
EasyChair Preprint
№ 8979

Task Mapping and Scheduling in FPGA-Based
Heterogeneous Real-Time Systems: a RISC-V
Case-Study

Sallar Ahmadi-Pour, Sangeet Saha, Vladimir Herdt, Rolf Drechsler
and Klaus McDonald-Maier

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 3, 2022

1

Task Mapping and Scheduling in FPGA-based
Heterogeneous Real-time Systems:

A RISC-V Case-Study

Authors blinded for review.

Abstract—Heterogeneous platforms, that integrate CPU and
FPGA-based processing units, are emerging as a promising
solution for accelerating various applications in the embedded
system domain. However, in this context, comprehensive studies
that combine the theoretical aspects of real-time scheduling of
tasks along with practical runtime architectural characteristics
have mostly been neglected so far.

To fill this gap, in this paper we propose a real-time scheduling
algorithm with the objective of minimizing the overall execution
time under hardware resource constraints for heterogeneous
CPU+FPGA architectures. In particular, we propose an Integer
Linear Programming (ILP) based technique for task allocation and
scheduling. We then show how to implement a given scheduling
on a practical CPU+FPGA system regarding current technology
restrictions and validate our methodology using a practical RISC-
V case-study. Our experiments demonstrate that performance
gains of 40% and area usage reductions of 67% are possible
compared to a full software and hardware execution, respectively.

I. INTRODUCTION

The increasing demand for computing capabilities, espe-
cially in artificial intelligence, multimedia technology and high-
performance computing, has led to a paradigm shift towards het-
erogeneous computing architectures. Such architectures include
Central Processing Units (CPUs), Graphics Processing Units
(GPUs), Application-Specific Integrated Circuits (ASICs) and
even reconfigurable devices such as Field Programmable Gate
Arrays (FPGAs). Among these, FPGAs allow the adaptation of
high-performance application-specific hardware at a lower cost.
Meanwhile, CPU+FPGA heterogeneous platforms are also emerg-
ing as a promising solution for accelerating various applications in
many of today’s safety-critical real-time embedded systems, such
as automotive systems [1].

For example, in a given complex safety-critical system,
CPUs offer satisfying performance over wide-ranging classes of
tasks. FPGAs can provide high performance for computation-
intensive tasks with hard deadlines by exploiting inherent paral-
lelism. Therefore, efficient execution of hard real-time tasks on
CPU+FPGA heterogeneous platforms requires well-defined re-
source allocation and admission control mechanisms. Such mech-
anisms should guarantee the satisfaction of all timing constraints,
along with a high resource utilization by maintaining the task’s
execution order.

In a scheduling problem, a real-time application is represented
by a set of tasks with a Directed Acyclic Graph (DAG), where each
node represents a task and each edge represents a data dependency.

Each task has an execution time required to be completed within
a stipulated deadline. The scheduling objective is to map tasks
onto different Processing Elements (PEs) to satisfy the deadline
constraint and the data dependencies while striving to achieve a
minimum overall completion time, called the makespan. Such a
problem has been proven to NP-hard [2].

A plethora of existing work discussed the scheduling prob-
lem for general multi-core computing environments, which in-
volve various software computing modules such as a CPU and
a GPU [3], [4]. Such scheduling algorithms consider the dif-
ferent computing speeds of heterogeneous PEs and the inter-
core parallelism. In [5], the authors exploit the advantages of
heuristic-based algorithms and also proposed a genetic algorithm-
based task allocation strategy to minimize the schedule length.
Similarly, a machine learning based online task scheduler for
hybrid CPU+GPU systems has been proposed in [6]. However,
such computation-intensive methods often raise concerns regard-
ing resource limitations on real platforms. Thus, some studies
propose scheduling methods for systems with limited computing
resources. In [7] the authors present a scheduling algorithm for a
fixed number of heterogeneous processesing units (CPUs, GPUs)
to obtain both a high performance and lower makespan time, while
maintaining the system’s reliability against any faults.

With the increasing complexity level of high-performance com-
puting and real-time embedded systems, current heterogeneous
computing systems are employing FPGAs along with CPUs and
GPUs to overcome existing limitations [1], [8]. FPGA-based
multi-core systems are composed of multiple software executing
PEs (i.e., CPUs and GPUs) and fixed hardware resources (FPGA).
Software PEs are suitable for running serial programs. On the
other hand, FPGAs are widely used as hardware accelerators by
exploiting parallel execution and domain specific hardware imple-
mentations. Each task on an FPGA consumes a specific amount of
FPGA resources. Therefore, FPGA-based multi-core scheduling
should also take hardware resource constraints into account in
addition to different computing speeds and inter-core parallelism.

In recent years, the problem of real-time task execution on
FPGA-based heterogeneous systems has gathered considerable
attention from the research community. The generic problem of
real-time scheduling tasks has branched out in different direc-
tions primarily based on: i) using optimizing frameworks [9],
ii) using heuristic algorithms [10], and iii) using priority-driven
algorithms [11]. In [9], the authors proposed a static partitioning-
based scheduling strategy for CPU+FPGA systems to minimize
energy consumption. In [12], the authors measured the speed-
up in task execution on an FPGA and by utilizing their speed-

2

up utilization model they determine the appropriate PE (i.e. CPU
or FPGA) to assign the tasks to. However, all these works are
designed for non-real-time applications and did not consider hard-
ware constraints. Recently, Zhu et al. [13] proposed a real-time
task scheduling framework on CPU+FPGA systems, but their
work only considered independent tasks. Dependent real-time
task scheduling in a FPGA-based multi-core setting to minimize
the makespan under hardware resource constraints has been in-
vestigated in [2]. However, this technique is only evaluated via
software simulations using hypothetical FPGA parameters without
considering any practical constraints. Until now, comprehensive
studies that combine the theoretical aspects of energy-efficient
real-time scheduling of approximated tasks along with runtime
architectural characteristics have not been conducted.

