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Abstract 

To increase efficiency and decrease energy in fierce competition, higher standard of transportation scheduling 

mode for shipbuilding is necessary and urgent. By analyzing the “one-vehicle and one-cargo” transportation 

scheduling problem in shipbuilding, this paper proposes a bi-objective mathematical model and design a Multi-

Objective Tabu Search algorithm(MOTS) to minimize total carbon emission and transportation time cost. Further, to 

improve the computation performance of the solution method, we combined NSGA-Ⅱ and MOTS to design a hybrid 

heuristic algorithm. Computational experiments compare three optimizing approaches and reveal that MOTS and 

NSGAⅡ-MOTS have certain advantages in terms of solution effect and convergence speed in large-scale instances. 

The case shows the proposed optimization approach can reduce carbon emissions by 61.22% for daily transportation. 

1 Introduction 

1.1 Brief Introduction 

Shipbuilding adopts a typical pulling production method. “Segments” are basic operating units for ship 

construction process, which need to pre-process, assemble, outfit in different yards before general assembly and 

loading. Due to the heavy load, segment logistics is important for organizing the ship construction process flows. The 

transportation of ship blocks mainly depends on heavy flatcars, which are scarce resources in shipyards. The daily 

fuel consumption and carbon emission of flatcars are high. A large-scale shipyard in Shanghai produces 36 ships per 

year, with an average of 200 segments per ship, the basic operation of the flatcar is 160 times per day. Based on the 

average workload of 2km per time, 2172.3kg CO2 emission per day will be generated by flatcar transportation. 

 

Figure 1. Transport ship block by a flatcar 

The value proposition of this paper in transdisciplinary systems engineering is embodied in energy, logistic, and 

computer science domains to achieve successful diffusion[1]. In particular, it is demonstrated in terms of time for 

traditional metrics and quantifying transport energy consumption, and a bi-objective mathematical model is proposed 

to further explore a high efficiency and low energy consumption transportation scheduling mode. 

1.2 Previous Studies & Techniques 

1.2.1 Study of Vehicle Transportation Scheduling Problem 

Flatcar transportation scheduling problem in shipyards is different from traditional VRP. The comparison is 

shown in Table 1 below. Nowadays, the research on the ship block transportation scheduling is systematizing at home 

and abroad. Meanwhile, the optimization algorithm are becoming mature, such as GA[2], greedy algorithm[3], meta-

heuristic algorithm[4] , ACO[5] , etc. 

1.2.2 Study of green vehicle transportation scheduling problem 
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Transportation is one of the main sources of greenhouse gas emissions, and green vehicle transportation problem 

has become a research hotspot. Table 2 summarizes and compares GVRP-related research in terms of types and 

solution methods. 

Table 2. The comparison of GVRP-related research literature 

Author 
Problem Types Vehicle Speed Solution Method 

Scheduling Route Planning Yes No  

Li et al. [8] (2013)  √   √ 
Fuzzy multi-objective 

optimization algorithm 

Guo Zhaoxia et al. [9] 

(2016)  
√   √ 

Novel memetic 

algorithm 

Salehi et al. [10] (2017)  √  √  
Novel constructive 

heuristic 

Zhang et al. [11] (2018)  √ √  √ ACO 

Wang Yong et al. [12] 

(2019)  
√ √ √  

Multi-objective particle 

swarm optimization 

With the intensification of environmental pollution and scarcity of resources, green transportation has become 

an inevitable development trend of ship block transportation scheduling. The use of flatcars and cranes is required 

during the ship construction. Flatcars generate a large amount of carbon emissions. However, there are few researches 

on the green flatcar transportation scheduling in shipyards at home and abroad, and only a few scholars in China have 

studied green scheduling problem in container terminals. 

2 Problem Statement 

2.1 Problem Description 

The problem of flatcars scheduling in shipyard based on OVOC mode can be described as follows: there are 𝒏 

transportation tasks and 𝒎  flatcars. Each transportation task includes: task number, segment number, segment 

weight, start location, destination, and time window (when the task can be started). Each heavy flatcar includes: 

flatcar number, flatcar ID, load-bearing capacity. Each transport task must be performed within a time window by a 

heavy flatcar that meets its segmented weight requirements. The following Figure 2 is the distribution map of road 

junctions, the location of the yards, and parking location of a shipyard in Shanghai, China. 

