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ABSTRACT 
 
Self-Improvement or Self-Modification is any behavior of a system where a program 
gets better at achieving goals as it receives input. An example of a self-improving 
program would be a program that gets better at playing chess by playing games against 
itself. In this paper, we provide a formal definition of self-improvement systems and then 
we present a self-modification model by two different approaches. The first one is to find 
an optimal program defined by given scores and program generation probabilities using 
Markov Chain. The second one describe a method of Applying Genetic Algorithm on 
Multilayer Artificial Neural Network  for updating and optimizing the neural network 
weights. GA creates multiple solutions and evolves them through a number of 
generations, and each solution holds all weights in all layers to help achieve higher 
accuracy. The evolutionary algorithm( i.e.GA ) was used as an optimization approach 
that mimics the concept of natural evolution for creating fitter individuals that have 
higher chance of survival through natural selection. The GA processes integrated with 
Artificial Neural Network model and the network improves itself by learning to optimize 
its own weights. We observe from the test results that the networks were able to self-
improve through natural selection with good accuracy and also it is observed that self-
modification mechanism for artificial intelligence is convenient. 

 

INTRODUCTION 
 
If research into strong AI produced sufficiently intelligent software, it would be able to 

reprogram and improve itself. It would then be even better at improving itself, and could 

continue doing so in a rapidly increasing cycle, leading to a superintelligence. This 

scenario is known as an intelligence explosion. Such an intelligence would not have the 

limitations of human intellect, and may be able to invent or discover almost anything. 

Thus, the simplest example of a superintelligence may be an emulated human mind 

that's run on much faster hardware than the brain. A human-like reasoner that could 

think millions of times faster than current humans would have a dominant advantage in 

most reasoning tasks, particularly ones that require haste or long strings of actions. This 

also raises the possibility of collective superintelligence : a large enough number of 

separate reasoning systems, if they communicated and coordinated well enough, could 

act in aggregate with far greater capabilities than any sub-agent. 



The technological singularity – is a hypothetical future point in time at which 
technological growth becomes called intelligence explosion, an upgradable intelligent 
agent (such as a computer running software-based artificial general intelligence) will 
eventually enter a "runaway reaction" of self-improvement cycles, with each new and 
more intelligent generation appearing more and more rapidly, causing an "explosion" in 
intelligence and resulting in a powerful superintelligence that qualitatively far surpasses 
all human intelligence.  

If it is possible for a system to improve itself, for example, for a program to rewrite its 
own source code to learn faster, or to store more knowledge in a fixed space, without 
being given any information except its own source code. This is a different problem than 
learning, where a program gets better at achieving goals as it receives input. An 
example of a self improving program would be a program that gets better at playing 
chess by playing games against itself. Another example would be a program with the 
goal of finding large prime numbers within t steps given t. The program might improve 
itself by varying its source code and testing whether the changes find larger primes for 
various t. 

Is it possible for a computer program to write its own programs?  While this kind of idea 
seems far-fetched, it may actually be closer than we think. Researchers conducted an 
experiment to produce an AI program, capable of developing its own programs, using a 
genetic algorithm implementation with self-modifying and self-improving code. However,  
artificial intelligence, if programmed, in an attempt to write a functioning program that 
can, itself, write programs. 

 

METHODOLOGY 

Evolution does modify its own source code and does that by manipulating DNA from 
generation to generation. A genetic algorithm is a type of artificial intelligence, modeled 
after biological evolution, that begins with no knowledge of the subject, aside from 
available tools and valid instructions. The AI picks a series of instructions at random (to 
serve as a piece of DNA) and checks the fitness of the result. It does this with a large 
population size, of say 100 programs. Surely, some of the programs are better than 
others. Those that have the best fitness are mated together to produce offspring. Each 
generation gets a bit of extra diversity from evolutionary techniques such as roulette 
selection, crossover, and mutation. The process is repeated with each child generation, 
hopefully producing better and better results, until a target solution is found. Genetic 
algorithms are programmatic implementations of survival of the fittest. They can also be 
classified as artificially intelligent search algorithms, with regard to how they search an 
immense problem space for a specific solution. 

The methodology essentially consists of two parts :- 

1. To find an optimal program defined by given scores and program generation 

probabilities using Markov Chain. 



2. Applying Genetic Algorithm on Multilayer Artificial Neural Network – The 
best solution for a self-improving network by using genetic 
algorithm(Genetic algorithms have collections of solutions that are 
collided with each other to make new solutions, eventually returning 
the best solution. ) 

 

ARCHITECTURE 

OPTIMAL PROGRAM FOLLOWING RSI 

Recursive Self Improvement : Define an improving sequence with respect to G as an 
infinite sequence of programs P1, P2, P3,... such that for all i > 0, Pi+1 improves on Pi 
with respect to goal G and  G be the identity goal.  