To fill the gap, in this paper we propose a real-time scheduling
algorithm with the objective of minimizing the makespan under
hardware resource constraints for heterogeneous CPU+FPGA ar-
chitectures. Scheduler decisions rely on task execution times and
resource consumption metrics to map the tasks across CPU and
FPGA regions. Specifically, we answer the following question:
Given a real-time task graph and heterogeneous PEs, how do
we ensure that all tasks of the task graph will be executed on
the appropriate PEs while satisfying the deadline and resource
constraints. The main technical contributions of this paper are:
• We propose an Integer Linear Programming (ILP) based

technique for task allocation and scheduling, designed for
heterogeneous CPU+FPGA systems.

• We show how to imeplement a given scheduling on a practi-
cal CPU+FPGA system regarding current technology restric-
tions and discuss the different trade-offs with respect to the
systems capabilities.

• We provide a case-study to validate the applicability of our
proposed scheduling technique in delivering practical results
and demonstrate that performance gains of 40% and area
usage reductions of 67% are possible compared to a full
software and hardware execution, respectively.

Fig. 1 shows a high-level overview on our proposed approach
for task mapping and scheduling in a heterogeneous CPU+FPGA
system. The green boxes represent the users specification and
inputs and initial artifcats for the system (see top of Fig. 1). The
real-time (RT) constraints define the deadline for the schedule,
how much memory and area are available on the CPU+FPGA
system and potential other constraints of the real-time system.
The task graph represent the tasks with their dependencies and
order in which they are executed. The tasks themselves should
each be available as Software (SW) implementation for the CPU
and as Hardware (HW) implementation for the FPGA (i.e. as
synthesizable RTL models written in a hardware-description lan-
guage). Based on the task implementations, relevant execution
metrics are obtained by executing the tasks in isolation (right,
middle of Fig. 1). Important metrics are the execution time and
area usage on the respective FPGA. These metrics are passed
together with the RT constraints and task graph to the ILP-based
scheduling algorithm (left, middle of Fig. 1) which derives a task
mapping and scheduling. The scheduling is then implemented on
the heterogeneous CPU+FPGA system and executed.

Additional metrics can be integrated in order to consider prac-
tical implementation constraints such as the communication over-
head in moving results between the CPU and FPGA accessible
memories. However, such metrics are highly system specific and
can vary depending on the capabilities of the system. In this
work we focus on bare-metal systems and consider the RISC-
V Instruction Set Architecture (ISA). Our evaluation case-study

Task
Graph

Implementation
in SW & HW

Extract Metrics of
Interest

- Execution Time
- Memory Footprint
- Hardware Area
- ...

Proposed
ILP-based Scheduling

Strategy

Task Mapping
&

Schedule

RT
Constraints Tasks

CPU 1

FPGA

Deadline

CPU 2

FPGA

Time

Task execution

Fig. 1: Overview on our proposed approach.

demonstrates the applicability of our proposed scheduling algo-
rithm in providing practical results for a heterogeneous RISC-V
CPU+FPGA system.

Following this introduction, which already discussed related
work, the remainder of the paper is organized as follows: We
present our proposed scheduling strategy in Section II, which
covers our ILP-based formulation. Then, we discuss practical con-
straints and trade-offs in implementing resulting scheduling on a
heterogeneous CPU+FPGA system (Section III). Next, we present
our RISC-V case-study with an example application task graph on
which we apply our methodology and show the obtained results
(Section IV). In Section V we further discuss our methodology
and provide ideas for future work. Finally, we conclude the paper
in Section VI.

II. PROPOSED SCHEDULING STRATEGY

In this section we provide the necessary defnitions (Section II-A
and Section II-B) and present the proposed constraint-based for-
malism to obtain schedulings in this context (Section II-C).

A. Application and Architecture Model
We model a real-time application (A) as a precedence con-

strained task graph G = (T,E), where T is a set of tasks
(T = {Ti | 1 ≤ i ≤ |T |}) and E is a set of directed edges
(E = {〈Ti, Tj〉 | 1 ≤ i, j ≤ |T |; i 6= j}) representing the
precedence relations between distinct pairs of tasks. An edge
〈Ti, Tj〉 refers to the fact that task Tj can begin execution only
after the completion of Ti. A source task is a task with no prede-
cessors and similarly, we define a sink task to be the one without

3

any successors. However, being a real-time application, the entire
application (A) must meet its deadline, denoted as DDag , by
executing all the associated task nodes within the interval.

B. Problem Description and Challenges

Given a real-time dependent task graph to be executed on a
heterogeneous CPU+FPGA system, devise a scheduling strategy
to minimize the overall execution time of the task graph. To
achieve that, the scheduler must be able to handle all the following
requests:
• What task to schedule at which time (temporal reconfigura-

tion)?
• Where to place the respective task, in CPU or FPGA (spatial

reconfiguration)?
• When to start the execution of a task according with its

precedence constraints (temporal scheduling)?
This setup can be best compared to a multi-processor problem

statement, as the platform provides multiple units for the execution
of a task. However, due to the particular constraints and the
challenges associated with heterogeneous architecture, state-of-
the-art multi-processor scheduling strategies cannot be applied
for such a platform. The following constraints differ from a pure
multi-processor scheduling problem.
• Hardware task execution is non-preemptive.
• Software task execution is preemptive.
• The reconfiguration process for switching between hardware

tasks is many times longer than a context switching overhead
in software.