          

Figure 2. Distribution map of intersections and yards 
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➢ The basic assumptions of the problem are as follows: 

1) All segments in the task table meet the load-bearing requirements of flatcars, and the order of tasks can be 

changed. 

2) The flatcar can't be interrupted during the mission. 

3) A single flatcar cannot transport multiple segments at the same time. 

4) Without considering the road factors, such as the interference. 

5) Set the loading and unloading time of the flatcar to a fixed value and add it to the task execution time. 

6) The target yard must be able to accommodate the transported mission segments. 

➢ Based on the above assumptions, the problems to be solved are as follows: 

① Transport task sequence on each flatcar. 

② The optimal route for each flatcar. 

③ The actual start time of each task. 

2.2 Mathematical Model 

2.2.1 Route Evaluation Criteria 

The factors that evaluate the quality of the flatcar driving route are: 1) the length of the route; 2) the number of 

turns during load driving. We use the depth-first search algorithm[6] to traverse all feasible paths and consider the 

factors of turning. 

2.2.2 Modeling 

The definitions of model-related parameters and decision variables are shown in Table 3. 

Table 3. The indices, parameters and decision variables 

Notation Meaning 

𝑥𝑃 Abscissa of intersection 𝑝 

𝑦𝑃 Ordinate of intersection 𝑝 

𝑚𝑖 Number of turns when task 𝑖 is performed 

𝑇 Task number set T={1,2, . . . , 𝑛};  𝑖, 𝑗 ∈ 𝑇, where 𝑖 ≠ 𝑗 

𝐹 Flatcar number set F={1,2, . . . , 𝑚};  𝑓 ∈ 𝐹 

𝐿 Flatcar speed set L={3,6}, the unit is m/s 

𝑙𝑠𝑝, 𝑛𝑙𝑠𝑝 𝑙𝑠𝑝 represents load speed; 𝑛𝑙𝑠𝑝 represents no-load speed of the flatcars 

𝐿𝑇𝑖 Execution time of the task 𝑖 

𝑁𝐿𝑇𝑖𝑗 No-load driving time to the starting point of task 𝑗 after performing task 𝑖; 

where 𝑖 = 0 or 𝑗 = 0 represents that the flatcar departs from or returns to 

the parking lot 

𝑀 Infinite positive number 

[𝑒𝑠𝑖 , 𝑙𝑠𝑖] The time window of task 𝑖; 𝑒𝑠𝑖 is the time starting point at which the task 

can start executing; 𝑙𝑠𝑖 is the time ending point at which the task must start 

[𝐸, 𝐿] Time window of the opening and closing of the parking lot 

𝑤𝑖 Segment weight of task 𝑖  

𝑐𝑤𝑓 Load-bearing capacity of flatcar 𝑓 

𝜆1 The weight of no-load travel time for all tasks performed by the flatcar 

𝜆2 The weight of waiting time for the flatcar 

𝑒𝑓𝑐 Transport efficiency of flatcar 0.8 

𝛽 Specific constants of flatcar 2.1072 

𝛼 Specific constant of road (𝛼 ∈ [0.09,0.2]) 0.0981 

http://dict.cnki.net/dict_result.aspx?searchword=%e4%b8%8d%e8%80%83%e8%99%91&tjType=sentence&style=&t=without+considering
http://dict.cnki.net/dict_result.aspx?searchword=%e7%ba%b5%e5%9d%90%e6%a0%87&tjType=sentence&style=&t=ordinate
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𝑓𝑒 The fuel emissions for diesel fuel 2.621 

𝜐 Conversion factor for fuel consumption per Joule energy (𝜐 =
1

3.6×106×8.8
) 

