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ABSTRACT   

Information on flower number per grapevine inflorescence is critical for grapevine genetic improvement, early yield 

estimation and vineyard management. Previous approaches to automize this process by traditional image processing 

techniques such as color and morphology analysis, have failed in the improvement of a universal system that can be 

applied to multiple grapevine cultivars during different growth stages under various illumination conditions. Deep neural 

networks present numerous opportunities for image-based plant phenotyping. In this study, we evaluated three deep 

learning-based approaches for automatic counting of flower numbers on inflorescence images, built on instance 

segmentation using Mask R-CNN, object density-map estimation using U-Net and patch-based instance segmentation 

using Mask R-CNN, respectively. The results were analyzed on a publicly available grapevine inflorescence dataset of 

204 images of four different cultivars during various growth stages, providing a high diversity for inflorescence 

morphology. The algorithm, based on patch-based instance segmentation using Mask R-CNN, produced counting results 

highly correlated to manual counts (R2 = 0.96). Practically constant MAPE values among different cultivars (from 5.50% 

to 8.45%), implying a high robustness in this method. Achieving the fastest counting (0.33 sec. per image of size 512 × 

512) with slightly lower counting accuracy (R2 = 0.91), the method based on object density-map turned out to be suitable 

for real-time flower counting systems.   

Keywords: Computer vision-based phenotyping, flower counting, instance segmentation, object density map, 

convolutional neural network (CNN), grape yield estimation 

 

1. INTRODUCTION  

Flower number per inflorescence is one of the major traits in the scope of grapevine breeding, breeding research and 

vineyard management1–4 . A low number of flowers per inflorescence might limit the berry yield of certain varieties 

under certain condition5. On the other hand, a high number of flowers per inflorescence along with a high fruit-set rate 

might develop too compact clusters, which are more inclined to fungal vineyard diseases6. For optimized vineyard 

management, i.e. yield adjustments by bunch thinning, early yield predictions between fruit set and veraison (beginning 

of grape ripening), are essential to achieve well-balanced leaf-area-to-fruit-ratios, which are required for desired grape 

quality and yield amount7,8. Consequently, there is a growing significance on the accurate assessment of the flower 

number for the breeding of new cultivars with an optimum reproductive performance and for an early yield prediction to 

assist viticulturists taking management decisions.  

The traditional method for assessment of flower number in an inflorescence relies on manual counting , however this 

process becomes challenging and unpractical when large grapevine sets need to be analyzed9. Recently, several 

approaches for automatic estimation of flower number per inflorescence by image analysis have been explored, including 

the works of Diago et al., Aquino et al., Benmehaia et al., Millan et al., Liu et al., Rudolph et al.10–15. However, most of 

these works which are based on traditional color analysis and morphological processing are sensitive to illumination, size 

and morphology of inflorescence and hence are not robust to inflorescences from diverse cultivars and to variations in 

images taken in different yard. Efficient identification and counting of grapevine flowers hereby is the most challenging 

phenotyping task regarding the small size and dense distribution of single flowers within inflorescence, as well as wide 

variability in grapevine inflorescence morphology between cultivars, locations and seasons (see Figure 1). As discussed 

by Liu et al.14, variability in grapevine inflorescence morphology like stem length, branching pattern and flower density 

affect automatic flower counting performance for a method developed based on traditional color thresholding and image 

feature descriptors. 



 

 
 

 

 

 

In recent years, advanced computer vision techniques using deep convolutional neural networks (DCNN) have been 

largely adopted in crop detection16 and plant phenotyping17 researches because of the networks’ ability to be invariant to 

different types of variations in the image data in complex agricultural environment. Deep instance segmentation-based 

methods such as Mask R-CNN18 can be used for accurate counting of objects, but both their segmentation and counting 

performance declines when the object size decreases and objects have heavy intern-occlusion. Patch-based approach, 

where instead of processing the whole image at once smaller patches from the image are extracted and processed in 

sliding window fashion can make instance segmentation network potentially more robust to smaller objects. In contrast, 

counting methods using object density maps19 bypass the difficulties caused when objects have dense distribution by 

avoiding explicit detection20. In an object density map, the integral over any region gives the estimated number of objects 

within the corresponding region in the image. 

