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Abstract—Aiming at the problem of multi-target tracking
under noise statistics mismatch, an adaptive δ-GLMB filter based
on variational Bayesian (VB) approach is proposed. The joint
distribution of predicted state and corresponding predicted error
covariance matrix, and the joint distribution of measurement
noise mean vector and covariance matrix are modeled as the
Normal-inverse Wishart (NIW) distributions, in which the latent
variables are described as the Gamma distributions. In this paper,
the single-target filtering density is expressed as the mixture
of Normal inverse Wishart inverse Wishart Gamma Gamma
(NNIWNIWGG), and an NNIWNIWGG mixture implementa-
tion of δ-generalized labeled multi-Bernoulli (δ-GLMB) filter
for linear Gaussian is given. According to the minimization
of Kullback-Leibler divergence, the approximate solution of
predicted likelihood is obtained. Simulation results show that the
proposed adaptive δ-GLMB filter has high tracking accuracy in
the case of noises statistics mismatch.

Index Terms—variational Bayesian, δ-GLMB filter, Normal-
inverse Wishart, noise statistics mismatch, multi-target tracking

I. INTRODUCTION

In the multi-target Bayesian filter based on random finite set
(RFS) method, it is normally assumed that the noise statistics
are exactly known, such as mean vectors and covariance matri-
ces. However, in the practical multi-target tracking (MTT), the
accurate prior knowledge of the noise statistics is not exactly
known or completely unknown due to the external unknown
disturbances caused by target maneuvers and disturbance-
corrupted measurements. [1].

The variational Bayesian (VB) approach is not only used
to obtain the approximate posterior density for which the
analytical solution does not exist, but also is employed in the
situations, where the measurement noise statistics are unknown
[2], [3], [4], [5]. Therefore, the VB method is commonly
introduced into the random finite set (RFS) framework to deal
with the MTT problems with unknown noise statistics. The
adaptive probability hypothesis density (PHD) filters based on
VB approach were proposed in [6], [7], [8]. Aiming at the
problem of MTT in which the measurement noise covariance
matrix is an unknown diagonal matrix, Li et al. [9] and Wu
et al. [10] modeled it as an inverse Gamma distribution, and a
Gaussian inverse Gamma mixture PHD filter is given by VB
method. Yang et al. [11] modeled the single-target posterior
density as a mixture of Gaussian and inverse Gamma distri-
bution based on VB approximation and cardinality balanced

multitarget multi-Bernoulli (CBMeMBer) filter, and proposed
an improved CBMeMBer filter which is suitable for the
diagonal and unknown measurement noise covariance matrix.
Ardeshiri et al. [12] presented an adaptive PHD filter suitable
for non-diagonal matrix, in which the measurement noise
covariance matrix is modeled by inverse Wishart distribution.
To distinguish the multi-target trajectories, Qiu et al. [13]
introduced the VB approximation method into the labeled
multi-Bernoulli (LMB) filtering framework, and the Gaussian-
inverse Gamma implementation of LMB filter is given. Yuan
et al. [14] modeled the measurement noise covariance matrix
as the inverse Wishart distribution, and proposed the Gaussian
inverse Wishart mixture implementation of the δ-GLMB filter
for linear model by the VB method.

The MTT filter mentioned above only considered the situa-
tion that the measurement noise covariance matrix is unknown.
In order to solve the problem of MTT with unknown process
and measurement noises covariance matrices, Zhang et al. [15]
proposed a robust δ-GLMB filter under mismatches in both
dynamic and measurement models which drew lessons from
the idea of Huang et al. [16] that in order to avoid directly
estimating the process noise covariance matrix, estimating the
covariance matrix of one-step predicted state error. Similarly,
Li et al. [17] proposed a robust Poisson multi-Bernoulli
mixture filter for MTT in the case of inaccurate process
and measurement noises covariance matrices based on VB
approach by modeling the joint multi-target filtering density
as the Gaussian-inverse Wishart-inverse Wishart distribution
[18], [19].