𝑑𝑖𝑠𝑖 Distance between start and end of task 𝑖 

𝑑𝑖𝑠𝑖𝑗 Distance from the end of task 𝑖 to the start of task 𝑗 

𝑇𝐶 The time flatcar takes to make a turn, the unit is min / time 

Decision Variables 

𝑥𝑜𝑖𝑓 0-1 decision variable for flatcar 𝑓 to perform its first task 𝑖 

𝑥𝑖𝑗𝑓 0-1 decision variable for task 𝑖, 𝑗 execution order on flatcar 𝑓 

𝑥𝑖𝑜𝑓 0-1 decision variable for flatcar 𝑓 to perform its final task 𝑖 

𝑦𝑖𝑓 0-1 decision variable for whether platform 𝑓 performs task 𝑖 

𝑠𝑖 Actual start time of task 𝑖 

The mathematical model to minimize total non-value-added transportation time and total carbon emission of the 

flatcars is presented as follows: 

  𝑀𝑖𝑛 𝑓 = 𝜆1 ⋅ (𝑓1 + 𝑓2) + 𝜆2 ⋅ 𝑓3                            (2.1) 

𝑀𝑖𝑛 𝑒 = 𝑒1 + 𝑒2                                  (2.2) 

𝑓1 = ∑ ∑ ∑ 𝑥𝑖𝑗𝑓 ⋅ 𝑁𝐿𝑇𝑖𝑗𝑖∈𝑇𝑗∈𝑇\𝑖𝑓∈𝐹                            (2.3) 

𝑓2 = ∑ ∑ 𝑥𝑜𝑖𝑓 ⋅ 𝑁𝐿𝑇𝑜𝑖𝑖∈𝑇𝑓∈𝐹 + ∑ ∑ 𝑥𝑖𝑜𝑓 ⋅ 𝑁𝐿𝑇𝑖𝑜𝑖∈𝑇𝑓∈𝐹                    (2.4) 

𝑓3 = ∑ ∑ ∑ 𝑥𝑖𝑗𝑓 ⋅ (𝑠𝑗 − 𝑠𝑖 − 𝐿𝑇𝑖 − 𝑁𝐿𝑇𝑖𝑗)𝑖∈𝑇𝑗∈𝑇\𝑖𝑓∈𝐹                    (2.5) 

𝑒1 = ∑ ∑ ∑
𝑓𝑒

𝑒𝑓𝑐
× 𝑥𝑖𝑗𝑓 × (𝛽 × 𝑛𝑙𝑠𝑝2 + 𝛼 × 𝑤𝑓) × 𝜐 × 𝑑𝑖𝑠𝑖𝑗𝑖∈𝑇𝑗∈𝑇\𝑖𝑓∈𝐹            (2.6) 

𝑒2 = ∑ ∑
𝑓𝑒

𝑒𝑓𝑐𝑖∈𝑇𝑓∈𝐹 × 𝑦𝑖𝑓 × [𝛽 × 𝑙𝑠𝑝2 + 𝛼 × (𝑤𝑓 + 𝑤𝑖)] × 𝜐 × 𝑑𝑖𝑠𝑖            (2.7) 

                           ∑ 𝑥𝑜𝑖𝑓 = 1, ∀𝑓 ∈ 𝐹𝑖∈𝑇                                   (2.8) 

                             ∑ 𝑥𝑖𝑜𝑓 = 1, ∀𝑓 ∈ 𝐹𝑖∈𝑇                                   (2.9)           

𝑠𝑖 + 𝐿𝑇𝑖 + 𝑥𝑖𝑗𝑓 ⋅ 𝑁𝐿𝑇𝑖𝑗 − 𝑠𝑗 ≤ (1 − 𝑥𝑖𝑗𝑓) ⋅ 𝑀, ∀𝑖, 𝑗 ∈ 𝑇, 𝑖 ≠ 𝑗, 𝑓 ∈ 𝐹              (2.10) 

                           𝑒𝑠𝑖 ≤ 𝑠𝑖 ≤ 𝑙𝑠𝑖 , ∀𝑖 ∈ 𝑇                                 (2.11) 

                         𝑠𝑖 + 𝐿𝑇𝑖 + 𝑁𝐿𝑇𝑖𝑜 ≤ 𝐿, ∀𝑖 ∈ 𝑇                              (2.12) 

                           𝐸 ≤ 𝑠𝑖 − 𝑁𝐿𝑇𝑜𝑖 , ∀𝑖 ∈ 𝑇                                   (2.13) 

