
EasyChair Preprint
№ 2104

Property Model Methodology: key principles
and benefits for future aircraft programs

Pascal Paper, Patrice Micouin, Louis Fabre and
Thomas Razafimahefa

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 5, 2019



 

X-Method: key principles and benefits for future aircraft 
manufacturer programs 

  

 

 

 

 

 

 

 

 

Abstract. In the growing level of complexity of systems, classical MBSE descriptive approaches 

have shown their limitations vs strong development program expectations in terms of quality, costs 

and lead-time improvements. This paper is presenting an innovative Modelling & Simulation method 

called X-METHOD. This method fosters an effective preventive approach in the end2end system 

development cycle (ie: system specification, design and physical test and integration). This preven-

tive improvement is emerging from the sound integration, by the X-METHOD, of key System En-

gineering principles with Modelling & Simulation means. We will present X-METHOD principles 

and process steps, then the result of a first real evaluation on an aircraft manufacturer pilots con-

firming the pertinence of X-METHOD vision. Finally, next steps to target a future generalization are 

exposed in conclusion.    

Main feedbacks from previous aircraft manufacturer programs  

On several aircraft manufacturer developments (Xxxx, Zxxx,...), requirements are often captured as 

texts, and operational scenarios - when captured - are either formalized in MS Office tools or in 

descriptive MBSE tools. The consequences are a huge number of requirements (Eg: 240000 on Xxxx 

program) which are, overall and between levels, incomplete, incorrect and incoherent. To illustrate 

this situation, let us take a simple but representative example. This is the specification of green ar-

rows states indicating to the pilot when the Landing Gear System is fully extended (See Fig 1).       

 

      Fig 1 



 

REQ1 and REQ2 are two specifications captured in textual approach. They are supposed to define the 

Green Arrow state (ON/OFF) vs normal and back-up extension command:  

REQ1 : When Normal_Cmd is Up=> Green_Arrows shall be Off after 0.05 s 

REQ2 : When Back_Up_Cmd is Down => Green_Arrows shall be On after 15 s 

These two specifications are incompletes, as we do not know what happens on Green_Arrow state 

when Normal_Cmd is Down and Back_Up_Cmd is up.  They are also incoherent since if Nor-

mal_Cmd is up and Back_Up_Cmd is down the Green_Arrows should be both On and Off after 90 s. 

Finally, REQ2 is incorrect as requiring 15 seconds will trigger system over costs while 90 seconds is 

enough. 

This result is caused by the current formalization approach, where there are no simulation based 

validation on requirements or scenarios. We are missing there the opportunity to rely on a sound 

modelling & simulation methodology to introduce an effective preventive approach to produce an 

early & robust validation of the system* specification and their refinements before starting 

system design. Another key issue to tackle, is that formal textual requirement formalization do not 

enable to perform concurrent trade-offs on the problem space, aiming to better frame and char-

acterize it before entering in solution space exploration. 

On the other hand, the solution space of the system to be developed is in general formalized in 

MBSE descriptive approach, but not using executable language and associated tools.  Sometimes 

executable language tool (e.g. DYMOLA, AMESIM, SIMULINK…) are used but with no clear 

global modelling goals (i.e. design and functional chain verification).  

So, we are again missing a preventive way to support our System Design Responsible (SDR) to 

deliver, at all levels of the System Of Interest (SOI), robust design verification** in the left side of 

the V and then robust product verification** in the right side of the V during test & integration 

phase.  

All in all, not using sound Modelling and Simulation Based System Engineering (MSBSE [Ref 12]) 

methodology to reduce specification and system design errors on the left side of the V, creates a high 

risk of late rework in downstream development phases (left & right side of the V). And this late 

rework will in turn impact the high level aircraft program ambitions: development costs & lead time 

reduction objectives, maturity and safety objectives... The later these errors will be discovered the 

bigger will be the impact. The above analysis can be applied not only to the product but also to as-

sociated industrial & services as they can be also be considered as a SYSTEM according to INCOSE 

definition of systems [Ref 15].  