The purpose of this study is to evaluate efficiency of grapevine flower counting per inflorescence by instance 

segmentation using state-of-the-arts Mask R-CNN18 and by density-based estimation using U-Net21, a widely used Fully-

convolutional network (FCN) for image segmentation, as well as to assess the competence of patch-based processing for 

enhancing instance segmentation performance. To this aim, we have analyzed and compared the performance of the 

suggested models on publicly available grapevine inflorescence dataset by Liu et al.14, including diverse cultivars, 

different inflorescence development stages and different seasons. Our experiments demonstrated satisfactory results 

under all conditions, providing useful information for grapevine breeding research and early yield prediction.  

 

Figure 1. Challenges of automatic grapevine flower counting per inflorescence. Morphological diversity of inflorescences 

from different cultivars during different growth stages; the difference in density of flower distribution in an inflorescence, 

shape of the flowers and number of branches. Dates are referred in Table 1. 

 

2. MATERIALS AND METHODS 

2.1 Dataset preparation 

For this study, we used grapevine inflorescence dataset by Liu et al.14. The dataset contains a total of 533 images of four 

grapevine cultivars (Cabernet sauvignon, Chardonnay, Merlot and Shiraz) captured under different illumination 

conditions at different Australian vineyards. These cultivars include a wide range of phenotypic diversity in flower 

inflorescence length, flower number, flower density and branch numbers, as observed in Figure 1. The growth stage of 

the sampled inflorescences ranged between Einhorn-Lorenz (EL) stage 12-2122.  



 

 
 

 

 

 

Since the images were captured by either commercial RGB camera or mobile there is no uniform image size or 

resolution in the dataset. We resized each image to 512 pixels in larger dimension while preserving the original aspect 

ratio and then pasted it on a black frame of 512 × 512 pixels, in order to make the images suitable for processing by both 

neural networks, Mask R-CNN and U-Net. The entire dataset was then sampled into three subsets for train, validation, 

and test purposes. The flower counting performances of the models were evaluated on a set of 204 images from all four 

grapevine cultivars and has the same images from the evaluation set of work 14. From the remaining images 120 images 

were selected for training and another 25 images for validation. For performance evaluation and training the selected 

subsets were then annotated carefully using VGG image annotation tool. Each visible grape flower in the images were 

tagged by bounding polygons (see Figure 2a) and by points (see Figure 2b) for instance segmentation task and density 

map estimation task, respectively. The detail description of the datasets is presented in Table 1. 

 

Figure 2. Examples of manual annotation of individual flowers in an inflorescence image. Labeling flowers using bounding 

polygons for instance segmentation task (a) and using points for density map estimation task (b). 

2.2 Automatic estimation of flower numbers 

In this study, for automatic estimation of number of flowers per grapevine inflorescence three different approaches with 

two deep neural networks were evaluated and their efficiency were analyzed. Figure 3 illustrates our approaches for 

grape flower counting. Our first approach employed the state-of-the-arts instance segmentation network Mask-RCNN18 

for segmentation of each instance of flower in the inflorescence images and estimate their numbers simultaneously 

(Figure 3a). The segmentation-based method for counting requires explicit localization of each objects in the scene, 

therefore, it’s performance potentially declines when the object size decreases and have dense distribution as such in the 

inflorescence datasets considered for experiments in this work. Counting using object density map avoids the explicit 

localization of objects and could produce promising results under conditions of smaller object size and heavy inter-

occlusion. In our second approach, we used U-Net21 semantic segmentation network to generate density map and 

estimate flower numbers on the inflorescence images (Figure 3b). In our final approach, we utilized patch-based 

processing technique with an aim to enhance the instance segmentation performance of Mask R-CNN in situations like 

our experimental dataset, where objects have smaller size and appear partially because of heavy inter-occlusions (Figure 

3c). Detail description of patch-based processing is given in section 2.4. 

2.3 CNN architectures 

The Mask RCNN18 network is the combination of a Faster R-CNN object detector23 and a FCN for semantic 

segmentation, producing a complete, end-to-end, instance segmentation output. The Faster R-CNN is also composed of 

two architectures: a region proposal network (RPN) and an object detector, the Fast R-CNN24. RPN generates Region of 

Interests (RoIs) by finding anchors in the feature space, rectangular boxes that may contain objects of interest. The Fast 

R-CNN consists of a softmax object classifier and a per-class bounding box regressor. 

U-Net21 is a widely used FCN for image segmentation, frequently applied to microscopic biomedical data. It has 

autoencoder-like structure, where an input image is processed by repeated application of a block of convolutional layers, 

followed by a pooling layer (down-sampling). This way the network encodes and compresses the key features of the 



 

 
 

 

 

 

input image. The second portion of U-Net is symmetric, but pooling layers are replaced with up-sampling convolutional 

layers, so that the output dimensions match the size of the input image. The information from higher resolution layers in 

the down-sampling portion is passed to corresponding layers in the up-sampling portion, which allows to reuse learned 

higher level features to precisely decode contracted layers. 