Although the existing MTT filters indicate satisfactory
tracking performance when the process and measurement
noises covariance matrices are inaccurate, they do not consider
the inaccuracy and time-varying of the noises mean vectors.
For this reason, the problem of MTT under noises statistics
mismatch in the framework of δ-GLMB filtering is proposed
by expressing the single-target filtering density as the mixture
of Gaussian (Normal) inverse Wishart inverse Wishart Gamma
Gamma (NNIWNIWGG) via the VB approximation. Accord-
ing to the minimization of Kullback-Leibler divergence, the
approximate solution of the predicted likelihood is obtained,
and then the NNIWNIWGG implementation of the proposed
adaptive δ-GLMB filter is given. Finally, the effectiveness
of the proposed adaptive δ-GLMB filter is verified in the



simulation scene of noises statistics mismatch.
The rest of this paper is organized as follows. Section II

presents a brief description of the background. Section III
presents an adaptive δ-GLMB filter based on VB method.
The implementation of the proposed adaptive δ-GLMB filter
is given in Section IV. Section V verifies the effectiveness of
the proposed adaptive δ-GLMB filter by numerical simulation.
Finally, the conclusions are given in Section VI.

II. BACKGROUND

A. Problem Formulation

Considering a linear state-space system given by

xk = Fk−1xk−1 +wk−1 (1)

zk = Hkxk + vk (2)

where xk ∈ Rnx is the state vector, Fk−1 denotes the
state transition matrix, wk−1 ∼ N (wk−1; qk−1,Qk−1) is the
Gaussian process noise with mean vector qk−1 and covariance
matrix Qk−1; zk ∈ Rnz is the measurement vector, Hk is the
measurement matrix, and vk ∼ N (vk; rk,Rk) is the Gaussian
measurement noise, and its mean vector and covariance matrix
are rk and Rk, respectively. In addition, it is assumed that
the initial state vector x0 ∼ N (xk;x0,P0), wk, and vk are
independent of each other.

For convenience, the dynamic model shown in (1) and the
measurement model shown in (2) can be described as the form
of probability density function (PDF) given by

p(xk|xk−1) = N (xk;Fk−1xk−1 + qk−1,Qk−1) (3)

p(zk|xk) = N (zk;Hkxk + rk,Rk) (4)

where p(xk|xk−1) and p(zk|xk) indicate the state transition
PDF and measurement likelihood PDF respectively.

For target tracking, it is most often assumed that the
noise Statistics are accurately known. However, due to the
strong maneuver of the target, external interference or sensor
failures and so on [20], the true values of the noise mean
vectors and the corresponding covariance matrix are generally
unknown or not accurately known, or time-varying in practical
applications. In practice, the nominal values of the mean vector
and its covariance matrix of process noise and measurement
noise are generally given according to engineering experience.
When the nominal value is close to the real value, a better
tracking effect can be obtained, and vice versa.

TABLE I
THE ALGORITHM OF KALMAN FILTER

Steps Equations

Predicted state estimate x̂k|k−1 = Fk−1x̂k−1 + qk−1

Predicted error covariance Pk|k−1 = Fk−1Pk−1F
T
k−1 +Qk−1

Kalman gain Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1

Updated state estimate x̂k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1 − rk)
Updated error covariance Pk = Pk|k−1 −KkHkPk|k−1

For the linear system model shown in (1) and (2), xk can
be estimated according to the Table I for all measurements

up to time k represented by z1:k = z1, . . . ,zk. It can be seen
from Table I that the process noise mean vector qk−1 indirectly
affects the updated state x̂k through the predicted state x̂k|k−1,
while the measurement noise mean vector rk directly impacts
x̂k. Moreover, the process noise covariance matrix Qk−1 also
indirectly affects x̂k by the predicted error covariance matrix
Pk|k−1, and the measurement noise covariance matrix Rk has
a direct effect on x̂k via the Kalman gain Kk.

Due to the uncertainty of process noise, the one-step pre-
diction PDF can be written as

p(xk|x̂k|k−1,Pk|k−1, z1:k−1) = N (xk; x̂k|k−1,Pk|k−1) (5)

where the mean vector x̂k|k−1 and the prediction error covari-
ance matrix Pk|k−1 can be calculated by Table 1.

To estimate the target state xk, the analytical solution of
the joint posterior density p(xk, x̂k|k−1,Pk|k−1, rk,Rk|z1:k)
needs to be obtained. However, due to the coupling rela-
tionship between xk and the unknown parameters such as
x̂k|k−1, Pk|k−1, rk and Rk, it is generally difficult to obtain
a closed-formed solution. The VB method can use probability
graph model [21] and mean field theory [22] to approximate
the real a posteriori density by variational approximation
density of unknown parameters. Therefore, VB approximation
is introduced into RFS framework to deal with the coupling
between state xk and unknown parameters or latent variables.