*: It is to be noticed we are here mentioning specification validation according to ARP4754A principles (ie: specification validation is 

answering the upper level need) [Ref3].  

**: It is to be noticed we are here mentioning Design & Product verification according to ARP4754A principles (ie: design is com-

pliant with its associated validated specification [Ref 3]. 





 

  

Figure 4 

We shall  describe in next chapters more in detail, X-METHOD CONCEPT and X-METHOD [Ref 

2] more globally as System & Simulation System Engineering driven methodology are proposing a 

simple and efficient methodological solution answer to the above objectives.    

How the system specification model is captured and validated 

Specification model capture: X-METHOD CONCEPT [Ref 9], derived from general system 

theory [Ref 4] is considering the general cause-effect principles to capture the whole expected be-

havior of a system. To that purpose, X-METHOD CONCEPT propose to capture, through execut-

able models, the complete expected behavior of a systems. It is widely recognized in general systems 

theory, that general systems are following the rule of cause-effect principle [Ref 4]. 

 

Figure 5 

The capture of a system specification modelling sequence, regarding its expected behavior, is a 

backward process from the effects to the causes (see fig 5). The first step is to identify, in black box 

approach, all inputs and outputs external interfaces of the considered system. The second step, is then 

to capture the complete expected behaviors of the system under specification. X-METHOD 

CONCEPT is used to formalize all relations between Outputs & Inputs, Outputs & Outputs and 

Inputs & Inputs. The last relation type is also called assumptions (see fig 6). It is to be noticed that 

these expected behavior relations can be either dynamic (time dependent) or static (time independ-

ent).  

 

Figure 6. 



 

All these X-METHOD CONCEPT relations can then be modeled using a simulation language like 

SIMULINK and STATEFLOW. Below is an example of such a simulation for an aircraft landing 

gear extension function (see fig 7). 

 

Figure 7. 

In addition, to the expected conditions capture, unexpected conditions linked to system degraded 

modes can also be captured through X-METHOD CONCEPTs formalism. This opens a very inter-

esting possibility to include in the specification, the modeling of the safety requirements from the 

beginning of the development. It gives the opportunity to better explore system architectures trades 

within safety constraints.  

Finally, in addition to the capture of expected & unexpected dynamic behavior of the system, through 

X-METHOD CONCEPT external interface relations it is possible and very useful to extend the 

specification modeling effort to all other system property conditions of the system. In particular, all 

conditions on intrinsic property shown in fig2 (e.g. maximal weight, recurrent cost, type of tech-

nology/material…) can be added in the system specification model. These properties can be time 

dependent (e.g. fuel weight vs flight phase) or not (e.g. recurrent cost). These additional properties 

will be included within X-METHOD CONCEPT specification model execution. In case of not time 

dependent conditions, the property will be used for condition check within time independent speci-

fication validation execution process (e.g. airframe cost & weight will be deduced from technology 

choice through techno/cost relation already captured in a general cost & weight knowledge data base 

respectively). The advantage of this global X-METHOD CONCEPT modelling strategy over Text 

Based Requirement (TBR), is to get an overall specification model. This model shall allow aircraft 

manufacturer new developments to take benefit of model simulation and execution to perform far 

more efficient specification validation and including its refinement and then system design verifica-

tion.   

Specification model validation: The purpose of specification model validation is to take full bene-

fits of simulation & proof tools for reaching early & robust specification model validation. Specifi-

cation validation is two folds: establish formal & factual truth [Ref 11] of the specification. 

a) Formal validation: the goal is to prove specification model logical coherence & completeness 

based on a proof tool, which allows to detect and correct logical holes (e.g. are there any inputs not 

addressing at least one system output?) and logical contradictions (e.g. are there two functions trying 

to address simultaneously one same display which can manage only one signal at a given time?).  