 

Figure 3. Illustration of the deep learning-based automatic approaches for estimation of flower numbers in grapevine 

inflorescence images. 

2.4 Implementation, training and inference 

For instance segmentation, we employed the publicly available Keras/TensorFlow-based implementation for Mask R-

CNN by Matterport, Inc.25, pre-trained with the COCO dataset26. No layer was frozen during training, so all weights 

could be updated by the training on the grapevine inflorescence datasets. ResNet-101 was used as feature extraction 

architecture. Our implementation of U-Net for density map estimation is also based on Keras/TensorFlow. We 

customized Matterport’s implementation of Mask R-CNN for patch-based processing for our final image analysis 

approach. 

The training set (see Table 1) was augmented 9 times: for each image in the training set, 8 augmentations were generated 

using horizontal flips, vertical flips, rotation (-900, 900, -1800, 1800), scaling (between 0.5 and 1.5 percent) and crop and 

pad (between -0.05 and 0.1 percent) using imgaug library27. The augmentations were applied randomly and repeatedly 

until a final set of 1080 images was obtained and used while training. Pixel level instance masks and point masks were 

used for training Mask R-CNN and U-Net, respectively.  

For patch-based approach, each image in the training set was split into image patches of 256 × 256 pixels (mask images 

were produced accordingly) and used during training Mask R-CNN. During inference, 50% overlapped (horizontally and 

vertically) image patches of size 256 × 256 pixels were extracted from the full image and processed by the trained Mask 

R-CNN. A full confidence score image was produced by combining the confidence score patches and averaging the 

values of the overlapped regions between patches. 



 

 
 

 

 

 

2.5 Evaluation and statistical analysis 

The quality of the estimation derived by the models was assessed by comparing the number of visible flowers obtained 

automatically with the number obtained by manual counting (ground truth) on the images from the test set. The 

coefficient of determination (R2), the Root Mean Square Error (RMSE) and mean absolute percentage error (MAPE) 

metrics according to Paulus et al.28 were calculated for accuracy assessment and error estimation.  

Table 1. Description of the datasets used in this paper. CAS, CHA, MER, and SHI are short for Cabernet Sauvignon, 

Chardonnay, Merlot, and Shiraz, respectively; EL is short for EL stage, the phenological grapevine growth stage according 

to the modified Einhorn-Lorenz system22. 

Purpose Dataset Date Selected 

images 

EL stage Location Total 

Training CAS, date 2 10/01/2015 15 16-17 Coonawarra 120 

CAS, date 3 12/01/2015 17 

CAS, date 4 28/10/2014 15-16 Padthaway 

CHA, date 4 23/10/2015 17-18 Barossa 

CHA, date 5 12/01/2015 16 Coonawarra 

CHA, date 6 23/10/2015 17-18 Barossa 

SHI, date 4 12/01/2015 16 Coonawarra 

SHI, date 5 22/10/2013 16-17 Barossa 

Validation CAS, date 5 28/10/2013 10 16-17 Barossa 25 

CHA, date 7 15/10/2013 15 

MER 12/01/2015 5 16-17 Coonawarra 

Evaluation CAS, date 1 02/11/2015 25 17 -18 Barossa 204 

CHA, date 1 14/10/2015 22 14 

CHA, date 2 20/10/2015 26 16-17 

CHA, date 3 23/10/2015 29 19-20 

MER 12/01/2015 20 16-17 Coonawarra 

SHI, date 1 20/10/2015 27 15 Barossa 

SHI, date 2 23/10/2015 30 17 

SHI, date 3 28/10/2015 25 20 

 

To evaluate the performance of flower detection (segmentation) recall and precision were calculated based on the 

confusion matrix29. We also calculated the F1 score to assess the accuracy of visible flower detection (segmentation). 

Recall (r) and precision (p) measure the percentage of the actual flowers detected, and the percentage of flowers 

correctly identified, respectively, and is derived from 
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Where TP is the true positive value, indicating the number of flowers detected corresponding to an actual flower in the 

ground truth set, FN is the false negative, representing an actual flower, tagged in ground truth set but not detected by the 

automatic flower detection model, FP is the false positive, standing for the number of flowers detected that does not 

correspond to an actual flower in the ground truth set.  