                      𝑤𝑖 ≤ ∑ 𝑦𝑖𝑓 ⋅ 𝑐𝑤𝑓,𝑓∈𝐹 ∀𝑖 ∈ 𝑇, 𝑓 ∈ 𝐹                            (2.14) 

                    ∑ 𝑥𝑗𝑖𝑓 + 𝑥𝑜𝑖𝑓 = 𝑦𝑖𝑓 , ∀𝑖 ∈ 𝑇, 𝑓 ∈ 𝐹𝑗∈𝑇\𝑖                           (2.15) 

                     ∑ 𝑥𝑖𝑗𝑓 + 𝑥𝑖𝑜𝑓 = 𝑦𝑖𝑓 , ∀𝑖 ∈ 𝑇, 𝑓 ∈ 𝐹𝑗∈𝑇\𝑖                           (2.16) 

                     𝑥𝑖𝑗𝑓 + 𝑥𝑗𝑖𝑓 ≤ 1, ∀𝑖, 𝑗 ∈ 𝑇, 𝑖 ≠ 𝑗, 𝑓 ∈ 𝐹                          (2.17) 

∑ 𝑦𝑖𝑓 = 1, ∀𝑖 ∈ 𝑇𝑓∈𝐹                                                                          (2.18)                        

Objective functions are presented in (2-1) and (2-2). Objective (2-1) represents the minimizing total non-value-

added transportation time of the flatcars and (2-2) represents the total carbon emission of the flatcars. Objective (2-

1) contains three parts. It includes the no-load travel time𝑓1, 𝑓2 and total waiting time 𝑓3.The formula of  𝑓1 is shown 

in (2-3). It represents the no-load travel time between two adjacent tasks performed by the flatcar. In (2-4), 𝑓2 

represents the no-load travel time for the flatcar exiting and returning the parking lot. In (2-5), 𝑓3 represents the 

waiting time of the flatcar arriving earlier than the time window. Objective (2-2) contains two parts. Carbon emissions 

of no-load flatcar traveling between two adjacent tasks is show in (2.6). In (2.7), 𝑒2 represents carbon emissions of 

load driving in tasks. 

Constraint (2-8), (2-9) ensure that each flatcar only has one first and final task and (2.23) ensures that each task 

is performed by one flatcar. Constraint on the start time between the adjacent tasks is done by (2-10). Constraint (2-
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11) represents the task time window constraint. Constraint (2-12), (2-13) limit the time window of the parking lot. 

Constraint (2-14) ensures the task segment weight and flatcar load-bearing capacity. Constraint (2-15), (2-16) put 

limitation on the number of times a task appears in each flatcar. Constraint (2-17) indicates that the adjacent tasks 

cannot be repeatedly executed. 

3 NSGAⅡ-MOTS Hybrid Optimizing Approach  

3.1 Overview 

The MILP model established in this paper is based on the research of Li Baihe et al[6] . The increasing green goal 

of carbon emission determines that we need to solve the multi-objective optimization problem. This paper designs a 

multi-objective tabu search (MOTS) algorithm, and proposes a hybrid optimization algorithm combining NSGA-Ⅱ 

and MOTS. In NSGAⅡ-MOTS algorithm, NSGA-Ⅱ is used to obtain a better solution set, and the optimal solution 

is input into MOTS algorithm to continue solving.  

3.2 Coding and Decoding 

The chromosome is designed as two one-dimensional arrays based on positive integers, which respectively 

represent the task sequence and the flatcar sequence. During decoding, each task is assigned to corresponding flatcar 

according to chromosome coding, and the task order on the flatcar means the execution order. 

3 4 6 1 5 2 9 7 10 8 

2 3 1 4 1 4 2 3 1 3 

Figure 3. Chromosome coding 

3.3 Neighborhood Structure 

We propose two methods of constructing neighborhood solutions: (1) Local search for task sequence. The 

neighborhood solution is obtained by exchanging the position of two tasks, which are performed by a randomly 

selected flatcar. (2) Local search for flatcar sequence. A task is randomly selected, and the flatcar corresponding to it 

is replaced with a newly generated flatcar that meet the weight requirement. In each iteration, when generating 

neighborhood solutions, the above two methods are selected according to the fixed ratio. 