 

b) Factual validation: the goal is to prove compliance of specification model vs stakeholder 

needs. In particular, it will enable to detect missing or wrong inputs, outputs or system behaviors. 

Here, the specification models are simulated to share, through model review with relevant system 

user representative’s panel, the assumptions of expected behavior of the system. This is a concurrent 

process review on the specification model. The simulation specification is presented to users through 

a simplified but representative human interface, on which the user can experiment on inputs (e.g. 

actual & virtual control on fig 8 as an example of A/C LGS extension/retraction function specifica-

tion) and see dynamics effects (e.g. actual & virtual outputs on fig 8).  

 

Figure 8. 

After the first review, agreed specification gaps & deviations are triggering corrective actions on the 

specification model. Then, a second review is performed to be sure that corrections are not generating 

new specification gaps and so on until no specification errors or gaps are remaining. It is important to 

underline that the method & tool must be considered as a help to specification review stakeholder’s 

panel, to reach a shared understanding of the assumptions specification model as captured by the 

System Development Responsible. The experience, “critic eye” and collective intelligence of the 

stakeholders’ panel attending to this review are of a prime importance to detect the relevant speci-

fication model issues. To capture “hidden” specifications and support the convergence of this pro-

cess, it is recommended to support this collective work with creativity and non-regression methods 

based for instance on DFMEA approach.  



 

How the system architecture model is captured and validated 

Architecture design capture: Once system architecture specification validated, the architecture 

design team can start to develop design architecture solutions by modelling executable architecture 

models. During this phase, the focus is to select components candidates to the architecture solution, 

identify external interfaces and elaborate associated dynamic functional chain. You can see an 

example below on fig 9, which represents a functional architecture choice for a landing gear exten-

sion/retraction functions.  

 

Figure 9. 

Architecture design verification: Once executable architecture design model realized, it is possible 

to run a first preliminary verification process. This one is performed by co-simulating together ar-

chitecture design and specification models by re-injecting design model inputs & outputs in the 

specification model (see fig 10). As the specification model “knows” through validated set of 

X-METHOD CONCEPT the authorized conditions between outputs and inputs, in case of design 

model non-compliance, a flag will warn the architecture designer on his design error, and for which 

time of the simulation scenario. This approach is drastically reducing the risk of design errors.  It is to 

be noticed that simulation scenarios can be either manual, coming from flight data, recorded & re-

played or automatically generated from the same proof tool used during validation step (see bottom 

left of fig 10)  

 

Figure 10. 



 

How the system requirement refinement is captured and validated 

System requirement refinement capture: From the architecture choice, architecture decomposi-

tion choices are made. In figure 11, extension function is decomposed in three system contributors 

(i.e. avionic, hydraulic & mechanical). The architecture specification will then be refined within 

three contributing functions. For instance, the extension requirement in less than 15’’ will be dis-

tributed wisely in the three contributing system (e.g. 0.4’’ for avionic, 2’’ for hydraulics and 12’’ for 

mechanical). For more complex physical problems like the noise, an efficient refinement can only be 

performed through a robust architecture study to enable architecture components variations 

quantification in term of their wave’s characteristics, positions & orientations, etc… 

 

Figure 11. 

System requirement refinement validation: Here is another benefit of requirement modelling. The 

contributing systems specifications refinement can be validated by proof means. To get a valid re-

finement, envelop of the three contributing systems specifications must be at least more restrictive 

than the upper level specification (see fig 12). 

 

Figure 12. 



 

Specification/Design Zigzagging down to items level 

Once contribution system refinement done, the process is an iterative specification-design zigzag-

ging process in line with [Ref 1, 8, 10]. Each contributing system specifications are formally & 

factually validated as done previously at upper level. See fig 13: 

 

Figure 13. 

Then, the design of each contributing systems is done and they are verified vs their associated 

specifications. See figure 14.  