Definition: P1 is a recursively self improving (RSI) program with respect to G if and only 
if Pi(-1) = Pi+1 for all  i > 0  and the sequence Pi, i = 1, 2, 3...is an improving sequence 
with respect to G. 

Definition (RSI system).Given a finite set of programs P and a score function S over P. 
Initialize p from P to be the system’s current program. Repeat until certain criterion 
satisfied, generate p'∈ P using p. If p' is better than p according to S, replace p by p'. 

From this definition, one needs to decide how p ∈ P generates a program. In general, 
we should allow the RSI system to generate programs based on the history of the entire 
process.  The way a program generates a new program is independent, and each 
program defines a fixed probabilistic distribution over P. This procedure defines a 
homogeneous Markov chain. We will see that even with this restriction, with some score 
function, the model is able to achieve a desirable performance. 

We illustrate the proposed formulation by an example. Consider a set of programs 

P={p1, p2, p3, p4} and a score function S over P such that S(pi) =i. According to our 

formulation, each program can be abstracted as a probabilistic distribution over P. To 

specify the distributions, let wi be a vector of probabilistic weights of length 4 that 

represents the probabilistic distribution over P corresponding to pi. In this example we 

set  w1= [0.97,0.01,0.01,0.01], w2= [0.75,0,0.25,0],      w3= [0.25,0.25,0.25,0.25],       

w4= [0,0.58,0,0.42].Then a possible RSI procedure may do the flowing. It starts from p3. 

First p3 generates p4. Since S(p4)> S(p3), the current program is not updated. Then p3 

generates p2. The current program is updated to p2 because S(p2)< S(p3). Next p2 

generates p1, and the current program updates to p1. Since p1 has the lowest score 

(highest order), no future program will be updated. Figure 1 shows the corresponding 

Markov chain. 

 

 



                                                                           
                                                                   

                                           Figure 1 The Markov chain corresponding to the RSI 

                                              

Fig. 1: The Markov chain corresponding to the RSI procedure defined by given scores 

and program generation probabilities. 

 

A reasonable utility measure is the expected numbers of steps starting from a program 

to find the optimal program following our RSI definition. Furthermore, the score function 

needs to be consistent with the expected numbers of steps from programs to the 

optimal program following the process defined by itself. We mean that a score function 

S is consistent if for all p, p′∈P, S(p)> S(p′)implies that the expected number of steps to 

reach the optimal program from p is greater than starting from p′. More generally, if one 

takes some measure for a programs’ ability to generate future programs, the score 

function needs to be consistent with this measure. 

 

Two nice properties hold for this construction. First, the programs are added in a non-

decreasing order of scores. Second, the score function equals the expected numbers of 

steps to reach the optimal program defined by this score function. We will prove the first 

property. The second property and the consistency of the score function are 

straightforward from the first property.  We describe an example of how such score 

function is computed given the distributions to generate programs of each program and 

the optimal program. Consider the same abstraction of programs as the above example, 

where P={p1, p2, p3, p4} with corresponding probabilistic weights w1= 

[0.97,0.01,0.01,0.01], w2= [0.75,0,0.25,0],                  w3= [0.25,0.25,0.25,0.25], w4= 

[0,0.58,0,0.42]. Fix p1 to be the optimal program. Initially set S(p1) = 0 and S(pi) =∞, 

i=2,3,4. The transition function of initial Markov chain is 

 



                                                                        
 

At the first step, the expected number of steps from p2, p3, p4 following the current 

Markov chain are 4/3,4,∞. Hence we update S(p2) = 4/3. Because of the change of 

score, transition of the Markov chain change to 

                                                                             
 

Then we compute the expected number of steps from p3 and p4 following the updated 

Markov chain. By some arithmetic we get the expectation are 8/3 for p3 and 

(approximately) 3.057 for p4. Since 8/3<3.057, update S(p3) = 8/3. By similar 

procedures, one can compute the score for S(p4). 

 
Applying Genetic Algorithm on Multilayer Artificial Neural Network 
 
Genetic algorithms are stochastic search algorithms which act on a population of 
possible solutions. Genetic algorithms are used in artificial intelligence like other 
search algorithms are used in artificial intelligence — to search a space of potential 
solutions to find one which solves the problem. Thus a  genetic algorithm(GA)  is a type 
of artificial intelligence, modeled after biological evolution, by applying operations 

analogous to natural genetic processes to the population of programs. 
 
Genetic algorithms have collections of solutions that are collided with each other to 
make new solutions, eventually returning the best solution. Since optimization and 
intelligence are deeply linked, using Genetic Algorithm to optimize Machine Learning or 
AI algorithm performances which would include ‘genetic algorithm’ as a numerical 
optimization technique. 
 
In this paper , we use the genetic algorithm (GA) for optimizing the ANN network weights 
as the solution to the problem of very low accuracy in view of the fact that no backward 
pass for updating the network weights is used. 