B. Bayesian Hierarchical Model

In order to ensure that the prior and posterior distribu-
tion have the same form, the exponential cluster conjugate
prior distribution is used as the joint prior distribution of
{x̂k|k−1,Pk|k−1} and {rk,Rk} under the conjugate con-
dition. In the sense of Bayesian statistics, Gaussian-inverse
Wishart (NIW) distribution is a conjugate prior of multi-
dimensional Gaussian distribution with unknown mean and
covariance matrix, so the NIW distribution is chosen as the
joint prior distribution of x̂k|k−1 and Pk|k−1, which can be
written as

p(x̂k|k−1,Pk|k−1|z1:k−1) =N (x̂k|k−1; sk,Pk|k−1/αk)

× IW(Pk|k−1; tk,Tk)
(6)

in which IW(·;σ,Σ) means the inverse Wishart distribution
with the degree of freedom parameter σ and the inverse
scale matrix Σ. The latent variable αk represents the prior
confidence parameter, and the Gamma distribution is selected
as its prior distribution as follow

p(αk|z1:k−1) = G(αk; ak, bk) (7)

where G(·|a, b) represents the Gamma distribution with shape
parameter a and ratio parameter b. Similarly, the joint prior
density of rkand Rk is modeled as the Gaussian-inverse
Wishart form

p(rk,Rk|z1:k−1) = N (rk; εk,Rk/βk)IW(Rk;uk,Uk)
(8)



where the latent variable βk also represents the prior confi-
dence parameter, and the Gamma distribution is also selected
as its prior PDF given by

p(βk|z1:k−1) = G(βk; ck, dk) (9)

Fig. 1. Hierarchical Bayesian model under noise statistics mismatch

According to (4)–(9), the hierarchical Bayesian model of
single target tracking at time k under noise statistics mismatch
is shown in Fig.1, in which the ellipse means the measurement
vector, the circle represents the parameters to be estimated, and
the box denotes the given hyper-parameter. As a structured
statistical model, Bayesian hierarchical model is commonly
utilized to solve complex statistical problems.

III. δ-GLMB FILTERING UNDER NOISE STATISTICS
MISMATCH

A. NNIWNIWGG Model

In order to estimate the state xk and unknown parameters
simultaneously, they must be expressed as augmented state
on the mixed state space, and the corresponding joint a
posterior density function can be expressed in the form of
Gaussian inverse Wishart inverse Wishart Gamma Gamma
(NNIWNIWGG) distribution. Using a state modeling method
similar to that in extended target tracking, the hybrid state
space is constructed as follow

ζk ,{xk, x̂k|k−1,Pk|k−1, rk,Rk, αk, βk}
∈ Rnx × Rnx × Rnx

+ × Rnz × Rnz
+ × R+ × R+

(10)

where ζk represents the augmented stateRnx represents the
dimensional real vector space of nx, Rnx

+ represents the
positive real number space of nx × nx, R+ represents the
positive real number space. For the single target tracking
problem, the joint posterior density of the augmented state

at time k can be expressed as the NNIWNIWGG mixed
distribution

p(ζk) = N (xk;mk,Σk)N (x̂k|k−1; sk,Sk)

× IW(Pk|k−1; tk,Tk)N (rk;λk,Λk)

× IW(Rk;uk,Uk)G(αk; ak, bk)G(βk; ck, dk)

, NNIWNIWGG(ζk;φk)

(11)

where φk = (mk,Σk, sk,Sk, tk,Tk,λk,Λk, uk,Uk, ak, bk,
ck, dk) denotes the hyper-parameter array which encapsulates
all the statistics of the NNIWNIWGG model.

B. The proposed Adaptive δ-GLMB Filter

Different from the standard δ-GLMB filter, a joint estima-
tion of the target state and other parameters is indispensable
to the adaptive δ-GLMB filter with uncertain noise statistical
characteristics . According to the view of multi-target Bayesian
filtering, it is necessary to transfer the multi-target filtering
density in the form of δ-GLMB RFS forward over time.The
labeled multi-target states and parameters can be expressed
as Φ = {(ζ, `)j}(j = 1, 2, . . . , N),where N is the number
of target states. Multi-target measurements can be modeled as
RFS, as Z = {z1, z2, . . . ,z|Z|}, where z1, z2, . . . ,z|Z| means
every single measurement. When the statistical characteristics
of noise are uncertain, the prediction and update of adaptive
δ-GLMB filter are given by proposition 1 and proposition 2
respectively.

In order to express succinctly, the time subscript is omitted
and the one-step prediction of the variable is represented by
‘+’.