• The communication not only has to take place between pro-
cessors but also between the software and hardware domain
to utilize the hardware accelerators.

• Execution times of a task are heavily depend on the selected
execution unit. In general, the execution in hardware is faster
as compared to software, however some tasks do not benefit
from hardware acceleration (see Table I).

Deciding to place a task computation in software or hardware
considering the given constraints is an optimization problem. In
the following, we present how to obtain an effective solution to
this problem.

C. ILP-based Scheduling

In this part, we present an Integer Linear Programming (ILP)
solution to the optimal mapping of a DAG application in the
heterogeneous CPU+FPGA platform. For this purpose, we define
binary decision variables:
• Zi,j,η is 1 if task Ti starts execution in ηth Reconfigurable

Logic (RL) at timestep j, 0 otherwise. Here the variables
varies in the following ranges, i = 1, 2, ..., |T |; t =
0, ..., DDag; η = 1...mRL

• Yi,j,η is 1 if task Ti starts execution in ηth processor (CPU)
at timestep j, 0 otherwise. Here, η ∈ 1...mEP with mEP

being the number of Embedded Processor (EP).
• Ri,j is 1 if reconfiguration for task Ti starts in RL at timestep
j, 0 otherwise.

Furthermore, we provide the following symbols that denote
specific execution relevant metrics:
• ei,EP denotes the SW execution time of task Ti.
• ei,RL denotes the HW execution time of task Ti.
• LCi denotes the logic count for task Ti and TLC denotes the

total available logic count.

We now present the required constraints on the decision vari-
ables to model this task mapping problem before presenting its
overall objective function.

1) Unique Execution Start Time Constraint: Each task must
start executing on a particular PE (either on EP or RL) at
an unique time step. That is:

∀i : 1 ≤ i ≤ |T | |
DDag∑
j=0

mRPL∑
η=1

Zi,j,η = 1 (1)

∀i : 1 ≤ i ≤ |T | |
DDag∑
j=0

mEP∑
η=1

Yi,j,η = 1 (2)

2) Uniqueness Constraint: Each task can be executed only
once using either its software version or hardware version.
That is:

∀i : 1 ≤ i ≤ |T | |
DDag∑
j=0

mPE∑
η=1

(Zi,j,η + Yi,j,η) = 1 (3)

The above constraint enforces the following for each task:
• exactly one version (either software or hardware) will

be selected for execution.
• start its execution on the processor at an unique time

step.
• can be mapped only to one PE.

3) Resource constraint: In order to define this constraint, the
following situation needs to be described first.
Lemma 1: If a task Ti has still not finished execution at
the jth time step, it must have started at most within (j −
ei,EP + 1) previous time steps. Hence, for this duration our
previous derived variable should exhibit 1. i.e.,

j∑
t=ψ

Yi,t = 1

where, ψ = max(0, j−ei,EP +1). Hence, for all tasks and
for all EPs the SW resource constraint can be defined as:

∀j : 0 ≤ j ≤ DDag & ∀η : 1 ≤ η ≤ mEP |
|T |∑
i=1

j∑
t=ψ

Yi,j,η ≤ 1 (4)

Equation 4 ensures that at any time step j, a EP can be busy
due to the ongoing execution of at most one task.
Similarly for a RL (given as an FPGA), using Lemma 1, the
constraint can be enforced as follows:

∀j : 0 ≤ j ≤ DDag & ∀η : 1 ≤ η ≤ mRL|
|T |∑
i=1

j∑
t=β

Zi,j,η ≤ 1 (5)

where β = max(0, j − ei,RL + 1).
4) Version Conflict Elimination Constraint: Corresponding to

each task, a task cannot be selected for software execution
and hardware execution simultaneously. Hence, at a time-
step j, Ti can either be executed on an EP or will start its
reconfiguration for its execution on RL. This constraint can
be enforced as follows:

∀i : 1 ≤ i ≤ |T | |
∑
j

mEP∑
η=1

Yi,j,η +
∑
j

Ri,j ≤ 1 (6)

4

5) FPGA Logic area Constraint: The tasks placed at FPGA
should satisfy the logic area constraint i.e. the logic require-
ment of the task should be less than the available logic area
budget. This constraint can be represented as:

∀i : 1 ≤ i ≤ |T | |
DDag∑
j=0

mRPL∑
η=1

LCi × Zi,j,η ≤ TLC

(7)

6) Execution Dependency Constraint: Corresponding to each
directed edge (Ti, T ′i ∈ E) in the DAG, the execution of
task T ′i must commence only after the completion of its
predecessor, Ti. This dependency constraint between task
Ti and T ′i is symbolically represented as follows:

∀(Ti, T ′i) ∈ E |
mEP∑
η=1

∑
j

j×Yi′,j,η+
mRL∑
η=1

∑
j

j×Zi′,j,η

≥
mEP∑
η=1

∑
j

j × Yi,j,η +
mEP∑
η=1

∑
j

j × ei,EP+

mRL∑
η=1

∑
j

j × Zi,j,η +
mRL∑
η=1

∑
j

j × ei,RL (8)

