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Abstract. Variational auto-encoders (VAEs) are a class of likelihood-based gen-
erative models that operate by providing an approximation to the problem of in-
ference by introducing a latent variable and encoder/decoder components. How-
ever, the latent codes usually have no structure, are not informative, and are not
interpretable. This problem is amplified if these models need to be used for aux-
iliary tasks or when different aspects of the generated samples need to be con-
trolled or interpreted by humans. We address these issues by proposing a biolog-
ically realistic sleep algorithm for VAEs (VAE-sleep). The algorithm augments
the normal training phase of the VAE with an unsupervised learning phase in
the equivalent spiking VAE modeled after how the human brain learns, using the
Mirrored Spike Timing Dependent Plasticity learning rule. We hypothesize the
proposed unsupervised VAE-sleep phase creates more realistic feature represen-
tations, which in turn lead to increase a VAE’s robustness to reconstruct the input.
We conduct quantitative and qualitative experiments, including comparisons with
the state-of-the-art on three datasets: CelebA, MNIST, and Fashion-MNIST. We
show that our model performs better than the standard VAE and varitional sparse
coding (VSC) on benchmark classification task by demonstrating improved clas-
sification accuracy and significantly increased robustness to the number of latent
dimensions. As a result of experiments suggest, the proposed method shows im-
proved performance in comparison with other widely used methods and performs
favorably under the metrics PSNR, SSIM, LPIPS. The quantitative evaluations
also suggest that our model can generate more realistic images compared to the
state of arts when tested on disturbed or noisy inputs.

Keywords: Variational Auto Encoder · Spiking Neural Network · Sleep Algo-
rithm.

1 Introduction

Deep neural networks (DNNs) perform well at solving problems that would be pro-
hibitive for human or statistical standards to data classification. Recently, realistic im-
age generation using generative DNNs has been at the forefront of research in ma-
chine learning and computer vision [1]. Variational auto-encoder (VAE) [2] is a gen-
erative model used to reconstruct training inputs and create random samples from its
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learned representations. VAEs offer an efficient way of performing approximate pos-
terior inference with otherwise intractable generative models and yield probabilistic
encoding functions that can map complex high-dimensional data to lower-dimensional
representations [3]. However, traditional VAEs usually produce latent codes that are
not interpretable. This makes the results unsuitable for auxiliary tasks (for example,
clustering, segmentation, and classification) and human interpretation. This is contrary
to a good generative model as it should not only be able to draw samples from the
distribution of data being modeled but also be useful for inference [4]. Moreover, the
performance of the VAEs is significantly worsened when the inputs are noisy, render-
ing them ineffective for the auxiliary tasks [5]. Spiking neural networks (SNNs) are
the third generation of neural networks, in which neurons communicate through binary
signals known as spikes. SNNs are energy-efficient than DNNs making them suitable
for hardware implementation because spikes bring the opportunity of using event-based
hardware as well as simple energy-efficient accumulators instead of complex energy-
hungry multiply-accumulators that are usually employed in DNNs hardware [6]. SNNs
have been proven to be less prone to performance deterioration to noisy inputs than
their DNNs counterparts [7]. The spatio-temporal capacity of SNNs makes them poten-
tially stronger than DNNs; however, harnessing their ultimate power is not straightfor-
ward [8]. Recently, mimicking biologically inspired learning in VAE has been demon-
strated using the Variational Sparse Coding (VSC) model [9], which modeled sparsity
in the latent space of VAE with a Spike and Slab prior distribution resulting in latent
codes with improved sparsity and interpretability. However, the approach mentioned
above falls short in mimicking biologically realistic learning compared to approaches
like spike-timing-dependent plasticity (STDP) [10]. Sleep mechanism is essential to
several brain functions of humans and animals, including how neurons communicate
with each other. During the sleep phase, there is the reactivation of neurons involved
in a previously learned activity and this reactivation is likely to invoke the same spatio-
temporal pattern as the pattern observed during training in the awake stage [11]. In
neuroscience, it is hypothesized that sleep can improve memory, learning, increase at-
tention, and robustness against noise in both humans and animals. In this work, we em-
ploy the notion of sleep from biology and apply an off-line unsupervised “sleep” stage
to modify the parameters of a fully connected VAE. Our model combines ideas from
VAE [2] and the sleep mechanism [12] leveraging the advantages of deep and spiking
neural networks (DNN–SNN). During the sleep stage, sleep functions’ choice of Mir-
rored STDP rules [13] increases a subject’s ability to form logical connections between
memories and to generalize knowledge learned during the awake stage. We hypothe-
size that sleep could aid in reducing an auto-encoder loss function hence improving
VAE output interpretability and producing latent codes that are less dispersed. To the
best of our knowledge, this work provides a step towards mimicking the biological sleep
stage in the context of learning in generative models like variational auto-encoder. Our
contributions are summarized below:

1. We report positive results for image reconstruction datasets (MNIST, CelebA, and
Fashion-MNIST) where following sleep the generation produces examples that are
more distinct than the original input than before VAE-sleep.



Biologically Inspired Sleep Algorithm for Variational Auto-Encoders 3

2. We illustrate that our VAE-sleep algorithm creates latent codes which hold a high
level of information about our input (image) compared to the standard VAE [2] and
VSC [9].

3. We illustrate that our model has a more robust architecture whereby performance
on noisy inputs is higher compared to the standard VAE [2] and VSC [9].

The rest of the paper is organized as follows: in section 2 we review related work,
section 3 describes our proposed model, 4 details the evaluation, experimental design,
and results. Section 5 concludes the paper with remarks on the obtained results.

2 BACKGROUND AND RELATED WORK

2.1 Varitional Auto-Encoder (VAE)

VAE is an unsupervised model with efficient coding with goals to maximize the marginal
likelihood

∏
p(xi) with respect to the decoding parameter θ of the likelihood function

pθ(z|x) and the encoding parameter φ of the recognition model qφ(z|x). The input
xi ∈ RM×1 is passed to the encoder network, producing an approximate posterior
qφ(z|x) over latent variables z. The sample zi ∈ RJ×1 is drawn from a prior p(z)
which can be chosen to take different parametric forms. In most types of VAEs, the
prior takes the form of a multivariate Gaussian with identity covarianceN (z; 0, I). For
example, if q were Gaussian, it would be the mean and variance of z for each data point
φxi = (µxi , σ

2
xi). Then, zi is passed through the feedforward decoder network to com-

pute the probability of the input pθ(x|z) given the sample. The pθ(x|z) is chosen to fit
the expected nature of variation in the observations. The key step in the derivation of
VAE’s loss function is the definition of a lower bound on the log-likelihood log pθ(x),
referred as the Evidence Lower BOund (ELBO) that depends on qφ(z|x) [9]. Based on
Jensen’s inequality, the ELBO can be formulated as

log pθ(xi) =

∫
pθ(xi|z)p(z)

qφ(z|x)

qφ(z|x)
dz > Lθ,φ;xi , (1)

Lθ,φ;xi = Eqφ(z|xi) [log pθ(xi|z)]−DKL(qφ(z|xi)‖pθ(z)). (2)

ELBO is divided into two terms; the first term is the reconstruction likelihood that
maximizes the expectation of the data likelihood under the recognition function. The
second term is the Kullback–Leibler (KL) that ensures the learned distribution q is sim-
ilar to the true prior distribution p, as shown in the following.The value of ELBO is tight
when the difference between approximate and true posterior is zero, qφ(z|x) = pθ(z|x),
and the tightness of the bound depends on the KL divergence of qφ(z|x) and pθ(z|x).
The images generated by VAEs are usually not realistic and blurry [4]. Using Convolu-
tional Neural Networks (CNN) improves the performance of VAE by capturing impor-
tant perceptual features such as spatial correlation [14], but the fidelity and naturalness
of reconstruction are still unsatisfactory [9].
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2.2 Varitional Sparse Coding (VSC)

VSC approach comprises of increasing sparsity in the latent space of VAE, representing
it as a binary spike and Slab probability density function (PDF) [9]. It employs the non-
linear features that constitute variability in data and exemplifies them as few non-zero
elements in sparse vectors. Let sj denote a binary spike and zj a continuous slab vari-
able. sj value is either one or zero with defined probabilities α and (1−α) respectively
and zj distribution is either a Gaussian or a Delta function centered at zero, conditioned
on whether sj is one or zero respectively. As VAE, pθ(x|z) denote a probabilistic de-
coder with a neural network to generate observed data x from sparse vectors in the
latent space. The prior probability density p(zs) over the latent variable zi is defined
below:

ps(z) =

J∏
j=1

(αN (zj ; 0, 1) + (1− α)δ(zj)) , (3)