Proposition 1: If the joint posterior density function at the
previous time of multi-object has the δ-GLMB form as follow:

π(Φ) = ∆(Φ)
∑

(I,ϑ)∈F(L)×Ξ

w(I,ϑ)δI(L(Φ))[p(ϑ)]
Φ

(12)

then the augmented state joint predictive density function at
this time also has the same form

π+(Φ+) = ∆(Φ+)
∑

(I+,ϑ)∈F(L+)×Ξ

w
(I+,ϑ)
+ δI+(L(Φ+))[p

(ϑ)
+ ]

Φ+

(13)
with

w
(I+,ϑ)
+ = w

(ϑ)
S (I+

⋂
L)wΓ(I+

⋂
B) (14)

w
(ϑ)
S (J) = [η

(ϑ)
S ]

J ∑
I⊇J

[1− η(ϑ)
S ]

I−J
w(I,ϑ) (15)

p
(ϑ)
+ (ζ, `) = 1L(`)p

(ϑ)
+,S(ζ, `) + (1− 1L(`))pΓ(ζ, `) (16)

p
(ϑ)
+,S(ζ, `) =

〈
PS(·, `)f(ζ|·, `), p(ϑ)(·, `)

〉
η

(ϑ)
S (`)

(17)

η
(ϑ)
S (`) =

∫ 〈
PS(·, `)f(ζ|·, `), p(ϑ)(·, `)

〉
dζ (18)

where w(I+,ϑ)
+ denotes the weight of the predictive hypotheti-

cal component (I+, ϑ) , w(ϑ)
S (J) represents the weight of the

surviving labeled collection J , wΓ(·) represents the weight



of the new born labeled collection, η(ϑ)
S (·) denotes normalized

constant, p(ϑ)
+ (ζ, `) denotes the augmented state joint predicted

density function of single target, PS(·, `) denotes the survival
probability of the target, p(ϑ)

+,S(ζ, `) denotes the joint predicted
density function of surviving targets , pΓ(·, `) denotes the
probability density function of new born targets, f(ζ|·, `)
denotes the augmented state transfer density of single target.

Proposition 2: If the joint multi-target predicted density also
has the δ-GLMB form as shown in (12), then the joint multi-
target posterior density is given by

π(Φ)=∆(Φ)
∑

(I,ϑ)∈F(L)×Ξ

∑
θ∈Θ(I)

w(I,ϑ,θ)(Z)δI(L(Φ))[p(ϑ,θ)(·|Z)]
Φ

(19)

with

w(I,ϑ,θ)(Z) =
δθ−1({0:|Z|})(I)[η

(ϑ,θ)
Z ]

I
w(I,ϑ)∑

(I,ϑ)∈F(L)×Ξ

∑
θ∈Θ(I)

δθ−1({0:|Z|})(I)[η
(ϑ,θ)
Z ]

I
w(I,ϑ)

(20)

η
(ϑ,θ)
Z (`) =

〈
p

(ϑ)
+ (ζ, `), ϕZ(ζ, `; θ)

〉
(21)

p(ϑ,θ)(ζ, `|Z) =
p

(ϑ)
+ (ζ, `)ϕZ(ζ, `; θ)

η
(ϑ,θ)
Z (`)

(22)

ϕZ(ζ, `; θ) =

{
PD(ζ,`)p(zθ(`)|ζ,`)

κ(zθ(`))
, θ(`) > 0

1− PD(ζ, `), θ(`) = 0
(23)

where Z represents the set of measurements received by the
sensor at the current time, w(I,ϑ,θ)(Z) denotes the update
weight of the hypothetical component(I, ϑ, θ) , η(ϑ,θ)

Z denotes
normalized constant, p(ϑ,θ)(·, `|Z) denotes the augmented s-
tate joint posterior density function of single target, PD(·, `) in-
dicates the detection probability of the sensor, κ(·) represents
the clutter intensity function, p(·|ζ, `) denotes the likelihood
function of single target measurement, ϕZ(·, `; θ) denotes the
generalized measurement likelihood function.

IV. IMPLEMENTATION

To obtain the implementation of the proposed adaptive δ-
GLMB filter, the following assumptions are given:

Assumption 1: The single-target transition density
f(ζk|ζk−1) is Markovian, which can be written as

f(ζk|ζk−1) =f(xk|xk−1)f(x̂k|k−1|Pk|k−1, αk)

× f(Pk|k−1|Pk−1|k−2)f(rk|Rk, βk)

× f(Rk|Rk−1)f(βk−1|βk)

(24)

Assumption 2: The survival and detection probabilities are
independent of target augmented state and label, i.e.