7) Deadline Constraint:
In order to ensure that the applicationAmeets its end-to-end
absolute deadline DDag , the sink node T|T | must complete
execution by DDag . That is:

mEP∑
η=1

∑
j

j × Y|T |,j,η +
mEP∑
η=1

∑
j

j × e|T |,EP+

mRL∑
η=1

∑
j

j × Z|T |,j,η +
mRL∑
η=1

∑
j

j × e|T |,RL ≤ Ddag

(9)

8) Objective: The objective of the formulation is to choose a
feasible solution which minimizes finish time of the sink
task. This is formulated as:

Minimize (
mEP∑
η=1

∑
j

j×Y|T |,j,η+
mEP∑
η=1

∑
j

j×e|T |,EP+

mRL∑
η=1

∑
j

j × Z|T |,j,η +
mRL∑
η=1

∑
j

j × e|T |,RL) (10)

III. APPLICATION CASE-STUDY PRELIMINARIES

To evaluate the scheduling strategy an application case-study
featuring a realistic heterogeneous real-time system is specified
and designed. Especially on the hardware side there exist several
choices in building the overall system, which in turn has impact
on the task implementation and execution. An important part is the
FPGA which has to be chosen. It has to provide sufficient area to fit
a processing system like a System-on-a-Chip (SoC) and additional
hardware tasks. Commercially available FPGAs offer a variety
of additional features to the conventional programmable logic
blocks and block RAM. For example some FPGAs like the Xilinx
Zynq 7000 [14] feature an integrated ARM Cortex-M9 dual core-
processor with a multi-channel Direct Memory Access (DMA)
controller and various SoC peripherals while the programmable
FPGA logic contains additional blocks for Digital Signal Pro-
cessing (DSP), high-speed transceivers and more. Other commer-
cial FPGA manufacturers like Intel, Lattice Semiconductor and

Microsemi offer similarly broad solutions with different features
and integrated processor or an extensive library of Intellectual
Property (IP) cores. Depending on the choice various aspects
of the task mapping and scheduling can change. Our proposed
ILP-based scheduling offers to consider technological constraints
and considerations as long as they can be formulated in a ILP
constraint (e.g. memory access times through various available
technologies that have an impact on memory and area usage at
the same time).

As we can not cover all possible configurations of various
heterogeneous real-time systems, we summarize the relevant prac-
tical considerations for various real-time systems for which our
proposed scheduling strategy applies. According to these practical
considerations we select and evaluate a specific configuration for
our application case-study in the evaluation Section IV.

A. General Practical Considerations
Heterogeneous real-time systems encounter various practical

considerations that can not easily be formulated formally in terms
of constraints. The following list provides a set of relevant practical
constraints which depend on the actual system and focus on
technical aspects with regard to communication between software
and hardware tasks:

1) What are the capabilities and requirements of the embedded
system?

a) Is there a (special) shared memory?
b) Is DMA available?
c) If 1a and 1b are not available, where and how should

the task related data be stored?
2) How is data transported or shared between the SW and HW

tasks?
3) What interfaces will the HW tasks use? Considering the data

transport, what interfaces are required for certain transporta-
tion methods?

4) How will tasks be notified to start, respectively how do tasks
notify they are done?

This list is not meant to be a complete list of considerations,
as the amount and kind of considerations significantly depends
on the system and its execution environment. Depending on each
of these points the calculated schedule will deviate from the real
execution on the system. E.g. there will be a transportation and
synchronisation overhead in the communication between the CPU
and the task in the FPGA fabric that adds to the total execution in
the schedule. This deviation can be very small or (depending on the
system) being relevant to the scheduling outcome. The technical
implementation has also impact on the software memory footprint
(e.g. additional code and memory areas to manage DMA or other
interfaces to share data and memory).

B. Technical System Considerations
The goal for our application case-study is to evaluate the viabil-

ity of our approach on an actual heterogeneous real-time system.
Our target system combines an FPGA together with a soft-core
CPU based SoC. This SoC provides a basic set of peripherals
needed in embedded systems while leaving enough memory space
and FPGA fabric area for custom hardware based tasks. Tasks that
are implemented as software are stored in the SoCs memory, while
tasks that are implemented as hardware are connected to the SoC
memory mapped bus system. We consider a bare-metal system that
does not provide a DMA controller or dedicated shared memory
regions between the soft-core and FPGA, i.e. the soft-core needs

5

to copy the application data explicitly between the FPGA internal
memory and CPU accessible memory. Moreover, we consider a
bare-metal software setting without employing operating systems
that might provide preemptive task scheduling capabilities.

IV. EVALUATION: A RISC-V CASE-STUDY

This section presents results on the evaluation of our proposed
ILP-based scheduling algorithm and shows our proposed task
execution and implementation strategy on a concrete heteroge-
neous CPU+FPGA system using an application case-study. We
start with a description on the specific choices with regard to
the technical considerations, which consititute the setup of our
evaluation (Section IV-A). Then, the example application is in-
troduced and a corresponding implementation sketch is provided
(Section IV-B). Next, we present relevant metrics and the ob-
tained scheduling based for the example application based on our
proposed methodology (Section IV-C). Finally, we present and
discuss the overall results in obtaining the executed scheduling
and elaborate how the system choice impacted the realization of
the schedule (Section IV-D).

A. Setup
For this case-study we choose the Lattice Semiconductor HX8K

FPGA [15] that is capable of containing a SoC whilst offering
additional FPGA fabric area for hardware tasks. Compared to other
commercially available FPGAs the HX8K does not offer a built-
in SoC or slices for DSP tasks like multiply-accumulate. Within
the technology of the HX8K, area is mainly determined through
Logic Cells (LC). These LC contain a four-input look-up table, a
D-flip-flop with optional enable and reset controls and carry logic
to interconnect with other LCs. Additionally the HX8K FPGA is
compatible with the open source toolchain IceStorm [16], which
includes the open source synthesis tool Yosys [17].