F1 score is derived by combining recall and precision, 

 

3. RESULTS AND DISCUSSION 

The validation set was utilized to select the best model for further evaluation on the test set (see Table 1). All the 

networks were trained and tested on GPU (Nvidia GeForce GTX 1080 Ti) with a machine having Intel ® core i7-9700k 

3.60 GHz processor and 64 GB RAM. 

3.1 Comparison of different flower number estimation models 

In this section, the performances of estimation of flower numbers per grapevine inflorescence obtained using instance 

segmentation with Mask R-CNN, using object density-map with U-Net and patch-based instance segmentation with 

Mask R-CNN were analyzed on our test set which includes inflorescence images from four different cultivars during 

multiple growth stages. For Mask R-CNN with patch-based processing, we obtained a significantly high R2 value of  

0.96 between the number of flowers obtained automatically and the number obtained by manual counting on the images, 

with individual values nearly matching the x=y identity line (Figure 4), and extremely small RMSE and MAPE of 12.77 

flowers and 6.92%, respectively (Table 2). Considering each cultivar independently, the Mask R-CNN model with patch-

based processing obtained  R2 values ranging between 0.99 (Cabernet sauvignon) and 0.94 (Chardonnay), values are 

slightly higher to those obtained by density-based estimation using U-Net (0.97, 0.90, 0.97, 0.91 for Cabernet sauvignon, 

Chardonnay, Merlot, and Shiraz, respectively) and much higher than to those achieved by Mask R-CNN model (0.70, 

0.82, 0.57, 0.81 for Cabernet sauvignon, Chardonnay, Merlot, and Shiraz, respectively) (Table 2). Since R2 is highly 

sensitive to the presence of outliers, we reported two more robust metrics for model performance evaluation: RMSE and 

MAPE (Table 2). The patch-based Mask R-CNN model showed lowest counting errors with RMSE ranged between 

10.35 flowers (Shiraz) and 17.63 flowers (Cabernet sauvignon) and MAPE ranged between 5.50% (Shiraz) and 8.45% 

(Cabernet sauvignon) than density-based estimation (RMSE and MAPE from 15.78 to 24.31 flowers and from 6.78% to 

15.08%, respectively) and ordinary Mask R-CNN (RMSE and MAPE from 42.75 to 69.90 flowers and from 20.98% to 

27.38%, respectively). 

The practically constant values of RMSE and MAPE among different cultivars produced by Mask R-CNN with patch-

based processing and density-based estimation with U-Net is suggesting a high robustness in these automatic flower 

counting methods.  

Figure 5a and Figure 5b show some examples of flower detection and counting results by ordinary Mask R-CNN 

(confidence threshold is 0.8), by density-map with U-Net and by patch-based Mask R-CNN (confidence threshold is 0.8) 

in three different columns.  Overall, Mask R-CNN with patch-based processing detected almost all visible flowers 

correctly and therefore produced highly accurate counting results (Figure 5a column 2). We observed that the greatest 

counting errors found in the images with the highest number of flowers per inflorescence and heavy-inter occlusion 

(Figure 5b row 1,2), and very small size of flowers (Figure 5b row 3). Patch-based processing considerably enhanced the 

flower detection performance of Mask R-CNN (Figure 5a, b column 2 and column 1, respectively).  However, despite of 

applying patch-based processing, the counting performance of Mask R-CNN was equivalent or slightly lower than 

density-based estimation in cases with heavy inter-occlusion and smaller flowers (Figure 5b), as Mask R-CNN failed to 

locate flowers under heavy occlusion and to detect small flowers.  

The flower estimation model using density map with U-Net was much faster (0.33 sec. per image of size 512 × 512) than 

Mask R-CNN instance counting models (2.31 sec. and 3.83 sec. per image of size 512 × 512 for without and with patch-

based processing, respectively. (Table 3), demonstrating a more suitability for real-time applications. 

3.2 Comparison with baseline method  

Table 4 presents the recall, precision and F1 score measured for four different cultivars. They demonstrate that the results 

produced by Mask R-CNN with patch-based processing has a substantially better performance than those reported in 



 

 
 

 

 

 

previous related work by Liu et al.14. Given the automatic flower counting method using Mask R-CNN with patch-based 

processing has been tested on different cultivars at different development stages and showed consistent F1 scores (Table 

4) and R2 values (Table 5), respectively, the robustness of the developed method provides a solid foundation for flower 

number estimation and breeding research. 