PS(ζ, `) = PS (25)

PD(ζ, `) = PD (26)

Assumption 3: The multi-target birth model can be expressed
as an NNIWNIWGG mixture in the following form

pΓ(ζ, `) =

JΓ(`)∑
j=1

w
(j)
Γ (`)NNIWNIWGG(ζ;φ

(j)
Γ (`)) (27)

where JΓ, w(j)
Γ and φ(j)

Γ = (m
(j)
Γ ,Σ

(j)
Γ , s

(j)
Γ ,S

(j)
Γ , t

(j)
Γ ,T

(j)
Γ ,

λ
(j)
Γ ,Λ

(j)
Γ , u

(j)
Γ ,U

(j)
Γ , a

(j)
Γ , b

(j)
Γ , c

(j)
Γ , d

(j)
Γ ) are the NNIWNI-

WGG model parameters which control the shape of the
density.

Given the above assumptions, Proposition 3 and Proposition
4 give a closed-form solution of the proposed adaptive δ-
GLMB filter under noise statistics mismatch.

Proposition 3: Suppose that the joint multi-target prior
density is shown in (12), where the single-target density
p(ϑ)(ζ, `) is the NNIWNIWGG mixture with the form

p(ϑ)(ζ, `) =

J(ϑ)(`)∑
i=1

w(ϑ,i)NNIWNIWGG(ζ;φ(ϑ,i)(`)) (28)

where φ(ϑ,i) = (m(ϑ,i),Σ(ϑ,i), s(ϑ,i),S(ϑ,i), t(ϑ,i),T (ϑ,i),
λ(ϑ,i),Λ(ϑ,i), u(ϑ,i),U (ϑ,i), a(ϑ,i), b(ϑ,i), c(ϑ,i), d(ϑ,i)), then
the joint multi-target predicted density is shown in (13),
while the single-target predicted density p

(ϑ)
+ (ζ, `) is also

NNIWNIWGG mixtures of the form

p
(ϑ)
+ (ζ, `) =1L(`)

J(ϑ)(`)∑
i=1

w(ϑ,i)NNIWNIWGG(ζ;φ
(ϑ,i)
S )

+ (1− 1L(`))pΓ(ζ, `) (29)

where φ(ϑ,i)
S = (m

(ϑ,i)
S ,Σ

(ϑ,i)
S , s

(ϑ,i)
S ,S

(ϑ,i)
S , t

(ϑ,i)
S ,T

(ϑ,i)
S ,

λ
(ϑ,i)
S ,Λ

(ϑ,i)
S , u

(ϑ,i)
S ,U

(ϑ,i)
S , a

(ϑ,i)
S , b

(ϑ,i)
S , c

(ϑ,i)
S , d

(ϑ,i)
S ) is the

hyper-parameter set in the joint predicted density of survival
targets, each of which can be calculated by

m
(ϑ,i)
S = Fm(ϑ,i) + q∗ (30)

Σ
(ϑ,i)
S = FΣ(ϑ,i)FT +Q∗ (31)

s
(ϑ,i)
S = m

(ϑ,i)
S (32)

S
(ϑ,i)
S = S(ϑ,i) (33)

t
(ϑ,i)
S = τ + nx + 1 (34)

T
(ϑ,i)
S = τΣ

(ϑ,i)
S (35)

λ
(ϑ,i)
S = r∗ (36)

Λ
(ϑ,i)
S = Λ(ϑ,i) (37)

u
(ϑ,i)
S = ρ(u(ϑ,i) − nz − 1) + nz + 1 (38)

U
(ϑ,i)
S = ρU (ϑ,i) (39)

a
(ϑ,i)
S = ρa(ϑ,i), b

(ϑ,i)
S = ρb(ϑ,i) (40)

c
(ϑ,i)
S = ρc(ϑ,i), d

(ϑ,i)
S = ρd(ϑ,i) (41)



where τ ≥ 0 a tuning parameter, and ρ ∈ [0, 1) is a forgetting
factor which describes the dynamic uncertainty of unknown
parameters, and the multi-target birth model pΓ(ζ, `) is given
by (27).