As a SoC we choose the Murax SoC. The Murax SoC uses a
SpinalHDL [18] based RISC-V [19], [20] implementation called
VexRiscv [21]. It is known for the high degree of configurability
while minimizing the overhead of the generated code, thus result-
ing in very small FPGA-compatible RISC-V CPUs while suiting
the requirements for real-time embedded system tasks. Murax
SoC uses a small, pipelined 32 bit RISC-V single core with a
lightweight main bus system and an adapter for the APB bus [22]
for peripherals. All tasks are implemented in C for the RISC-V
processor and in SpinalHDL for the hardware tasks. SpinalHDL
is an emerging language for hardware description and generation
that can be used to describe hardware generators as well as tradi-
tional RTL descriptions. Various first-class language elements and
language libraries improve the development cycle, thus improving
the quality of the hardware descriptions. The SpinalHDL-based
descriptions can be used to generate either Verilog or VHDL
code. As the hardware tasks are described with SpinalHDL an
easy integration into the Murax SoC is ensured. The complete
development toolchain is based on open source tools and allows for
static and simulation based analysis. The main simulation backend
in SpinalHDL is Verilator [23]. Verilator is used to obtain a cycle-
and synthesis-accurate RTL simulation to extract the metrics like
the execution times of the tasks. With the extracted metrics, the
task graph and the constraints, the scheduling strategy can return a
static schedule fulfilling the constraints. This obtained schedule is
then realized through a main RISC-V software in which software
and hardware task execution is orchestrated and interleaved. The
execution of this schedule is measured on the FPGA and through
the cycle- and synthesis-accurate RTL simulation to compare the

T1

T2 T3

T5T4

T6

generate

map sort

summax

hash

Fig. 2: Task graph for the example application of the
case-study.

calculated result with the experimental result. With these results
we discuss some of the boundaries of the scheduling strategy with
regards to the practical considerations in Section III-A.

Shared memory architectures and DMA for easy data transfer
between the CPU and a HW task are not part of Murax SoC. This is
due to the goal of Murax SoC being able to fit in small FPGAs such
as the HX8K FPGA (and even smaller variants of the same FPGA-
family [15] of Lattice Semiconductor). Thus, we have a low-
level bare-metal embedded system for our application case-study
representing an FPGA-based heterogeneous real-time system. We
think this choice is appropriate for a case-study in the embedded
system domain. Moreover, our method is also compatible with
embedded systems that provide more features (like DMA, more
cores, etc.) on the FPGA or the SoC, and can lead to improved
results and better usability of the proposed technique.

For this application case-study each hardware task is designed
with its own small memory section, if required. The memory
section is multiplexed between the memory mapped bus and the
task itself. After storing the initial data in the task memory, the
CPU will trigger the tasks execution. The tasks memory interface
provides signals that represent the address, write data, read data
and a write enable. The task is controlled through a valid and
a ready signal. If valid is being asserted, the tasks starts its
processing with the current memory content. Once the task is
finished, the ready flag will be asserted by the task and the tasks
memory is multiplexed back to the memory mapped bus. The
ready flag can either be used to trigger an interrupt or it will be read
before accessing it. After the tasks execution the CPU can read
all resulting data from the tasks memory. Additional configuration
inputs are mapped to memory mapped registers.

B. Application and Implementation
Fig. 2 shows a task graph with six different tasks that represent

the example application of this case-study. The tasks represent
data flow operations known from functional programming. The
task graph combines vector and scalar operations. The first task
generates a vector V1 with pseudorandom values based on an
initial seed. The next two tasks process V1 into the vectors V2
and V3 by mapping and sorting the values in V2. Then, V2 and
V3 are transformed into scalar values S1 and S2 by computing
the maximum value and applying a value reduction, respectively.
Finally, a unique hash value is obtained by combining S1 and S2
into a single integer.

A directed edge represents a dependency on the output/input of
another task. Therefore a task can only be executed if and only
if the required data is available. For example: Task T2 (map) can
only be executed if the data from task T1 (generate) is available.

6

TABLE I: Task metrics of the example application with six tasks.

Task Software (CPU) Hardware (FPGA fabric)

Execution
time / µs

Memory foot-
print / Bytes

Time / µs Memory foot-
print / Bytes

Area Usage
/ LC

Total
execution

Transport
CPU to FPGA

Task
processing

Transport
FPGA to CPU

T1 (generate) 40.33 80 22.92 - 0.92 18.50 100 805

T2 (map) 20.83 76 43.58 19.42 0.92 18.50 144 721

T3 (sort) 79.00 112 49.75 19.42 10.50 18.50 144 840

T4 (max) 33.67 96 23.67 19.42 0.92 0.17 108 686

T5 (sum) 24.92 80 23.67 19.42 0.92 0.17 108 653

T6 (hash) 88.42 144 7.33 0.83 2.25 0.17 72 628

Listing 1: Accessing the task interface through memory
mapped registers.

