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Abstract
We report on the transfer of an end-to-end control policy synthesized in simulation to a real-world set-
ting. The policy guides a 1/6th scale vehicle, named ART-B, to a target location while navigating around
obstacles with the aid of a 2D Lidar and GPS sensor. We utilize Gym-Chrono [1], a Reinforcement
Learning (RL) environment based on the Project Chrono simulator, and the Open AI Gymnasium frame-
work to synthesize this control policy trained using the Proximal Policy Optimization (PPO) algorithm.
The approach involves training three versions of the policy: one for guiding ART-B across flat-rigid ter-
rain, another for hilly-rigid terrain, and a third for hilly-deformable terrain. Subsequently, each policy
will be tested in a real-world scenario with deformable terrain to answer the underlying research question
– Does training an end-to-end control policy in a simulated setting with deformable terrain enhance its
effectiveness in real-world applications?
1 Introduction
Using simulation in robotics is attractive due to its cost-effectiveness, safety, and expediency. This
is particularly relevant when using Reinforcement Learning (RL), which demands millions of robot-
environment interactions, typically feasible only in simulation. However, bridging the sim-to-real gap
remains a challenge, especially in unstructured or off-road terrains [2]. Recent studies have demonstrated
successful policy transfers from simulation to reality for legged quadruped robots in challenging terrains
using privileged learning and adaptive terrain curricula [3]. Our study aims to extend this research to
wheeled robots operating on deformable terrain. Specifically, gauging the importance of accounting for
terrain deformation in the sim-to-real transfer is a main motivation of this work.
2 Method and Preliminary Results
Training Environment: The training environment is a 60×60m patch of terrain on which obstacles are
randomly placed. The vehicle’s initial position is picked randomly in a 30 m diameter circle; the goal
is placed on the opposite side of the same circle. In polar coordinates, given α the angle of the vehicle
initial position, the angle of the goal will be α +β , with β randomly picked in [π

2 ,
3π

2 ]. ART-B, which
hosts a 2D LiDAR and a GPS simulated using Chrono::Sensor, is tasked with navigating to within 5
m of the goal using this sensor suite. The terrain varies: it can be rigid-flat; rigid-hilly with a height
map generated using smooth Perlin Noise; or deformable-hilly, modeled using the Soil Contact Model
(SCM) [4]. Figure 1 shows ART-B performing obstacle avoidance on hilly-deformable terrain.

Figure 1: ART-B performing an obstacle avoidance maneuver on hilly-deformable terrain.

RL Algorithm: We use Proximal Policy Optimization (PPO), an on-policy RL method using separate
actor and critic Neural Networks (NNs) [5]. A LiDAR and GPS preprocessing NN is also trained along-
side the Actor and Critic networks. Inputs include LiDAR depth (clipped to [0,30] and of size 180×1)



and a R4×1 vector of the vehicle’s relative position, heading, and speed. The NN outputs a vector ∈R2×1

which represents the normalized throttle and steering commands. Rewards are given for goal-directed
movement, with penalties for collisions, boundary breaches, and failing to reach the goal in 40 seconds.
Training Method: We use Curriculum Learning while progressively increasing environmental difficulty.
Training starts on rigid-flat terrain with obstacles following a normal distribution N (3,3), capped at pos-
itive values. After every 10 NN updates (16 simulations each), the model is assessed for success rate;
i.e., percentage of simulations where the vehicle reaches the goal. Surpassing a 70% success rate triggers
an increase of 3 in the mean obstacle count, capping at a mean of 15. Post 200 updates on flat terrain, we
save the model, switch to hilly terrain, and continue for another 200 updates. The process is repeated for
deformable terrain.
Preliminary Findings: Figure 2 displays the moving averages of the success, failure, and time-out rates
for each policy, calculated every 16 simulations relative to the number of neural network (NN) updates.
Blue vertical dashed lines indicate the updates where the number of obstacles was raised. Upon increas-
ing the mean of the number of obstacles to 15, there is a decrease in the success rate, but it recovers
and stabilizes around 75%. When the terrain changes from rigid-flat to rigid-hilly, represented by the
green dashed line, there is a significant decline in performance with the flat terrain policy; nevertheless,
the success rate rebounds to approximately 75% following around 200 updates. Training commences
on deformable terrain at the first yellow dashed line, initially restricting the max-min height to 0.5 m.
Following this, at the second yellow line, the terrain’s max-min height is elevated to 1 m. It is worth
noting that the policy continues to perform well, preserving a success rate of roughly 75%. Yet, as soon
as the terrain’s max-min height is increased to 1.5 m, the policy’s efficiency drops, failing to recover until
the completion of the training process. An interesting observation is the surge in time-out rate, poten-
tially implying that the vehicle finds it challenging to navigate steep terrains within the given time due
to reduced speed caused by wheel slippage. An in-depth report of these findings is reserved for the final
presentation. Additionally, we intend to validate these observations via actual-world testing.

Figure 2: Moving averages of the policy success, failure, and time-out rates. Blue dashed lines indicate
the updates where the number of obstacles was raised. The green dashed line represents the transition
from rigid-flat to rigid-hilly terrain with terrain height varying between -0.5 and 0.5 m. The yellow
dashed lines indicate the transition from rigid-hilly to deformable terrain with varying terrain heights.
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