Proposition 4: Suppose that the joint multi-target predicted
density is shown in (13), and the single-target predicted density
p

(ϑ)
+ (ζ, `) can be expressed as the NNIWNIWGG mixture with

the form

p
(ϑ)
+ (ζ, `) =

J
(ϑ)
+∑
i=1

w
(ϑ,i)
+ NNIWNIWGG(ζ;φ

(ϑ,i)
+ ) (42)

where φ(ϑ,i)
+ = (m

(ϑ,i)
+ ,Σ

(ϑ,i)
+ , s

(ϑ,i)
+ ,S

(ϑ,i)
+ , t

(ϑ,i)
+ ,T

(ϑ,i)
+ ,

λ
(ϑ,i)
+ ,Λ

(ϑ,i)
+ , u

(ϑ,i)
+ ,U

(ϑ,i)
+ , a

(ϑ,i)
+ , b

(ϑ,i)
+ , c

(ϑ,i)
+ , d

(ϑ,i)
+ ) denotes

the hyper-parameter set in the single-target predicted density,
then the joint multi-target posterior density is shown in (19),
where the single-target posterior density is given by

p(ϑ,θ)(ζ|Z) =

J
(ϑ)
+∑
i=1

w
(ϑ,θ)
Z,i

η
(ϑ,θ)
Z

NNIWNIWGG(ζ;φ
(ϑ,θ)
Z,i ) (43)

where φ(ϑ,θ)
Z,i = (m

(ϑ,θ)
Z,i ,Σ

(ϑ,θ)
Z,i , s

(ϑ,θ)
Z,i ,S

(ϑ,θ)
Z,i , t

(ϑ,θ)
Z,i ,T

(ϑ,θ)
Z,i ,

λ
(ϑ,θ)
Z,i ,Λ

(ϑ,θ)
Z,i , u

(ϑ,θ)
Z,i , U

(ϑ,θ)
Z,i , a

(ϑ,θ)
Z,i , b

(ϑ,θ)
Z,i , c

(ϑ,θ)
Z,i , d

(ϑ,θ)
Z,i ), and

the normalization constant can be calculated by

η
(ϑ,θ)
Z =

J
(ϑ)
+∑
i=1

w
(ϑ,θ)
Z,i (44)

For θ(`) = 0, which denotes no measurements are associat-
ed with track `, we have w(ϑ,θ)

Z,i = w
(ϑ,i)
+ (1− PD), m(ϑ,θ)

Z,i =

m
(ϑ,i)
+ , Σ

(ϑ,θ)
Z,i = Σ

(ϑ,i)
+ , s(ϑ,θ)

Z,i = s
(ϑ,i)
+ , S(ϑ,θ)

Z,i = S
(ϑ,i)
+ ,

t
(ϑ,θ)
Z,i = t

(ϑ,i)
+ , T (ϑ,θ)

Z,i = T
(ϑ,i)
+ , λ(ϑ,θ)

Z,i = λ
(ϑ,i)
+ , Λ

(ϑ,θ)
Z,i =

Λ
(ϑ,i)
+ , u(ϑ,θ)

Z,i = u
(ϑ,i)
+ , U (ϑ,θ)

Z,i = U
(ϑ,i)
+ , a(ϑ,θ)

Z,i = a
(ϑ,i)
+ ,

b
(ϑ,θ)
Z,i = b

(ϑ,i)
+ , c(ϑ,θ)Z,i = c

(ϑ,i)
+ , d(ϑ,θ)

Z,i = d
(ϑ,i)
+ .

If θ(`) >0, which means there is a measurement is associ-
ated to the track `, then

w
(ϑ,θ)
Z,i = q

(ϑ)
i (zθ(`))

w
(ϑ,i)
+ PD

κ(zθ(`))
(45)

while the parameters in the hyper-parameter set φ(ϑ,θ)
Z,i can be

calculated by the fixed-point iterations as shown in Table II,
and the predicted likelihood q(ϑ)

i (zθ(`)) can be obtained using

the final values of these parameters according to

q
(ϑ)
i (zθ(`)) = 0.5t

(ϑ,i)
+ ln |T (ϑ,i)

+ | − ln Γ
(

0.5t
(ϑ,i)
+

)
− 0.5nz ln 2π + 0.5u

(ϑ,i)
+ ln |U (ϑ,i)

+ |

− ln Γ
(

0.5u
(ϑ,i)
+

)
+ a

(ϑ,i)
+ ln b

(ϑ,i)
+ − ln Γ(a

(ϑ,i)
+ )

+ c
(ϑ,i)
+ ln d

(ϑ,i)
+ − ln Γ(c

(ϑ,i)
+ ) + 0.5 ln |P |

+ nx + 0.5 ln |S(ϑ,θ)
Z,i | − 0.5t

(ϑ,θ)
Z,i ln |T (ϑ,θ)

Z,i |

+ nx ln 2 + ln Γ
(

0.5t
(ϑ,θ)
Z,i

)
+ ln Γ(c

(ϑ,θ)
Z,i )

