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1. Introduction  

 

Transportation systems have a complex, random, and dynamic nature. Decision-making 

behavior of travelers adds to this randomness and complexity. The route, mode, and departure time 

choices are basically the three main decision-making behavior of travelers which should be taken into 

account when characterizing the system dynamics (Saedi et al., 2020). Minimizing the perceived 

travel time is the core objective of travelers’ choice-making act (Abkowitz and Engelstein, 1983).  

Travel time variability and travel time reliability are the two sides of the same coin. Increasing travel 

time variability will lead to a decrease in the predictability of travel time, therefore, travel time 

reliability will also decline. Distribution of travel time data is characterized to mainly assess the 

variability of travel time. Variation in day-to-day travel time deteriorates the transportation system 

reliability (Al-Deek and Emam, 2006) by trespassing the user’s expectations (Bates et al., 2001, Lam 

and Small, 2001, Sun et al., 2003). Variability of travel time is time-dependent and differently affects 

the departure time choice behavior of travelers at different times of the day. The most current 

researches on pricing strategies are based on the premise that the preferences of travelers depend on 

the time periods, such as the morning peak hour (e.g. see (Fosgerau and Engelson, 2011). 

This research is aimed at providing a comprehensive model based on the division of time data 

with equal time intervals. This model is called the conditional model function with the random effect 

function. This model is built around the multiplication of the probability density function of each time 

interval with a random-effects. The causality of using random effect model is events of each time 

interval could be have impact on another time interval. 

Current state-of-the-art travel time variability researches assume that travel times follow a 

unimodal distribution during off-peak hour and bimodal distribution such as lognormal and gamma 

mixture during peak-hour. Particularly, Burr, Weibull, or lognormal distributions are unimodal 

distributions employed to characterize the system reliability (Rakha et al., 2010, Rakha et al., 2006, 

Taylor and Susilawati, 2012). Dividing a day time period into constant time frames to pursue the 

travel time variability is the main technique applied in the previous studies. However, this ignores the 

interconnected nature of travel time among the different time periods of a day. To bridge this gap, the 

current study presents a conditional likelihood model which relates the different time windows using a 

random-effects model.  
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2. Data description 

 

This study utilizes spatiotemporal travel data to determine the distribution of travel time. 

Bluetooth Sensor is one of the commonly used methods for recording travel time data. In this study, 

the data is collected via Bluetooth-based MAC address recognition technology. During the day, for 

any device whose Bluetooth is turned on (including a computer, tablet, mouse, cell phone, etc.), the 

identification and information of Bluetooth devices’s Mac address is recorded (Aliari and Haghani, 

2012). The study routes are illustrated in figure 1. They are the two major highways (Resalat and 

Modarres) in metropolitan area of Tehran, the capital of Iran. The city of Tehran is a very congested 

city with a total of 18.64 million trips per day, of which 41.8% are performed by private cars. The 

data collected in Resalat and Modarres highways are respectively employed to calibrate and validate 

the travel time estimation model. Data in Resalat highway was collected by 14 Bluetooth sensors over 

a length of 12.5 km. For Modarres highway, 7 Bluetooth sensors were exploited to collect the data for 

a length of 7 km. Data collection period was the two months of April and August 2015 which 

accounts for roughly 15% of the annual traffic volume. Cleansing the collected massive data by 

Bluetooth sensors is one of the contributions of this study. Travel time deducted from time, and 

spatial dependent data were recorded by Bluetooth sensor. Travel time is equal to the subtraction of 

arrival time to the first station from the departure time of the last station. Preparing dataset is 

generally time-consuming and needs to be checked repeatedly to ensure the accuracy of the recorded 

data. Only vehicles which pass entire path consider for this case study. 

 

 

 

Figure 1: Selected routes Resalat highway and Modaress highway 
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Figure 2 illustrates the travel time variation for Resalat and Modarres highways. Aggregation in 

15 minutes of travel time is performed to plot this graph. The morning and evening peak periods are 

observed in 6 AM to 10 AM and 4 PM to 8 PM, respectively. The blue graphs show the lower and 

upper bounds of the travel time collected in the two months of data gathering period. Travel time 

variation drastically increases in the transition intervals of peak to or from off-peak phases where the 

level of service of the highway is changed. During the peak hours, both highways operate at the level 

of service F and a stop-and-go traffic stream is observed. It implies that each car moves in lockstep 

with the car in front of it, requiring frequent slowing. At this point, a small interruption in downstream 

causes a large instability along with a significant fluctuating travel time.  

 
FIGURE 2: Travel time variation throughout a non-holiday day in (a) Resalat and (b) Modarres 

Highways 

 

3. Travel Time Distribution  

 

This section aims to identify the best density function of travel time distribution for one-hour 

time windows. The time period between 5 AM and 10 PM (which includes the morning and evening 

peak periods) are divided in on-hour time spans and multiple density function fits are statistically 

evaluated. Based on the Bayesian information criterion (BIC) (Schwarz, 1978) indicators at different 

time periods, the lognormal probability function is selected as the best data distribution descriptor.  