Where δ(·) indicates the Dirac delta function centered at zero. The distribution of
representation corresponding to the x approximated by the variational posterior qφ(z|x),
which is produced by an encoder with a neural network of the form

qφ(z|xi) =

J∏
j=1

(
γi,jN (zi,jµz,i,jσ

2
z,i,j) + (1− γi,j)δ(zj,j)

)
, (4)

Where µz,i,j is the mean, σ2
z,i,j is the variance, and γi,j is a Spike probabilities

vector constrained between 0 and 1 . They are the outputs of the recognition function
p(z|xi) composed of a neural network which takes as input an observation xi. The
p(z|xi) allows for the posterior to match the prior and allows the freedom to control the
Gaussian moments and the Spike probabilities independently enable the model to en-
code information in the latent space. In contrast to equation 3, which represents standard
Slab and Spike distribution, equation 4 describes distribution of Slab variables having
Gaussian distributionsN (zi,j ;µz,i,j , σ

2
z,i,j) and Spike variables having probabilities of

being one γi,j . VSC’s loss function introduces a sparsity KL divergence penalty term
with the two terms of ELBO, hence modifying equation 2 as:

Lθ,φ;xi = Eqφ(z|xi) [log pθ(xi|z)] + arg max
θ,φ,w,xu

∑
−DKL(qφ(z|xi)‖p(z))

−J · DKL(γ̄u∗‖α),

(5)

where γ̄u∗ is the average Spike probability of each pseudo input recognition model
that matches with the prior sparsity α in the latent space. Despite its utility to improve
the performance of VAE model, the implementation is not biologically realistic [9].

3 Proposed Model

3.1 Spiking Varitional Auto-Encoder (SVAE)

While DNNs’ cell is designed to simulate highly simplified brain dynamics, SNNs’ cell
aims to closely model temporal brain dynamics. SNNs are combining digital-analog
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Fig. 1: The block diagram of our proposed model.

machines that use the temporal dimension, not just as a neutral substrate for computing,
but as a means to encode and process information. Training for probabilistic models
of SNNs has recently been investigated in variational inference principles based on
the unsupervised mechanism of STDP which updates synaptic weights based on lo-
cal input and output spikes [12]. In this section, we present the details of our spiking
varitional auto-encoder (SVAE). We propose to use mirrored spike-timing-dependent
plasticity (Mirrored STDP) [13] instead of STDP [10], since Mirrored STDP follows
a learning rule that approximately minimizes auto-encoder loss function compared to
STDP. STDP changes in feedforward synaptic strength, but it does not cause the correct
changes for the feedback synapses. On the other hand, under Mirrored STDP the plas-
ticity due to any pair of visible and hidden spikes will be the same for the feedforward
connections as for the feedback connections, up to a scaling factor. The Mirrored STDP
learning rule is given by:

∆wji =

{
aLTP × (wji − wLB)× (wUP − wji) ti − tj ≤ 0,

aLTD × (wji − wLB)× (wUP − wji) ti − tj > 0,
(6)

where j and i refer to the hidden- and visible-synaptic neurons, respectively, ∆wji is
the amount of weight change for the synapse connecting the two neurons, and aLTP ,
and aLTD scale the magnitude of weight change. Besides, (wji − wLB)×(wUP − wji)
is a stabilizer term which slows down the weight change when the synaptic weight is
close to the weight’s lower wLB and upper wUB bounds. We use simulated networks
of leaky integrate-and-fire (LIF) neurons in the experiments, which is the most popu-
lar one for building SNNs. LIF neurons are characterized by the internal state called
the membrane potential. The membrane potential integrates the inputs over time and
generates an output spike when the neuronal firing threshold. The objective of SVAE
learning is to find weights such that the reconstruction closely matches the original stim-
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ulus input, thus ensuring that the hidden unit representation is a good one; intuitively,
reconstructions can only be accurate when the hidden layer retains sufficient informa-
tion about the visible layer. Each observation (in our case, an image), xm ∈ {nv × T}
with m = [1, ...,M ] in the training set is a collection of nv pixels of T binary samples
with value ”1” representing a spike. Parameter nv is hence the number of observed, or
visible spike trains. All M examples in the training set X = {xm}Mm=1 are convention-
ally assumed to be independent and identically distributed (i.i.d.) according to the given
true data distribution. SVAE’s decoder is a generative probabilistic SNN whose behav-
ior is defined by a parameterized joint distribution pθ(x, h) over visible spiking signals
x = [x1, ...., xnv ] and hidden spiking signals h = [h1, ..., hnh ]. The joint distribution
of x and h is modeled as:

pθ(x, h) = pθ(h)pθ(x|h) =

nh∏
j=1

pθj (hj)

nv∏
i=1

pθi(xi|h), (7)

where parameter nh is hence the number of hidden spike trains, and θ is the vector
of parameters that define the prior distribution pθ(h) of the latent spikes and the condi-
tional distribution pθ(x|h) . Each the hidden spiking signal (latent spike) has Bernoulli
samples distributed as:

pθj (hj) =

T∏
t=1

F ((2hj,t − 1) θj) , (8)

where θj is the prior log-likelihood ratio for every sample hj,t ∈ 0, 1, and F (x) is
the ReLU function. Since x is conditionally independent to h, the conditional distribu-
tion is as shown in equation 9:

pθi(xi|h) =

T∏
t=1

F ((2xi,t − 1)ui,t) , (9)

where ui,t is the membrane potential of the i-th visible neuron at time t. The ui,t
evolves over time as a dynamic system that depends on the past spiking behaviour of
the hidden and visible neuron i, as explained next. Assuming a feedforward synaptic
memory of τα samples and a feedback memory of τβ samples, the membrane potential
is as shown in equation 10:

ui,t =

nh∑
j=1

αTj,ih
−1
j,t−τα + βTi x

t−1
i,t−τβ + γi, (10)

where αj,i ∈ Rτα×1 is the kernel for the synapse between hidden neuron j and
visible neuron i, and βj,i ∈ Rτβ×1 is the feedback filter for dynamic spikes of neuron
i. We model the feedforward and feedback filters as the linear combination of Kα 6 τα
and Kβ 6 τβ basis functions, respectively:

αj,i = Awj,i =

Kα∑
k=1

wj,i,kak, (11)
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βj,i = Bvj,i =

Kβ∑
k=1

vj,i,kbk, (12)

whereA = [a1, ..., aKα ] andB = [b1, ..., bKβ ] are the basis vectors,wj,i = [wj,i,1, ..., wj,i,Kα ]T

and vj,i = [vj,i,1, ..., vj,i,Kβ ]T are learnable weights. SVAE’s encoder creates output
spiking signals h according to the variational distribution qφ(h|x) given the visible
spiking signals x as.

qφ(h|x) =

nh∏
j=1

T∏
t=1

F ((2hj,t − 1) ũj,t) , (13)

where ũj,t is the varitional membrane potential given as:

ũi,t =

nv∑
i=1

w̃Tj,iA
Txt+ταi,t+1 + ṽTj,iB

Th
t+τβ
j,t+1 + γ̃i. (14)

The gradient of the ELBO for x with respect to the model parameters θ and φ can
be calculated as:

∇θLθ,φ(x) = Eqφ(h|x) [∇θ log pθ(x, h)] , (15)

∇φLθ,φ(x) = Eqφ(h|x) [lφ(x, h)∇φ, log qφ(h|x)] , (16)

where,

lφ(x, h) = log pθ(x, h)− log qφ(x|h). (17)

3.2 VAE-Sleep

Algorithm 1 shows the pseudo-code for our VAE-sleep algorithm. In the wake stage,
We train the VAE using stochastic gradient descent to optimize the loss with respect
to the encoder’s parameters and decoder θ and φ with backpropagation by applying re-
parameterization trick [2]. In CONVERTVAETOSVAE function, we assume the VAE
utilizes ReLU neurons with no bias in each layer. This assumption is made so that
the output neuron’s activation can be treated as a firing rate, either zero or positive,
and the thresholds of all LIF neurons in SVAE in a given layer are of the same scale.
Therefore, the weights from the VAE are directly mapped to the SVAE as in [16]. After
training, the network structure is converted into SVAE. Next, we run a sleep stage in
which inputs to each neuron of the visible layer must be presented as Bernoulli spike-
trains to propagate activity from the visible layer to the hidden layers of the network.
For that, we convert inputs (real-valued pixel intensities or features) to Bernoulli spike-
trains using the Berniolli Filter [17]. At each iteration, we feed the SVAE architecture
(the encoder followed by the decoder) with input data. The neurons in SVAE only fire
termed as ‘spikes’, when the neurons reach a certain threshold membrane potential.
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Algorithm 1 VAE-Sleep
procedure CONVERTVAETOSVAE(vae)