+ 0.5tr
(
E
[
P+
−1
]

E[α]B
)

+ 0.5 ln |Λ(ϑ,θ)
Z,i |

+ 0.5nz − 0.5u
(ϑ,θ)
Z,i ln |U (ϑ,θ)

Z,i |+ nz ln 2

+ ln Γ
(

0.5u
(ϑ,θ)
Z,i

)
+ 0.5tr

(
E
[
R−1

]
E [β]D

)
− a(ϑ,θ)

Z,i ln b
(ϑ,θ)
Z,i + ln Γ(a

(ϑ,θ)
Z,i )− c(ϑ,θ)Z,i ln d

(ϑ,θ)
Z,i

(46)

The predicted likelihood q
(ϑ)
i (zθ(`)) can be obtained via

minimizing the Kullback-Leibler divergence by the variational
lower bound, while its derivation is similar to the Appendix
A in [9] and the Appendix D in [23].

V. NUMERICAL SIMULATION

In this section, the performance of the proposed
NNIWNIWGG-δ-GLMB filter is illustrated in a multi-target
tracking scenario with unknown and time-varying noise s-
tatistics. We compare it with the existing NIWIW-δ-GLMB
filter with nominal process and measurement noises mean
[15], as well as the GM-δ-GLMB filter with nominal process
and measurement noise mean vectors and covariance matri-
ces. Moreover, the GM-δ-GLMB filter with true noise mean
vectors and covariance matrices is utilized as the reference
standard for multi-target tracking performance. The cardinality
statistics and the Optimal Subpattern Assignment (OSPA)
distance [24] are selected to evaluate these filters estimation
performance with the cut-off parameter c = 100 and the order
parameter p = 2.

Considering a two-dimensional surveillance region [-
1000, 1000]m×[-1000, 1000]m, the kinematic state xk =
[px,k, ṗx,k, py,k, ṗy,k]

T of each target includes the position
[px,k, py,k] and velocity [ṗx,k, ṗy,k] . In addition, the sensor
is placed in the center of the surveillance region, and there
is miss detection and clutter interference. The true trajectories
of targets are shown in Fig.2. Different colored lines denote
different targets. And the circles and triangles are the starting
and ending points of each target, respectively.

The single-target Markov state transition PDF is given by
(3) ,where the state transition matrix

Fk−1 = I2 ⊗
[
1 T
0 1

]
(47)



TABLE II
ITERATION STEP OF NNIWNIWGG-δ-GLMB UPDATE

Initialization: m(ϑ,θ)
Z,i

(0)
= m

(ϑ,i)
+ , Σ(ϑ,θ)

Z,i

(0)
= Σ

(ϑ,i)
+ ,

P̄ (0) = Σ
(ϑ,i)
+ , R̄(0) = U (ϑ,i)/(u(ϑ,i) − nz − 1),

E(0) [α] = a(ϑ,i)/b(ϑ,i), E(0) [β] =

c(ϑ,i)/d(ϑ,i)

for j=0:N-1

s
(ϑ,θ)
Z,i

(j+1)
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m

(ϑ,θ)
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+s
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U
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end for
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(N)
, T (ϑ,θ)
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(ϑ,θ)
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(N)
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(ϑ,θ)
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(N)
,
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(ϑ,θ)
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(N)
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(ϑ,θ)
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c
(ϑ,θ)
Z,i = c

(ϑ,θ)
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(N)
, d(ϑ,θ)
Z,i = d

(ϑ,θ)
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where I2 denotes 3×3 identity matrix, ⊗ is the Kronecker
product, and T = 1s is the sampling interval. The true process
noise covariance matrix and mean vector are formulated as

Qk =

{
Q0
∗,

4Q0
∗,

if k < kp
else (48)

qk =

{
q0
∗,

5q0
∗,

if k < kp
else (49)

where kp = 31s represents the time step parameters of the
true process noise covariance matrix and mean vector change,

and q∗0 = [1, 1, 1, 1]
T and Q0

∗ = σwI2 ⊗
[
T 3/3 T 2/2
T 2/2 T

]
represents the nominal value of process noise mean vector
and covariance matrix respectively, and the standard deviation
σw = 5m/s2.

The measurement model can be described as (2), Hk =[
1 0 0 0
0 0 1 0

]
, and the true measurement noise covariance

matrix and mean vector are given by

Rk =

{
R0
∗, ifk < km

4R0
∗, else

(50)

rk =

{
r0
∗, ifk < km

5r0
∗, else

(51)

where km = 51s represents the time step parameters of the
true measurement noise covariance matrix and mean vector
change, and r0

∗ = [1, 1]
T and R0

∗ = σ2
vI2 represents

the nominal value of measurement noise mean vector and
covariance matrix respectively, and the standard deviation
σw = 5m .