3.4 Tabu List 

Since the above two types of neighborhood structures set are different, tabu table is established for each 

neighborhood structure to prevent each strategy from appearing a search loop and falling into a local optimum. For 

the first neighborhood structure, (𝑖, 𝑗) is used to express the exchange of task 𝑖 and task 𝑗. (𝑗, 𝑖) and (𝑖, 𝑗) are added 

as taboo elements to tabu list. For the second neighborhood structure, use (𝑖, 𝑘1, 𝑘2) to represent the transformation 

of flatcar 𝑘1 to flatcar 𝑘2 for task 𝑖, while (𝑖, 𝑘1, 𝑘2) is added to the tabu list. 

3.5 The Design of NSGAⅡ-MOTS Hybrid Optimization Algorithm 

In our hybrid optimizing approach, NSGA-II is used to get a high-quality solution, and then MOTS is used to 

continue the search. The specific steps are shown in Figure 4. 

Step1: Input the information of the task, flatcar, and coordinates of yards, workshop, platform and intersection. 

Initialization parameters: population size (𝑝𝑜𝑝𝑠𝑖𝑧𝑒), single-point crossover rate (𝑝𝑐), exchange mutation rate (𝑝𝑚), 

elitism preservation rate (𝑝𝑟), maximum iterations, unimproved times and iteration times. 

Step2: Randomly generate the task sequence, once for each task, and the flatcar meeting the weight constraint is 

generated randomly for each task. The population size is 𝑝𝑜𝑝𝑠𝑖𝑧𝑒, and these random individuals formed the initial 

population. 

Step4: Calculate non-dominated rank of each individual in the population. 

Step5: Calculate crowding distance of each individual in the population. 

Step6: If the population number 𝑁 = 𝑝𝑜𝑝𝑠𝑖𝑧𝑒, proceed to step 7; otherwise, go directly to step 11.  

Step7: If the times meet the termination criteria, go directly to step 12. If not, proceed to step 8. 

Task sequence 

Flatcar sequence 
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Step8: Use roulette method to select individuals in the parents. 

Step9: Use single-point crossover to generate  𝑝𝑜𝑝𝑠𝑖𝑧𝑒 ∙ 𝑝𝑐   offspring, and use exchange mutation to 

generate 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 ∙ 𝑝𝑚 offspring, and then use elitism preservation strategy to generate 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 ∙ 𝑝𝑟 offspring, where 

𝑝𝑐 + 𝑝𝑟 + 𝑝𝑚 = 1. 

Step10: The offspring and parent are mixed into the candidate population. The iteration time is increased by 1, and 

go back to step 4. 

Step11: The candidate population is sorted in ascending order of non-dominant rank, and descending order of 

crowding distance. Take the first 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 in order to substitute the parent population. 

Step12: Use NSGA-Ⅱ to find the optimal solution as the initial solution of MOTS algorithm (current iterative 

solution), and initialize the parameters: neighborhood space 𝑛_𝑠𝑖𝑧𝑒 , tabu length, maximum iteration times, and 

iteration times. 

Step13: If the times meet the termination criteria, the algorithm solution ends. If not, proceed to step 14. 

Step14: Use the current iterative solution to generate  𝑛_𝑠𝑖𝑧𝑒  neighborhood solutions, and calculate the non-

dominated rank and the evaluation function of each individual. 

Step15: If the solution meets amnesty rule, update the current optimal solution with amnesty. 

Step16: Update the tabu list, if the current solution is feasible, then update the optimal solution; otherwise, do not 

update. The iteration time is increased by 1 and go back to step13. 

      

Figure 4. Hybrid optimization algorithm flow 
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4 Numerical Experiments and Discussions 

4.1 Algorithm comparison analysis 

This section describes computational results to compare three optimization algorithms which are implemented 

in Java. The computer running the test is configured with Intel (R) -64 Core (TM) I5-7200U CPU @ 2.50GHz 

2.71GHz.  

