
	Evolutionary context
	Data
	Process

	Æmilia ADL context
	Data
	Process

	Validation
	Initial Architecture
	Experimentation
	Setup
	Results
	Analysis

	Threats to validity

	Conclusion
	References