Map the weights from (vae) with ReLU units to network integrate-fire units
Apply weight normalization [15] and return scales for each layer in encoder and decoder

return svae, scales
end procedure
procedure CONVERTSVAETOVAE(svae)

Directly map the weights from LIF neurons in SNN layer (svae) to ReLU neuron (vae)
in DNN layer return (vae)
end procedure
procedure SLEEP(save, I , scales) . I is input

Initialize u (voltage) = 0 vectors for all neurons
for t← 1, T s do . Ts – sleep duration

S(1)← Convert input I to Bernoulli-distributed spike train
for l← 2, n do . n – number of layers

u(l, t)← u(l, t− 1)+ (scales(l − 1)W(l, l− 1)S(l − 1)) . Wl,l−1 – weights
S(l, t)← u(l, t) > threshold(l)

W(l, l− 1)←

{
W(l, l− 1) +∆W if S(l) = 1 & S(l − 1) = 1

W(l, l− 1)−∆W if S(l) = 1 & S(l − 1) = 0
. *mSTDP

end for
end for

end procedure
procedure MAIN

Initialize neural netowrk (vae) with ReLU neurons and bias = 0.
Train vae using backpropgation with respect θ and φ by applying re-parameterization

trick
svae, scales = CONVERTVAETOSVAE(vae)
svae = SLEEP(svae, Training data X, scales)
vae = CONVERTSVAETOVAE(svae)

end procedure
*mSTDP: Mirrored Spike Timing Dependent Plasticity

We compare the encoded-decoded output with the input data and gradient of the ELBO
with respect θ and φ, the error through the architecture and the Mirrored STDP rule is
applied to update weights. After the sleep stage, the SVAE network is converted back
into the VAE (CONVERTSVAETOVAE), and testing is performed. The block diagram
of our proposed model is shown in Fig. 1.

4 Experiment Results and Dataset

We benchmark our model using the following datasets commonly used for evaluat-
ing VAEs’ performance: (a.) MNIST [18], (b.) Fashion-MNIST [19], and (c.) CelebA
[20].We compared the performance of our SVAE model with the performance of VAE
and VSC implemented in [9]. The VAE model is a Convolutional Variational auto-
encoder (CVAE). The detailed architecture of CVAE is as described in Table 1. To es-
tablish a valid benchmark, we implemented the VSC architecture in the same way as the
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VAE model. Table 2 summarizes the parameters used for training the VAE and the VSC
models. Our proposed model (Fig. 1) consists of two stages: wake and sleep. For the
wake stage, a CVAE model is used. The architecture of the CVAEs’ encoder consisted
of 2 convolutional layers for MNIST and Fashion-MNIST datasets and 4 layers for the
CelebA, each with 32 channels, 4× 4 kernels, and a stride of 2. This was followed by 2
fully connected layers, each of 256 units. The latent distribution consisted of one fully
connected layer of the mean and log standard deviation of Gaussian random variables.
The decoder architecture is simply the transpose of the encoder, but with the output
parametrizing the Bernoulli distributions over the pixels. The sleep stage (section 3.2),
is implemented as the SVAE model explained in section (3.1). SVAE constitutes spiking
convolution layers with LIF neurons to replicate convolution layers in the VAE model
used during the wake stage. The parameters used for training the SVAE are shown in
Table 4. To evaluate the robustness of our method on noisy inputs, we create a noisy
test set. In this test set, we distort the inputs by adding noise vectors sampled from a
standard normal distribution (Gaussian noise) to the test image encodings.

1

(a) (b)

(c) (d)

Fig. 2: Classification performance of our proposed model, VSC, and VAE at varying number
of latent space dimensions for MNIST and Fashion-MNIST datasets vs noisy MNIST and noisy
Fashion-MNIST datasets (distorted with gaussian noise).