1 / / s t o r e a l l e l e m e n t o f t h e a r r a y i n t o t h e memory
of t h e t a s k

2 f o r (u i n t 8 t i = 0 ; i < v e c S i z e ; i ++) {
3 TASK MAX−>MEM ADDR = i ;
4 TASK MAX−>MEM WDATA = i n p u t D a t a [i] ;
5 TASK MAX−>MEM WRENA = 1 ;
6 TASK MAX−>MEM WRENA = 0 ;
7 }
8 / / s t a r t t h e t a s k
9 TASK MAX−>VALID = 1 ;

10 / / check r e a d y f l a g o f t a s k u n t i l i t s done
p r o c e s s i n g

11 w h i l e (!TASK MAX−>READY) ;
12 / / l o a d max v a l u e
13 maxVal = TASK MAX−>MAX VALUE;

This results in constraints for the order in which the tasks can be
executed. At the same time, these tasks can be implemented into
a hardware description by hand to evaluate the feasibility of the
implementation step of the top level flow from Fig. 1. For each
task an implementation in C and SpinalHDL is implemented and
measured for their metrics such as execution time, area consump-
tion after synthesis, software memory footprint and transportation
time of the data between CPU and FPGA fabric.

The task graph structure already implies requirements with
respect to the technical implementation. For example: Task T1
generates data that is used in task T2 and T3. Passing the data
from and to the tasks T2 and T3 have to be handled as part of
the scheduling. A fork in that sense means also that the output
data from T1 has to be copied to be available for both tasks
independently (e.g. memcpy() on an array of data).

Furthermore, a directed edge in the graph can represent three
different types of data transactions:

1) A task in software is succeeded by a task in hardware and
data is moved from the software task to the hardware task.

2) A task in hardware is succeeded by a task in hardware and
data is moved from one hardware task to another hardware
task.

3) A task in hardware is succeeded by a task in software and
data is moved from the hardware task to the software task.

These three cases will look different in the realization of the
schedule and their implementation varies based on the features of
the embedded system too.

In general our architecture requires the software code to access
the memory mapped registers via the system bus. This type of
access is an essential part of the RISC-V architecture as well as

T1CPU T2

T3

T5T4

T6

Time

Time

Deadline
t = 200

FPGA

40 120959061 128

Fig. 3: Scheduling outcome from our proposed algorithm for
the example application.

many other embedded systems, thus such transactions as men-
tioned above don’t give rise to additional challenges.

Listing 1 shows such an exemplary transaction between the
CPU and the hardware task. Lines 2 to 7 move data into the tasks
memory, line 9 starts the task and after line 11 retrieves the ready
flag from the task line 13 reads the result register of the task.

Compared to an approach with a DMA or shared memory this
approach requires copying and moving data to and from tasks
in order to execute the tasks. It has to be noted that additional
features such as DMA will minimize the memory footprint on
using hardware tasks.

If preemption of tasks is included in the considered properties
of our task scheduling strategy, the active checking for the ready
flag (see 1 line 11) could be handled through interrupts.

C. Metrics and Scheduling
Table I shows the measured task parameters of our example

application. The task parameters from the software and hardware
tasks are fed into our ILP formulation from Section II-C. Together
with the top-level constraints (e.g. deadline at 200µs, area budget
of 1500LC) the CPLEX [24] solver, which we employ for ILP
solving, generates an optimal task mapping and scheduling accord-
ing to our ILP formulation. In this case we obtain the scheduling
as shown in Fig. 3.

Fig. 3 shows the calculated schedule for the tasks with the
parameters from Table I. Please note, that the time parameter on
the x-axis is not true to scale, but is meant to show the results of
the task mapping and scheduling in a compact way. The tasks T1,
T2, T4 and T5 are mapped on the CPU and the tasks T3 and T6 are
mapped to be executed as hardware tasks on the FPGA. The total
runtime is calculated as 128µs, which is far below the deadline of
200µs. The additional hardware area used is 1468LC which also
is below the budget of 1500LC.

With this schedule we can now use the mapping for the software
and hardware tasks and implement the top level schedule such

7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210
Time / µs

T1 T2

T3

T4 T5

T6

 CPU

FPGA

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210
Time / µs

T1

T3

T2 T4 T5

T6

 CPU

FPGA

Fig. 4: Compared schedule results for application study. Top: calculated schedule (also refer to Fig. 3), Bottom: executed
schedule implemented in application study.

TABLE II: Baseline of the case-study setup, Lattice
Semiconductor HX8K FPGA with VexRiscv, Murax SoC.

Description Maximum available Used Available

Memory usage / Bytes 2048 776 1272

Area usage / LC 7680 2514 5166

that it executes the proposed solution. After the bootcode of the
SoC has completed, the proposed schedule is executed. The SW
tasks are implemented as C functions, which are called with their
parameters and their return value is stored into a variable to be
accessed by the next task. For the hardware tasks, the software
implementation is used as a specification. Control flow elements
from the software task are implemented as finite state machines
while the data flow elements represent the data path of the circuit.

D. Results
Initially we look into a comparison between the calculated ILP

scheduling with the measured scheduling execution on the embed-
ded system. Fig. 4 shows the respective schedules for comparison.
The top plot shows the calculated schedule from our proposed
scheduling algorithm. The bottom plot shows the real execution
of the schedule on the embedded system. The events and their
timestamps are reconstructed from a wavetrace, the source code
and the disassembly of the implemented schedule. The deadline
of the application is marked with a dotted line (purple). Each task
is delimited with two vertical dashed line (black) and annotated
with a task identifier corresponding with I. The top half of the
plots show the execution traces of the tasks on the CPU part of
the system (red and blue events). For the CPU tasks, the strike
through events (red) show the task execution on the CPU, while
the dashed event is the execution of housekeeping data. This is
required, as for example T3 and T2 both require the same data
from T1 and thus it needs to be copied once. The bottom parts of
the plots show the execution traces for the hardware tasks on the
FPGA fabric (yellow and green events). For the FPGA tasks, the
strike through events (green) show the task execution on the FPGA

TABLE III: Proposed schedule in context to executing all
tasks in software or hardware.