First, the two Kolmogorov-Smirnov (KS) and chi-square tests (Stephens, 1974) are employed at the 

significance level of 95% to evaluate the candidate functions goodness of fit. For the functions which 

passed these tests, the BIC indicators are identified and the functions are ranked based on them. Table 

2 shows the tests results and the best fitted functions for different time windows. Burr distribution 

passed the KS and chi-squared tests for 9 out of 17 time windows. This distribution shows a perfect fit 

for off-peak periods when the travel time is medium, positively skewed, and long-tailed. On the other 

hand, the Weibull distribution is a good fit for peak periods. The Normal distribution is selected only 

once as the best fitted distribution, while the Gamma and lognormal distributions show a good 

performance during the entire period of time. The main reason is that the travel time dataset has mild 

skew and kurtosis and the two distributions of Gamma and lognormal are the best descriptors of data 

with such a specification. Both distributions are proper tools to model the heavy-tailed and light-tailed 

data, despite the fact that higher-skewed and longer-tailed data are better represented by the lognormal 

distribution which are depicted in figure 3. Employing the method proposed by HCM 2010, the level 

of service for Resalat highway is identified. Table 1 shows the share of each level of services during a 

week for worst- and best-case scenarios (Chen et al., 2003).  
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TABLE 1:  Tests results and the best fitted functions (B: Burr, W: Weibull, N: Normal, G: Gamma, L: Lognormal) 

 

FIGURE 3:  Fitted Lognormal distribution on travel time of one-hour windows 

Time 

Window 

Best 

LOS 

Worst 

LOS 

Sample 

Size 
skewness kurtosis 

Is distribution passed the KS 

Test Lowest 

BIC 

Second 

Lowest 

BIC B W N G L 

05AM-06AM A B 202 8.7 2.9      B L 

06AM-07AM B C 564 6.9 2.5      B L 

07AM-08AM D F 384 -1.1 0.6      W N 

08AM-09AM D F 384 -1.2 -0.3      W L 

09AM-10AM D E 334 0.5 -0.4      G L 

10AM-11AM C E 300 0.8 0.1      L G 

11AM-12AM C D 300 0.9 1.6      B G 

12AM-01PM C D 320 2.7 1.5      L B 

01PM-02PM C D 334 1.1 1.4      B L 

02PM-03PM D E 350 0.6 1.0      L B 

03PM-04PM E E 418 0.3 0.7      G L 

04PM-05PM E F 274 -0.9 0.3      W L 

05PM-06PM F F 264 -0.1 0.2      G L 

06PM-07PM F F 270 -0.6 0.0      W N 

07PM-08PM F F 256 -1.0 -0.2      W N 

08PM-09PM E F 284 0.7 -0.1      N L 

09PM-10PM C E 368 1.3 1.2      L G 
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4. Methodology  

In this section, a closed-form probability distribution function is fitted to the entire day 

travel time data. This model is classified as a random-effects distribution model (Fitzmaurice, 

2008). The random-effects model incorporates the correlation between the time intervals and 

establishes an interconnected travel time estimation tool. As a characteristic feature of such a 

model, it specifies the probability densities conditional on the random effects. Random-

effects model fitting and inference are generally performed using the marginal model 𝑓(𝑇𝑇); 

the latter is acquired by integrating over the random-effects distribution. Let 𝑓(𝑇𝑇|𝑏𝑤) 

denotes the density function of 𝑇𝑇  on window t conditional to random-effects  𝑏𝑤 , and 

let 𝑓(𝑏𝑤) denotes the random effects distribution. The marginal density function is expressly 

provided as: 

𝑓(𝑇𝑇) = ∫ 𝑓(𝑇𝑇|𝑏𝑤) × 𝑓(𝑏𝑤)𝑑𝑏𝑤 
(1) 

Replacing the base probability density function of 𝑓(𝑇𝑇|𝑏𝑤)  with the lognormal 

density function (which is identified as the best-fitted distribution function for hourly travel 

time distribution) Equation 1 transforms as follows; 𝐿(𝑇𝑇) represents the likelihood function 

of 𝑓(𝑇𝑇) which is presented in equation 3. 

(2) 
𝑓(𝑇𝑇) = ∫

1

𝑇𝑇 × √2𝜋(𝜎 + 𝜎𝑤)2
 exp (−

(ln(𝑇𝑇) − (𝜇 + 𝜇𝑤))
2

2(𝜎 + 𝜎𝑤)2
×  𝑓(𝑏𝑤))𝑑𝑏𝑤 

(3) 
𝐿(𝑇𝑇) = ∏ ∫

1

𝑇𝑇 × √2𝜋(𝜎 + 𝜎𝑤)2
 exp (−

(ln(𝑇𝑇) − (𝜇 + 𝜇𝑤))
2

2(𝜎 + 𝜆𝜎𝑤)2
×  𝑓(𝑏𝑤))𝑑𝑏𝑤

𝑛

𝑡=1

 

𝑏𝑤~𝑁(𝜇𝑤, 𝜎𝑤) 

Where 𝜇 and 𝜎 are the mean and standard deviation of the probability density function. 