Clutter is modeled as a Poisson RFS with intensity κ(z) =
λcV u(z) , where λc = 2.5 × 10−6m−2 denotes the average
clutter intensity, V = 4 × 106m2 is the volume of the
surveillance region (giving an average of 10 clutter per scan).
The tuning parameter τ = 5 , forgetting factor ρ = 0.99 , and
the number of iterations Nmax = 5 .

The birth model is an LMB RFS with parameters πΓ,k(ζ) =

{rk(i),pΓ,k
(i)(ζ)}(4)

i=1 , where rk(i) = 0.03 and

p
(i)
Γ,k(ζ) = NNIWNIWGG(ζ;φ

(i)
Γ,k) (52)

where φ(i)
Γ,k = (m

(i)
Γ,k,ΣΓ,k, sΓ,k,SΓ,k, tΓ,k,TΓ,k,λΓ,k,ΛΓ,k,

uΓ,k,UΓ,k, aΓ,k, bΓ,k, cΓ,k, dΓ,k) with m
(1)
Γ,k =

[0.1, 0, 0.1, 0]
T, m

(2)
Γ,k = [400, 0,−600, 0]

T,
m

(3)
Γ,k = [−800, 0,−200, 0]

T, m(4)
Γ,k = [−200, 0, 800, 0]

T,

ΣΓ,k = diag
(

[10, 10, 10, 10]
T
)2

, sΓ,k = [100, 0, 100, 0]
T,

SΓ,k = diag
(

[20, 20, 20, 20]
T
)2

, tΓ,k = 10, TΓ,k = 9Q∗0,

λΓ,k = [1, 1]
T, ΛΓ,k = diag

(
[10, 10]

T
)2

, uΓ,k = 20,
UΓ,k = 16R∗0, aΓ,k = 1, bΓ,k = 1, cΓ,k = 1 and dΓ,k = 1 .

To further verify the effectiveness of the proposed
NNIWNIWGG-δ-GLMB filter, it is compared with other filters
over 100 Monte Carlo (MC) trials in the same simulation
conditions. Fig.3 shows the cardinality statistics versus time
for different filters. It can be seen that the GM-δ-GLMB filter
with nominal noise mean vectors and covariance matrices,
which is called GM-δ-GLMB (Nominal) for short, can cor-
rectly estimate the target number in the initial stage, but the
target loss occurs from the 31st second, and further, from the



51st second, the target loss is more serious. Similarly, the
performance of the NIWIW-δ-GLMB filter can still estimate
the target number correctly at the 31st second. However, the
target loss of the filter occurs from the 51st second, and
becomes more obvious with the change of time. The target
number estimation of the proposed NNIWNIWGG-δ-GLMB
filter until the end of tracking is very close to that of the GM-
δ-GLMB filter with true noise mean vectors and covariance
matrices, which is called GM-δ-GLMB (True) for short.

Fig.4 shows the OSPA distance versus time over 100 MC
trials. It is noted that the GM-δ-GLMB (True) filter and
the NNIWNIWGG-δ-GLMB filter significantly outperform the
NIWIW-δ-GLMB filter and the GM-δ-GLMB (Nominal) filter
on the overall miss distance, and the GM-δ-GLMB (True)
filter has a better performance than that of the proposed
NNIWNIWGG-δ-GLMB filter.
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VI. CONCLUSION

In this paper, an adaptive δ-GLMB filter based on VB infer-
ence for MTT under noise statistics mismatch was proposed,
where the predicted state and the corresponding prediction
error covariance matrix were modeled as an NIW distribution,
and the latent parameter was modeled as a Gamma distri-
bution. Similarly, the measurement noise mean vector and
covariance matrix were also modeled as an NIW distribution,
in which the latent parameter was also modeled as a Gamma
distribution. Then, the target state, unknown parameters and
latent parameters were modeled as augmented states. Then the
joint single-target posterior density was described as mixtures
of the NNIWNIWGG model, and the approximate posterior
density of each parameter was derived by VB method. Finally,
the approximation of the predicted likelihood was obtained
by minimizing the Kullback-Leibler divergence. Simulation
results showed that the tracking accuracy of the proposed
NNIWNIWGG-δ-GLMB filter was comparable to that of the
GM-δ-GLMB (True) filter.
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