4.1 Quantitative Evaluation

We used the following metrics – Peak Signal to Noise Ratio (PSNR) [21], Structural
Similarity Index (SSIM) [22], and Learned Perceptual Image Patch Similarity (LPIPS)
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Table 1: CVAEs’ Encoder and Decoder architecture details.
Dataset Encoder Decoder
CelebA Input 64× 64× 3 RGB image Input: the latent variable z

4× 4 conv. 32 ReLU. stride 2 FC. 256 ReLU
4× 4 conv. 32 ReLU. stride 2 FC.4× 4× 64 ReLU
4× 4 conv. 64 ReLU. stride 2 4× 4 deconv. 64 ReLU. stride 2
4× 4 conv. 64 ReLU. stride 2 4× 4 deconv. 32 ReLU. stride 2
FC. 256. 4× 4 deconv. 32 ReLU. stride 2
FC latent-sz (Mean)‖FC latent-sz, Sigmoid (Std. dev.) 4× 4 deconv. 3. stride 2

MNIST/Fashion-MNIST Input 28× 28× 1 grey-scale image Input : the latent variable z
4× 4 conv. 32 ReLU. stride 2 FC. 256 ReLU
4× 4 conv. 32 ReLU. stride 2 FC.4× 4× 32 ReLU
FC. 256. deconv. 32 ReLU. stride 2
FC latent-sz (Mean) ‖FC latent-sz, Sigmoid (Std. dev.) 4× 4 deconv. 1. stride 2

Table 2: Parameters used for training VAE and VSC; hidden-sz: number of hidden
neurons, latent-sz: number of latent dimensions, Epochs: number of training epochs,
lr: learning rate, log-interval: number of batches before logging training status, β:
adjustable hyperparameter to balance latent channel capacity and independence con-
straints with reconstruction accuracy, c: stability of the gradient ascent.

Dataset hidden-sz latent-sz Epochs lr log-interval normalize β ∆β α c ∆ c iterations
CelebA 256 400 500 3e− 4 500 False 4 0 1e− 2 50 1e− 3 20, 000

MNIST/Fashion-MNIST 256 200 100 1e− 4 500 False 2 0 1e− 2 50 1e− 3 20, 000

[23] to evaluate the quality of the generated images and learning in the latent space [9]
as well as to evaluate the quality of the latent codes which affect the performance of
auxiliary tasks like classification. PSNR is a standard error metric used to compare
image compression quality defined as in equation 18:

PSNR = −10 log

(
(2n − 1)2

MSE

)
, (18)

where MSE is the Mean Square Error between the ground truth image X and the
generated image Y as in equation 19:

MSE =
1

HW

H∑
i=1

W∑
j=1

|Xi,j − Yi,j | , (19)

Table 3: Parameters used for training SVAE. Input rate: maximum firing rate of the
input neurons, Sleep duration: length of sleep (number of images presented during
sleep stage), Thresholds: neuronal firing thresholds for each layer of neurons, Synaptic
AMPA current: scale factor of weights during sleep stage, upper-bound: weights’ upper
bound range, lower-bound: weights’ lower bound range, ρ: target activation rate.

Dataset Input Rate Sleep Duration Thresholds Synaptic AMPA current upper-bound lower-bound ρ

CelebA 500Hz 200600 15,40,23,0.9 2.19 0.013 0.019 0.02
MNIST/Fashion-MNIST 40 Hz 48000 36.18, 23.36 2.19 0.0063 0.0069 0.02
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SSIM is used to evaluate differences of brightness, contrast, and image structure
(it’s range: [0, 1]) defined as equation 20:

SSIM(X,Y ) =
(2µX,Y µY + C1)(2σXY + C2)

(µ2
X + µ2

Y + C1)(σ2
X + σ2

Y + C2)
, (20)

where µX and µY denote the mean values of images X and Y , σX and σY denote
the variances ofX and Y , σXY is the covariance betweenX and Y , andC is a constant.