 . 

Figure 14. 

This process goes down until we reach the lower level of decomposition (item level) where there is 

no need of deeper design (ie: known system component already development and reused).  



 

Product verification during test & integration phase 

Another benefit of the specification modelling effort is during test & integration phases. Here, the 

specification model and operational scenarios build during design phase can be reused to streamline 

the test preparation & execution phases. Once the product item are produced (hardware & software), 

their tests can star (see fig 15). 

 

Figure 15. 

The specification model and operational scenarios are loaded on the item test bench and the item 

inputs & outputs are physically mapped with test means (e.g. SPEEDGOAT) on which the specifi-

cation model is loaded (see fig 16). With this approach we reduce the test preparation time and the 

risk of interpretation specification errors during a classical test preparation through test programming 

activities. In addition, as specification and operational scenario models are shared with design teams, 

there is a better integration between test & design teams, and left part models & teams can support 

debugging of right part verification in case of errors found (especially when global error are found, 

simulation can significantly help to drive investigations in physical product by providing information 

of what the normal state should be at any point in the model / product). 

 

Figure 16. 

Final product verification  



 

The product & test process is a bottom – up iterative process until reaching the upper level which is 

the final product (see fig 17)  

 

Figure 17. 

 

At this level, the architecture specification model is used for end product verification as done pre-

viously at lower levels except that we are testing here complete physical functional chain (see fig 18). 

We acknowledge the same kind of benefits than those mentioned at lower level physical tests.   

 

Figure 18. 





 

developments by contributing to reduce late specifications and design corrections and so contributing 

to our future Programs Time, Costs, Quality and Performances improvement objectives. 



 

References 

. 

1 Suh N.P, 2005, Complexity, Theory and Applications, Oxford University Press. 

2 <anonymous>. 2014: <anonymous>, Wiley & ISTE  

3 SAE, 2010, ARP4754A, Guidelines for Development of Civil Aircraft and Systems, Warrendale 

(PA). 

4 Bunge M., 2007, Philosophy of science, volume 1: from problem to theory, Chapter 1, the scien-

tific approach, Transaction Publishers, New Brunswick, New Jersey, 4th print. 

5 <anonymous>, 2016: X-Method: A First Assessment in the Avionics Domain, ERTSS 2016. 

6 <anonymous>, 2017: X-Method: a case study with Modelica, TMCE 2017. 

7 ISO/IEC/IEEE, 29148, 2011, “ISO/IEC/IEEE International Standard - Systems and software 

engineering -- Life cycle processes -Requirements engineering 

8 Suh N.P, 2001, Axiomatic Design Advances and Applications, Oxford University Press. 

9 <anonymous>2008, “Toward a X-Method concept theory: system requirements structured as a 

semilattice”, in: Systems Engineering, Vol. 11-3, pp. 235-245. 

10 Lee D.G, Suh N.P, 2006, Axiomatic Design and Fabrication of Composites Structures, Oxford 

University Press. 

11 Leibniz, G.W., 1714, “Monadology”. 

http://home.datacomm.ch/kerguelen/monadology/monadology.html (accessed on 13 March2018) 

“There are also two kinds of truths, those of reasoning and those of fact. Truths of reasoning are 

necessary and their opposite is impossible: truths of fact are contingent and their opposite is possi-

ble.” 

12-Gianni, D., D’Ambrogio, A and Tolk (2015):  A. Modeling and Simulation-Based Systems 

Engineering Handbook, CRC Press, Boca Raton, FL,  

13. <anonymous> (2018) <X-Method>: A Landing Gear Operational Use Case 

14. SAFE: https://www.scaledagileframework.com/ 

15. INCOSE System definition: 

https://www.incose.org/about-systems-engineering/system-and-se-definition 

 

https://www.scaledagileframework.com/
https://www.incose.org/about-systems-engineering/system-and-se-definition