𝜎𝑤 and  𝜇𝑤 represent the effect of random variables on all elements affecting the travel time 

variations. 𝑏𝑤 is random-effects which is assumed to follow the normal distribution with the 

mean of 𝜇𝑤 and the standard deviation of 𝜎𝑤. 

Using the Expectation–maximization (EM) as an optimization tool, the presented model is 

fitted to the travel time data collected in Resalat highway.  𝜇𝑤  is assumed equal to zero and 𝜎𝑡 is 

estimated as 0.991. The amount of log-likelihood is -2309.2. The estimated values of 𝜇 and 𝜎 for the 

different time windows are tabulated in Table 2. Five other models are also utilized to estimate the 

travel time distribution in an entire day – mixture of lognormal distribution, mixture of normal, 

mixture of gamma, mixture of Weibull distribution, and conditional model without random-effects; 

these models have been suggested by research as a best-fitted distribution (Aron et al., 2014, Kieu et 

al., 2014, Susilawati et al., 2013, Zheng et al., 2017).  
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TABLE 2: Estimated variables of the proposed model for different time windows 

Time 

Window 

Mean Travel 

Time (sec) 

Mean of Lognormal 

Distribution (𝜇) 

Standard Deviation of 

Lognormal Distribution (𝜎) 

05AM-06AM 609 6.25 0.33 

06AM-07AM 759 6.44 0.27 

07AM-08AM 1148 6.85 0.44 

08AM-09AM 1285 6.94 0.45 

09AM-10AM 1084 6.75 0.34 

10AM-11AM 1089 6.76 0.32 

11AM-12AM 1041 6.75 0.30 

12AM-01PM 1015 6.70 0.26 

01PM-02PM 1004 6.70 0.33 

02PM-03PM 1068 6.74 0.33 

03PM-04PM 1131 6.78 0.33 

04PM-05PM 1279 6.86 0.39 

05PM-06PM 1352 6.96 0.30 

06PM-07PM 1561 7.06 0.26 

07PM-08PM 1404 7.20 0.18 

08PM-09PM 1160 7.03 0.30 

09PM-10PM 987 6.82 0.26 
 

  

Table 3 presents the values of log-likelihood functions for all four models. Lower log-

likelihood function values indicate better estimation results. According to Table 3, the conditional 

model with random-effects (Equation 2) shows the best-fit performance among all other models (log-

likelihood for conditional model with random effect estimated from eq. 3). Also, in figure 4, mixture 

of the lognormal distribution, mixture of the normal, mixture of the gamma, and Weibull mixture 

distribution fitted to travel time for the entire day for comparison. From table 3 and figure 4, it can be 

deduced that mixture of the normal distribution is the best-fitted mixture distribution.  

 

TABLE 3: Comparison of different models 

Model 
Log-likelihood 

Function Value 

Mixture of lognormal distribution -7317.2 

Mixture of normal distribution -7291.6 

Mixture of Weibull distribution -7310.1 

Mixture of gamma distribution -7309.3 

Conditional model without Random-effects -3265.2 

Conditional model with Random-effects -2309.2 
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Figure 4: Fitted mixture distribution to travel time data for the entire day 

 

Model Validation 

 

The calibrated model (using the data collected in Resalat highway) in the previous section is 

utilized to estimate the travel time distribution collected in Modarres highway. The effectiveness of 

the validation is quantified using the average of mean absolute relative error (MARE) of the model 

(Swamidass, 2000). MARE is a widely used error metric that uses range normalization. It is given as: 

𝜖 = |
�̂�(𝑇𝑇) − 𝐹(𝑇𝑇)

𝐹(𝑇𝑇)
| × 100 (3) 

Where, �̂�(𝑇𝑇)  and 𝐹(𝑇𝑇)  are the estimated (using the calibrated parameters based on the 

Resalat highway travel time data) and observed (optimized based on the Modarres travel time data) 

density function values. The error term is calculated as 4.74%. This shows a successful validation of 

data set using the travel time data of a different highway. 

 

4. Results and conclusions 

 

A mathematical model is presented to describe the travel time distribution over an entire day 

time period. First, different models are evaluated to identify the best-fitted probability density 

function for one-hour time windows. Lognormal distribution showed the best performance for hourly 

time spans. Then, a conditional model with random effects is employed to estimate the travel time 

variability over a complete day time period. This model can describe the connection between the 

different time windows. The presented model is the product of the probability density function of each 

time interval with the probability of normally distributed random effects. Employing the data 

collected from the two major highways of Tehran, the presented model is successfully calibrated and 

validated. Different models were also tested to compare the fitting performance with the proposed 

model. The conditional model with random-effects showed a better fit compared to all the other 

distributions. 
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Findings of this research can be utilized in travel time reliability assessment and departure time 

choice studies. Incorporating a proper travel time distribution model, which can provide a good 

estimation of travel time over the entire day, stipulates the design of travelers’ navigation strategies 

and tools. Another possible direction for the future research is considering the other influential factors 

such as climate change, uncertainty of peak hour and departure time in travel time estimation. 
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