In contrast to SSIM and PSNR which lean towards preference of blurry predic-
tions over sharper but imperfect generations, LPIPS has a better correlation to human
judgment. Given two images [24] LPIPS returns a weighted L2 distance (image differ-
ences) in the space of hidden unit when run through the convolutional part of an image
classification network such as Visual Geometry Group (VGG). Table 4 (left hand side)
shows the quantitative evaluation of the generation results for the metrics mentioned
above. Generally, VAE generates distorted images when tested with noisy test sets [5],
so, in order to evaluate the effect of the noise, we test VAE, VSC, and our model with
noisy test sets. Table 4 (right hand side) presents the quantitative evaluation of the gen-
eration results for the noisy test sets. We report the average PSNR, SSIM, and LPIPS
of the closet samples to the ground truth for each test image. Our model outperforms
the VAE and VSC on all metrics by a significant margin. Learning in the latent space
measures the ability of a model to recover latent codes that hold a high level of infor-
mation about the input by performing a standard classification experiment using the
latent variables as input features. Fig. 2 shows the classification performance obtained
on the test sets MNIST and Fashion-MNIST, noisy MNIST, and noisy Fashion-MNIST.
As Fig. 2 presents, VAE reaches its peak performance for the optimal choice of latent
space dimensions, but yields inefficient codes if the latent space is too large. However,
the performance of our model and VSC is independent of latent space dimensions, mak-
ing them able to reliably recover efficient codes without the need to specify an optimal
latent space size. Additionally, our model outperforms VSC for noisy test images.

Table 4: Quantitative evaluation for test set with and without noise.
test set without noise noisy test set

Dataset Model PSNR (↑) SSIM (↑) LPIPS
-VGG (↓) PSNR (↑) SSIM (↑) LPIPS-

VGG (↓)
CVAE 20.9 dB 0.620 0.021 16.70 dB 0.430 0.034

CelebA CVSC 28.9 dB 0.789 0.014 24.10 dB 0.700 0.023
Our Model 29.6 dB 0.800 0.013 27.20 dB 0.750 0.019
CVAE 33.00dB 0.833 0.017 29.00dB 0.659 0.025

MNIST CVSC 34.40dB 0.960 0.012 30.40dB 0.870 0.021
Our Model 34.57dB 0.965 0.012 32.57dB 0.910 0.014
CVAE 30.30dB 0.590 0.019 21.65dB 0.430 0.027

Fashion
-MNIST

CVSC 30.55dB 0.760 0.014 26.97dB 0.680 0.022

Our Model 31.07dB 0.800 0.015 28.97dB 0.710 0.018
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Fig. 3: Examples of image reconstruction for the CelebA, MNIST, and Fashion-MNIST datasets.



Biologically Inspired Sleep Algorithm for Variational Auto-Encoders 13

4.2 Qualitative Evaluation

Fig. 3 shows the qualitative comparisons between our proposed model, VAE and VSC
for three different datasets. As Fig. 3 presents the samples generated by our model more
closely resemble the ground truth compared with the other models, hence proving our
hypothesis that using sleep algorithm on VAE (VAE–sleep algorithm) improves output
interpretability and producing latent code that is less dispersed. The most noticeable
distinction in the quality of the generated images can be seen in the output of our model
vs VSC and VAE for the CelebA dataset (Fig. 3), not only the images are more clear,
but also, our model is able to retain and replicate facial features in more details.

5 Conclusion and Future work

In this work, we propose a biologically realistic sleep algorithm for VAEs. The algo-
rithm augments the normal training phase of the VAE with an unsupervised learning
phase in the equivalent SVAE modeled after how the human brain learns, using the
Mirrored STDP rules. We hypothesize that the unsupervised VAE-sleep phase creates
more natural feature representations, which leads to increase a VAE’s robustness to re-
construct the input. We show that our model performs better than the standard VAE and
VSC on benchmark classification task (MNIST and Fashion-MNIST) by demonstrating
improved classification accuracy and significantly increased robustness to the number
of latent dimensions. The quantitative evaluations show that our model can generate
more realistic images compared to the state of arts when tested on disturbed or noisy
inputs. To the best of our knowledge, this work provides a step towards mimicking bio-
logical sleep stage in the context of learning in generative models like VAE. Future work
includes: improving spike encoding [17] used in the spiking convolution layer, scaling
the network to perform experiments on images with a larger size than we currently ex-
periment with, and applying the sleep stage to a generative model for a spatio-temproal
dataset like video.
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