4.1.1 Numerical Experiments 

The test datasets are encoded as"𝑇𝑥𝐹𝑦", where"𝑥" is the number of tasks, and "𝑦" is the number of flatcars. By 

setting different combinations of task numbers (T=10,20,30,40,50) and flatcar numbers (F=2,3,4,5,6,7,8), the solving 

effects of three different algorithms are compared. The main parameter settings of NSGA-Ⅱ and MOTS are shown 

in the Table 4. The result is the average value of 5 times for each test.  

Table 4. Default parameter settings of the NSGA-Ⅱ 

 

 

 

 

 

 

 Table 5. Task list for T20 and Flatcars information 

The test results are shown in Table 6, where 𝑓 represents the total non-value-added transportation time of the 

flatcars (unit: min), and 𝑒 represents the total carbon emission of the flatcars (unit: g). The results will be analyzed in 

next section 4.1.2. 

4.1.2 Algorithm comparison analysis 

NSGA-Ⅱ has a strong global search ability, but it is easy to fall into a local solution. The tabu search algorithm 

relies on the tabu list, and has the ability to jump out of local solutions. Meanwhile, different methods of constructing 

neighborhood also increase the diversity of neighborhood space, which has a good solution effect and a fast 

convergence speed. 

The comparison of results in Table 6 can draw the following conclusions: 

a) With the increasing of problem size, MOTS can obtain a better Pareto solution set than NSGA-II in the same 

iteration times;  

b) When the scale is small (T= 10,20), both MOTS and NSGAⅡ-MOTS can obtain the better results. When the 

scale is large, such as T = 40, the solution effect of the hybrid algorithm is significantly better than NSGA-II. 

Parameters Values 

Population size 100 

Maximal generation/iteration NSGA-Ⅱ:I=300, MOTS:I=300, NSGAⅡ-MOTS:I=50+300) 

Crossover / Mutation rate 0.4/0.4 

Retain Elite probability 0.2 

Neighborhood space size 500 

Tabu length 300 

Task 
ID 

Start End 
Time Window 

Weight 
Task 
ID Start End 

Time Window 
Weight 

Flatcar 
ID 

Load- 
Capacity Earliest Latest Earliest Latest 

1 P6207 T1101 0 120 238 11 P6207 T1125 50 200 220 1 200 

2 T1805 T1301 0 120 244 12 CBW FAP 50 200 222 3 200 

3 P6207 PW 0 120 264 13 P6207 PW 50 200 226 5 200 

4 P7101 PW 0 120 276 14 CBW SAW 50 200 226 6 200 

5 P7107 FAP 0 120 280 15 P7107 FAP 50 200 242 7 250 

6 T1805 SAW 0 120 283 16 P7314 T1125 100 220 258 8 270 

7 P6207 SAW 0 120 283 17 P7511 CBW 100 220 276 9 325 

8 P6207 PW 0 120 288 18 P7314 Yard 100 220 400 13 380 

9 P6207 FAP 0 120 400 19 P6207 T1101 100 220 319 14 380 

10 P6207 FAP 0 120 220 20 T1805 P7314 100 220 326 15 425 
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Table 6. Results about different tasks and flatcars 

 

 

 

 

 

 

 

 

 

 

From the perspective of algorithm convergence, further compare the solution quality of the three algorithms. 

Taking F4T20 as examples, the relationship between the two objective function values and the iteration times is 

shown in Figure 5. It is clearly observed that NSGA-II has not converged in the set iteration times for 20 tasks, while 

for MOTS both two targets have converged at the 30th generation, and the hybrid algorithm has converged at the 

60th generation. Within the iteration times set by the algorithm, both MOTS and hybrid algorithms can obtain better 

objective function values. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Convergence analysis 

4.2 Real-word case study of emission reduction benefits 

Taking the actual scheduling task of a shipyard in Shanghai as an example, to verify the feasibility and 

effectiveness of the MILP model and hybrid algorithm proposed in this paper. The number of tasks is 40.We chose 

T40F6 dataset, while the detail of NO.7,8,9,13,14,15 flatcars is in Table 5. Randomly chosen one in Pareto set for 

example, the scheduling results is shown in Table 7,8 and Figure 6. 