Property

Schedule
All Software Proposed All Hardware

Memory Footprint (complete) / Bytes 1352 1460 1440

Memory Footprint (no bootcode) / Bytes 576 684 664

Area Usage (complete) / LC 2514 3956 7015

Area Usage (w/o SoC) / LC 0 1442 4501

Total Execution Time / µs 294.24 175.50 189.49

fabric, while the dashed (yellow) events are data transmission for
the tasks. This is required, as our application case-study leverages
an embedded system without shared memory or DMA for devices
on the memory bus.

Table II shows the baseline values for the memory usage in
Bytes and the area usage in LCs. These values declare the max-
imum budget of the memory and area that are available. In our
application case-study we limited the budget to values lower than
the available space.

Table III shows a comparison of three schedules: The column
All Software and All Hardware represent the non-optimal bound-
aries in which the schedule results of the ILP-based scheduling
can be expected. For the schedule All Hardware we kept the same
sequential order for task execution as for All Software. The mem-
ory footprint and the area usage are declared twice. In the rows
with (complete) annotation, the absolute size in terms of Bytes
and LCs is shown. The other rows show the values for just the
software and hardware solution of the tasks, respectively. These
values are calculated as the difference to the baseline values of
the embedded system from Table II. As expected the All Software
schedule requires no additional hardware, while the All Hardware
requires 4501LC to implement all tasks in HW. The All Hardware
schedule needs 664 Bytes of code, in order to interact with the
HW tasks and move the task data around. Our proposed schedule
requires 20 Bytes more than the All Hardware schedule while
requiring much less area of the FPGA fabric.

8

V. DISCUSSION AND FUTURE WORK

The results shown in Fig. 4 show differences in how the sched-
ule is executed on the embedded system. We can observe that
additional time is spent in setting up the execution of tasks. For
example due to the fork in the task graph (in Fig. 2 the task T1
forks to T2 and T3) our architecture needs an additional copy of the
data of T1. This can be seen as the time interval marked in blue on
the bottom schedule plot. Additionally, data needs to be transferred
from and to the tasks memory if a task is executed in hardware.
These transfers are plotted as yellow time intervals in the bottom
schedule plot. Such architectural considerations and constraints
are not part of the ILP constraints and thus are not part of the
calculated schedule. The advantage of the ILP-based mapping and
scheduling is that at this point we can refine our constraints to rep-
resent our system architecture. For example additional information
on the transport duration (see Table I column 5 and 7) can be for-
mulated as part of the hardware tasks that are necessary to contain
the execution time. Constraints like these can either be formulated
in advance with our given set of ILP constraints or refined in an
additional iteration of the methodology in Fig. 1. This might be
useful if different task graphs based around the same set of tasks
are explored and compared. But such additional ILP constraints are
specific to the properties of the underlying embedded system (refer
to Section III-A, Section III-B and Section IV-A) as well as the
tasks graph and tasks of the application. The set of ILP constraints
already provided in this paper deliver a set of common scheduling
constraints found in many real-time applications. Therefore, the
ILP-based mapping and scheduling can provide early estimations
independent of the underlying system architecture while being
adaptable for refinement due to more specific system details.

For future work, we aim to consider further evaluations that
involve different heterogeneous real-time systems and different
application examples. These systems should contain a range of
different features to expand on the general and specific consider-
ations. Through more evaluations we can refine our methodology,
for example with a feedback loop, to include application specific
properties and constraints. Additionally we plan to investigate
automating the implementation of tasks through High-Level Syn-
thesis (HLS) in order to speed-up the development and verification
cycles. Using HLS allows for faster design space exploration and
can aid in obtaining estimates for task metrics much faster. Lastly,
we want to investigate the use of a Virtual Prototype (VP) as a
reference model of a heterogeneous real-time system. VPs allow
early HW-SW co-design and verification, thus a possible feedback
loop in the methodology can be achieved more efficiently.

VI. CONCLUSION

In this paper we proposed a static scheduling strategy and
methodology for mapping and scheduling application tasks for
a heterogeneous real-time system. The strategy encompasses an
ILP-based optimization of constraints modeling the applications
properties. Through these constraints we describe general schedul-
ing properties (such as deadlines or preemption behavior) as well
as relevant system architecture and application specific properties
(such as hardware area budget or software memory limits). We
proposed general practical and technological considerations that
help engineers in making decisions and understanding the advan-
tages, disadvantages as well as the limitations of the underlying
systems architecture. With a case-study we provide an evaluation
through which we show the consequences that follow from consid-
ering specific systems decisions (e.g. no DMA, specific hardware
task interfaces, etc.). Our evaluation demonstrates the applicability
of our proposed scheduling algorithm in providing practical results

for a heterogeneous CPU+FPGA system. Finally, we provided
ideas for future work to further boost our methodology and
broaden the scope of our scheduling algorithm to consider more
general and application specific constraints as well as different
system architectures.

REFERENCES

[1] C. Bobda, J. M. Mbongue, P. Chow, M. Ewais, N. Tarafdar, J. C. Vega,
K. Eguro, D. Koch, S. Handagala, M. Leeser et al., “The future of
fpga acceleration in datacenters and the cloud,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 15, no. 3, pp. 1–
42, 2022.