 

Figure 4. Correlation analysis to compare the number of flowers obtained manually and automatically by different 

estimation models. 

 

Table 2. Performance of the different methods for visible flower counting in diverse image datasets of grapevine 

inflorescence. R2, coefficient of determination; RMSE, root mean square error; MAPE, mean absolute percentage error. 

Metrics Methods All 

cultivars 

Cabernet 

sauvignon 

Chardonnay Merlot Shiraz 

R2 Mask R-CNN 0.75 0.7029 0.8223 0.5678 0.8137 

Density map (U-Net) 0.91 0.9715 0.899 0.9754 0.9116 

Patch-based Mask R-CNN 0.96 0.99 0.9413 0.9762 0.9712 

MAPE 

(%) 

Mask R-CNN 25.17 23.51 24.38 20.98 27.38 

Density map (U-Net) 10.62 15.08 12.77 6.78 8.26 

Patch-based Mask R-CNN 6.92 8.45 8.12 6.53 5.50 

RMSE 

(flowers) 

Mask R-CNN 53.31 69.90 42.75 56.85 55.47 

Density map (U-Net) 18.11 24.31 18.39 16.81 15.78 

Patch-based Mask R-CNN 12.77 17.63 11.76 17.41 10.35 

 



 

 
 

 

 

 

Table 3. Grapevine flower number estimation time per image of different methods. 

Methods No. of images Image size (pixels) Counting time/image (Sec.) 

Mask R-CNN 204 512 × 512 2.31 

Density map (U-Net) 0.33 

Patch-based Mask R-CNN 3.83 

 

4. CONCLUSIONS 

Precise counting of flower number in grapevine inflorescence is essential for grapevine breeding research and early 

estimation of crop yield. Nevertheless, previous works have failed in the development of a generic method that could be 

applied to inflorescences with diverse morphology. In this work, we have evaluated three deep learning-based 

approaches for automatic counting of flower numbers employing instance segmentation, density-map estimation, and 

patch-based processing. The results were analyzed on a publicly available dataset that provide a high diversity for 

inflorescence morphology. Our results indicate that substantially high-throughput prediction of the visible number of 

flowers can be obtained utilizing advanced computer vision techniques, even when inflorescences with highly diverse 

morphology are investigated.  

Table 4. Comparison of grapevine flower detection performance between the developed method based on patch-based Mask 

R-CNN and the results presented by Liu et al.10 in terms of Precision, Recall, and F1 score. 

Metrics Method Chardonnay Shiraz Cabernet 

sauvignon 

Merlot 

Date 1 Date 2 Date 3 Date 1 Date 2 Date 3 

Precision Patch-based 

Mask R-CNN 

0.9927 0.9779 0.9852 0.9886 0.9857 0.9776 0.9733 0.9867 

Liu at el.14 0.9512 0.9352 0.9241 0.9228 0.8904 0.8788 0.8996 0.8916 

Recall Patch-based 

Mask R-CNN 

0.9248 0.9698 0.9747 0.9374 0.9694 0.9820 0.9590 0.9583 

Liu at el.14 0.9612 0.9560 0.9611 0.9367 0.9262 0.9638 0.9173 0.9819 

F1 Patch-based 

Mask R-CNN 

0.9575 0.9738 0.9799 0.9615 0.9775 0.9798 0.9661 0.9723 

Liu at el.14 0.9555 0.9446 0.9417 0.9284 0.9069 0.9188 0.9069 0.9344 

 

Table 5. Comparison of impact of inflorescence development stage on flower number estimation performance. R2, 

coefficient of determination. 

Metrics Methods Chardonnay, 

date 1 

Chardonnay, 

date 2 

Chardonnay, 

date 3 

Shiraz, 

date 1 

Shiraz, 

date 2 

Shiraz, 

date 3 

R2 Patch-based 

Mask R-CNN 

0.97 0.98 0.98 0.97 0.97 0.99 

Liu at el.14 0.79 0.93 0.94 0.82 0.94 0.90 

 



 

 
 

 

 

 

 

Figure 5a. Examples of flower counting results produced by Mask R-CNN (column 1), density-based estimation (column 2) 

and patch-based mask R-CNN (column 3). 

 



 

 
 

 

 

 

 

Figure 5b. Examples of flower counting results on images with the highest number of flowers per inflorescence produced by 

Mask R-CNN (column 1), density-based estimation (column 2) and patch-based mask R-CNN (column 3). 
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