Table 7. Obtained task sequence results for each flatcar 

Flatcar 

NO. 

Flatcar 

ID 
Task Sequence 

Non-value-added 

Time(min) 

Carbon 

Emission(g) 

1 7 32→21 

451.18 3159.04 

2 8 12→1→15→16→22→31→33 

3 9 6→8→7→10→25→35→27 

4 13 34→24→29→36→37 

5 14 14→5→4→13→26→17 

6 15 
2→9→3→11→19→20→18→30

→23→28→38→40→39 

 

T F 
NSGA-Ⅱ  MOTS  NSGAⅡ-MOTS  

𝑓 𝑒 𝑡 𝑓 𝑒 𝑡 𝑓 𝑒 𝑡 

10 2 122.45 463.06 0.50 137.12 458.12 0.64 122.45 463.06 1.74 

20 4 229.16 1066.24 0.57 229.16 1046.72 2.74 229.16 1046.72 2.41 

30 5 350.56 1501.45 0.53 350.56 1481.94 5.03 350.56 1481.94 4.51 

40 5 442.80 3159.24 2.04 440.80 3138.11 3.10 438.80 3138.07 3.09 

40 6 452.85 3163.93 2.44 451.18 3164.14 4.48 451.18 3159.04 2.92 

50 6 469.97 3480.68 2.74 458.30 3474.87 3.92 456.97 3472.85 3.74 

50 8 481.08 3523.45 2.88 479.41 3518.20 3.90 473.41 3513.78 9.24 
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Table 8. Obtained route planning for flatcar NO.4 

Task 

ID 

Flatcar 

NO. 

Task Actual 

Start Time/min 
Flatcar route planning (represented by intersections) 

24 4 270.0 P7101-13-14-15-16-11-6-Painting Workshop 

29 4 311.6 P6207-13-8-9-10-Final Assembly Platform 

34 4 250.0 Curved Block Workshop-4-2-Processing Yard 

36 4 350.0 P7314-13-14-15-16-11-6-T1125 

37 4 391.3 P7511-13-14-15-16-11-6-4- Curved Block Workshop 

     

Figure 6. Transportation scheduling results for flatcar NO.4  

According to the latest EU emission standards in early 2019, heavy cargo trucks are required to reduce CO2 

emissions by 30% by 2030. Calculated based on the average workload of 2km per time, heavy fuel truck fuel 

consumption of 25.9L / 100km, and fuel emission factor of 2.621kg / L, the comparison of the optimal scheduling 

emission obtained in this paper and standard emission is shown in Table 9. We can conclude that the optimization of 

carbon emissions can meet the latest emission reduction standards. 

Table 9. Carbon emissions comparison 

Standard Emission (g CO2/day) Generated Emission (g CO2/day) Decrease Percentage 

8146.07 3159.04 61.22% 

5 Conclusion 

In order to actively respond to the call of green shipbuilding in China and achieve a high efficiency and low 

energy consumption transportation scheduling mode, we propose a bi-objective mathematical model for OVOC 

transportation scheduling problem, and design a NSGAⅡ-MOTS algorithm. The NSGA-Ⅱ and NSGAⅡ-MOTS have 

different advantages according to the numerical results. The NSGA-Ⅱ is competitive in computation time and can 

find Pareto solution for small-scale instances. However, the NSGAⅡ-MOTS is absolutely competitive in terms of 

solution effect and convergence speed, and is suitable for optimizing large-scale and complex instances. The non-

value-added time of 6 flatcars is reduced to 8h/day and carbon emission reduction benefits are obvious with the 

decrease percentage of 61.22%. 

Based on the developed methods, the following practical features can be further studied to improve the 

applicability of the algorithms. First, two synchronizing flatcars transport one overweight segment can be considered, 
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the corresponding coding method and time update mechanism are adjusted accordingly. Second, the road interference 

exists during the transportation of flatcars. Some roads can only travel with one flatcar at the same time. Further, 

advanced computing technologies, e.g. cloud computing, can be used to improve the computation speed. In order to 

highlight the application value of transdisciplinary engineering, we can consider introducing knowledge-based 

scheduling method, which can store knowledge in different fields to assist in scheduling decisions. 
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