[2] J. Xu, K. Li, and Y. Chen, “Real-time task scheduling for fpga-based
multicore systems with communication delay,” Microprocessors and
Microsystems, vol. 90, p. 104468, 2022.

[3] A. Dhar, E. Richter, M. Yu, W. Zuo, X. Wang, N. S. Kim, and D. Chen,
“Dml: Dynamic partial reconfiguration with scalable task scheduling for
multi-applications on fpgas,” IEEE Transactions on Computers, 2021.

[4] C. Zhang, H. Yu, Y. Zhou, and H. Jiang, “High-performance and energy-
efficient fpga-gpu-cpu heterogeneous system implementation,” in Ad-
vances in Parallel & Distributed Processing, and Applications. Springer,
2021, pp. 477–492.

[5] J. Fang, J. Zhang, S. Lu, H. Zhao, D. Zhang, and Y. Cui, “Task scheduling
strategy for heterogeneous multicore systems,” IEEE Consumer Electron-
ics Magazine, vol. 11, no. 1, pp. 73–79, 2021.

[6] Y. Elmougy, W. Jia, X. Ding, and J. Shan, “Diagnosing the interference
on cpu-gpu synchronization caused by cpu sharing in multi-tenant gpu
clouds,” in 2021 IEEE International Performance, Computing, and Com-
munications Conference (IPCCC). IEEE, 2021, pp. 1–10.

[7] Z. Deng, D. Cao, H. Shen, Z. Yan, and H. Huang, “Reliability-aware
task scheduling for energy efficiency on heterogeneous multiprocessor
systems,” The Journal of Supercomputing, vol. 77, no. 10, pp. 11 643–
11 681, 2021.

[8] H. Chen, S. Madaminov, M. Ferdman, and P. Milder, “Fpga-accelerated
samplesort for large data sets,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2020, pp.
222–232.

[9] A. Rodrı́guez, A. Navarro, R. Asenjo, F. Corbera, R. Gran, D. Suárez,
and J. Nunez-Yanez, “Exploring heterogeneous scheduling for edge
computing with cpu and fpga mpsocs,” Journal of Systems Architecture,
vol. 98, pp. 27–40, 2019.

[10] T. Zhang, G. Liu, Q. Yue, X. Zhao, and M. Hu, “Using firework algorithm
for multi-objective hardware/software partitioning,” IEEE Access, vol. 7,
pp. 3712–3721, 2018.

[11] J. Josephson and R. Ramesh, “A novel algorithm for real time task
scheduling in multiprocessor environment,” Cluster Computing, vol. 22,
no. 6, pp. 13 761–13 771, 2019.

[12] S. Yesil and O. Ozturk, “Scheduling for heterogeneous systems in
accelerator-rich environments,” The Journal of Supercomputing, vol. 78,
no. 1, pp. 200–221, 2022.

[13] Z. Zhu, “A hardware and software task-scheduling framework based on
cpu+ fpga heterogeneous architecture in edge computing,” IEEE Access,
vol. 7, pp. 148 975–148 988, 2019.

[14] Xilinx, “Zynq-7000 SoC,” https://www.xilinx.com/products/
silicon-devices/soc/zynq-7000.html, accessed on 2022-03-24.

[15] L. Semiconductor, “ice40 lp/hx family data sheet,” https://www.
latticesemi.com/view document?document id=49312, accessed on 2022-
03-24.

[16] C.Wolf and M.Lasser, “Project icestorm,” http://bygone.clairexen.net/
icestorm/, 2021, accessed on 2022-03-24.

[17] Wolf, C., Glaser, J., and Kepler, J., “Yosys-a free verilog synthesis
suite,” in Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), 2013.

[18] C.Papon, “Spinalhdl,” https://github.com/SpinalHDL/SpinalHDL, 2021,
accessed on 2022-03-24.

[19] A. Waterman and K. Asanović, Eds., The RISC-V Instruction Set Manual;
Volume I: Unprivileged ISA, 2019.

[20] ——, The RISC-V Instruction Set Manual; Volume II: Privileged Archi-
tecture, 2019.

[21] C.Papon, “Vexriscv,” https://github.com/SpinalHDL/VexRiscv, 2021, ac-
cessed on 2022-03-24.

[22] A. Limited, “Amba 3 apb protocol specification v1.0,” https://developer.
arm.com/documentation/ihi0024/b/, 2003, 2004, accessed on 2022-03-24.

[23] W. Synder, “Verilator,” https://veripool.org/verilator/, 2003-2022, ac-
cessed on 2022-03-24.

[24] S. Nickel, “Ibm ilog cplex optimization studio,” in Angewandte Opti-
mierung mit IBM ILOG CPLEX Optimization Studio. Springer, 2021,
pp. 9–23.

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.latticesemi.com/view_document?document_id=49312
https://www.latticesemi.com/view_document?document_id=49312
http://bygone.clairexen.net/icestorm/
http://bygone.clairexen.net/icestorm/
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/VexRiscv
 https://developer.arm.com/documentation/ihi0024/b/
 https://developer.arm.com/documentation/ihi0024/b/
https://veripool.org/verilator/

	Introduction
	Proposed Scheduling Strategy
	Application and Architecture Model
	Problem Description and Challenges
	ILP-based Scheduling

	Application Case-Study Preliminaries
	General Practical Considerations
	Technical System Considerations

	Evaluation: A RISC-V Case-Study
	Setup
	Application and Implementation
	Metrics and Scheduling
	Results

	Discussion and Future Work
	Conclusion
	References