Using GA with ANN 



GA creates multiple solutions to a given problem and evolves them through a number of 
generations. Each solution holds all parameters that might help to enhance the results. 
For ANN, weights in all layers help achieve high accuracy. Thus, a single solution in GA 
will contain all weights in the ANN. According to the network structure  given in the figure 
below, the ANN has 4 layers (1 input, 2 hidden, and 1 output). Any weight in any layer 
will be part of the same solution. A single solution to such network will contain a total 
number of weights equal to 102x150+150x60+60x4=24,540. If the population has 8 
solutions with 24,540 parameters per solution, then the total number of parameters in the 
entire population is 24,540x8=196,320. 
 

 

Looking at the above figure, the parameters of the network are in matrix form because 
this makes calculations of ANN much easier. For each layer, there is an associated 
weights matrix. Just multiply the inputs matrix by the parameters matrix of a given layer 
to return the outputs in such layer. Chromosomes in GA are 1D vectors and thus we 
have to convert the weights matrices into 1D vectors. 

Because matrix multiplication is a good option to work with ANN, we will still represent 
the ANN parameters in the matrix form when using the ANN. Thus, matrix form is used 
when working with ANN and vector form is used when working with GA. This makes us 
need to convert the matrix to vector and vice versa. The next figure summarizes the 
steps of using GA with ANN.  
 



 

Weights Matrices to 1D Vector 

Each solution in the population will have two representations. First is a 1D vector for 
working with GA and second is a matrix to work with ANN. Because there are 3 weights 
matrices for the 3 layers (2 hidden + 1 output), there will be 3 vectors, one for each 
matrix. Because a solution in GA is represented as a single 1D vector, such 3 individual 
1D vectors will be concatenated into a single 1D vector. Each solution will be 
represented as a vector of length 24,540.  

Implementing GA Steps 

After converting all solutions from matrices to vectors and concatenated together, we are 
ready to go through the GA steps. The steps are presented in the  figure above and also 
summarized in the next figure. 
 



 

Remember that GA uses a fitness function to return a fitness value for each solution. The 
higher the fitness value the better the solution. The best solutions are returned as 
parents in the parents selection step. 

One of the common fitness functions for a classifier such as ANN is the accuracy. It is 
the ratio between the correctly classified samples and the total number of samples. It is 
calculated according to the following equation. The classification accuracy of each 
solution is calculated according to steps in the above figure. 

 

 

The single 1D vector of each solution is converted back into 3 matrices, one matrix for 
each layer (2 hidden and 1 output).  

The matrices returned for each solution are used to predict the class label for each of the 
samples in the used dataset to calculate the accuracy. This is done using 2 functions. 
The first function accepts the weights of a single solution, inputs, and outputs of the 
training data, and an optional parameter that specifies which activation function to use. It 
returns the accuracy of just one solution not all solutions within the population. It order to 
return the fitness value (i.e. accuracy) of all solutions within the population, 
the second function loops through each solution, pass it to the first function, store the 
accuracy of all solutions into an array, and finally return such an array. 



After calculating the fitness value (i.e. accuracy) for all solutions, the remaining steps of 
GA as shown in the above figure are applied. The best parents are selected, based on 
their accuracy, into the mating pool. Then mutation and crossover variants are applied in 
order to produce the offspring. The population of the new generation is created using 
both offspring and parents. These steps are repeated for a number of generations. We 
can also try different values for the GA parameters such as a number of solutions per 
population, number of selected parents, mutation percent, and number of generations. 

 
RESULTS 

The test results of the proposed RSI procedure ( Wenyi Wang ) in simulation with 
randomly generated abstraction of programs where a fixed number of programs is 
chosen from n= 2l, l = 1,2,…..20. The first program is designed to generate programs 
uniformly over all programs. Other programs generate programs follow a weighted 
distribution over a subset of programs. With 10 repeats for each l = 1,2,……20, the 
expected number of steps for the first program to reach the optimal program has been 
calculated and the results suggest a linear relation between l ( Number of Programs ) 
and expected number of steps. 

GA-ANN 

Based on 50 generations, and using  visualization library that shows how the accuracy 
changes across each generation. It is observed that  after 50 iterations, On the  MNIST 
dataset, we are able to  find an accuracy  that is more than 50%. This is compared to 
25% with no backward pass for updating the network weights and without using an 
optimization technique. This is an evidence about why results might be bad not because 
there is something wrong in the model or the data but because no optimization technique 
is used. However, using different values for the parameters such as 100 generations 
might increase the accuracy.  

 
CONCLUSION 
 
Self-Improvement where a program gets better at achieving goals as it receives input. In 
this paper, we first find an optimal program defined by given scores and program 
generation probabilities using Markov Chain. The second, we proposed hybrid genetic 
algorithm-artificial neural network predictive model as an optimization approach that 
mimics the concept of natural evolution / natural selection. This allowed us to create an 
artificial neural network which optimizes its own weights by self-improving and returning 
the best solution. The test results are encouraging with good accuracy. 
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