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Abstract 

In this paper, we introduce a novel formulation for the Markov Decision Process (MDP) model 
specifically tailored for linear inventory systems and present a cutting-edge reinforcement 
learning (RL) algorithm, termed Shaped-nStep-Double-DQN. By establishing various three-
echelon linear inventory systems, we convert the pertinent order placement challenges into 
optimal policy determination problems within the MDP framework. The experiments 
demonstrate that the order placement strategies learned by the Shaped-nStep-Double-DQN 
algorithm in deterministic linear inventory systems are nearly consistent with the optimal 
order placement strategies, serving as a good approximation. In stochastic linear inventory 
systems, the ordering strategies learned by the Shaped-nStep-Double-DQN algorithm perform 
better than the base-stock policy, exhibiting superior inventory performance. 
Keywords:  Reinforcement Learning, Shaped-nStep-Double-DQN, Linear Inventory Systems, 
Order Decision 

Introduction 

Inventory encompasses items held by enterprises for maintenance, production, and resale, spanning raw 
materials, components, work-in-progress, finished products, equipment, spare parts, and services. An 
inventory point is a location designated for holding stock, and when multiple inventory points are 
organized within a system, it becomes a multi-echelon inventory system, as a crucial component of 
supply chains. Holding inventory provides businesses with several benefits, such as coping with 
uncertain demand, exploiting economies of scale, and addressing strategic needs. However, it also 
incurs various holding costs, thus making efficient management of multi-echelon inventory systems 
crucial. A critical issue in managing these systems is the ordering problem, which determines when and 
how much to order at each inventory point. The efficacy of order management strategies is paramount 
for an organization's long-term sustainability and prosperity. And by employing effective ordering 
approaches, companies can reduce inventory expenses, enhance efficiency, expedite delivery times, 
bolster operational performance, elevate service quality, augment customer satisfaction, and fortify 
supply chain resilience.  

Over the past several decades, inventory research has centered on addressing ordering challenges in 
order to achieve superior inventory control[1]. However, despite over 60 years of exploration and 
accomplishments in resolving a variety of common inventory system issues, optimal strategic solutions 
for numerous inventory management concerns remain scarce. These constraints predominantly 
encompass: 1) the lack of solving algorithms for the majority of ordering problems, or the existence of 
only suboptimal algorithms; 2) challenges in the practical application of algorithms; 3) inadequate 
computational performance of extant solving algorithms; and 4) elevated academic prerequisites for 
inventory management personnel. On the other hand, RL has emerged as a prominent field in AI, 
demonstrating its capabilities and prospects across various industries. From AlphaGo's victory against 
the world's top Go player, Ke Jie, to DeepMind's AlphaTensor solving a 50-year-old open problem in 
mathematics, RL has played an indispensable role. Besides, OpenAI's ChatGPT, a chatbot based on the 
GPT-4 model, also showcases impressive results in professional and academic exams, reflecting an 
intelligence level close to humans.  

In summary, efficient ordering strategies in multi-echelon inventory management constitute a vital 
aspect of supply chain operations, proving indispensable for the ongoing viability of organizations. RL, 
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as an AI technology with immense potential, could be a promising solution to tackle existing limitations 
in ordering and lead to better-performing multi-echelon inventory systems. By integrating RL 
algorithms into the ordering process, organizations can benefit from more efficient ordering strategies 
that improve multi-echelon inventory management, thus supply chain resilience, and competitiveness 
in the global marketplace. 

Literature Review 

Clark and Scarf's (1960)[1] groundbreaking paper first introduced the concepts of "echelon inventory" 
and "linear systems," laying the foundation for further research in this area. They transformed high-
dimensional optimization problems into a series of nested one-dimensional problems and demonstrated 
that the optimal ordering strategy is an echelon-base-stock policy. Chen and Zheng (1994)[2] provided 
an indirect proof, while Muharremoglu and Tsitsiklis (2003)[3] offered a direct proof for the validity of 
the echelon-base-stock policy. Despite the simplicity of this optimal inventory strategy, calculating the 
optimal echelon-based stock level can be quite complex due to the intricate cost function. Bertsekas et 
al. (1997)[4] were the first researchers to explore the application of RL to inventory management. 
Following their groundbreaking work, Kimbrough et al. (2002)[5] investigated the performance of 
reinforcement learning-trained agents in the MIT Beer Game and its variants, leading to substantial 
reductions in supply chain costs and the mitigation of the bullwhip effect. Giannoccaro et al. (2002)[6] 
delved into a three-echelon linear inventory system characterized by stochastic lead times and demand, 
formulating a RL algorithm known as "SMART" to tackle this problem. This algorithm outperformed 
a traditional periodic review base-stock policy in terms of total cost and customer waiting time. Other 
notable studies in this field include van Tongeren et al. (2007)[7], who employed Q-learning in the Beer 
Game and demonstrated a significant alleviation of the bullwhip effect, and Chaharsooghi et al. 
(2008)[8], who applied Q-learning to the same game while using genetic algorithms as a benchmark for 
performance comparison. Besides, Valluri et al. (2009)[9] investigated the use of linear function 
estimators, SARSA(λ) methods, and tiling coding TD(λ) methods in a four-level linear inventory system 
with constant demand. Her results indicated that the TD(𝜆) method with linear function estimators and 
tiling coding exhibited superior convergence properties. Mortazavi et al. (2015)[10] evaluated learned 
ordering strategies through simulation, considering factors such as inventory levels, total inventory 
costs, and customer waiting times. Kara et al. (2018)[11] compared base-stock policies, Q-learning, and 
SARSA algorithms in perishable inventory management to understand their respective performances in 
a single inventory point ordering problem. Boute et al. (2021)[12] offered recommendations for 
implementing DRL techniques across various inventory systems. Goedhart et al. (2022)[13] apply RL 
in omni-channel retailing. 

Problem Setting 

The inventory system investigated in this study is a three-echelon linear inventory system involving a 
single, non-perishable product.  In this system, the inventory points are arranged from downstream to 
upstream, sequentially consisting of the retailer, warehouse, and manufacturer. External to the system, 
consumers are associated with the retailer, while suppliers are linked to the manufacturer. Consumers, 
retailers, warehouses, and manufacturers are only permitted to place orders with their immediate 
upstream inventory points. We assume that the specific sequence of events in the linear inventory 
system in one time period: 

• Step 1 Shipping: The supplier ships to the manufacturer; the manufacturer ships to the warehouse; 
the warehouse ships to the retailer; the retailer ships to the consumer. 

• Step 2 Receiving goods: The manufacturer receives goods from the supplier; the warehouse receives 
goods from the manufacturer; the retailer receives goods from the warehouse; the consumer receives 
goods from the retailer. 

• Step 3 Ordering: The consumer orders from the retailer; the retailer orders from the warehouse; the 
warehouse orders from the manufacturer; the manufacturer orders from the supplier. 
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• Step 4 Receiving orders: The retailer receives orders from the consumer; the warehouse receives 
orders from the retailer; the manufacturer receives orders from the warehouse; the supplier receives 
orders from the manufacturer. 

• Step 5 Calculating costs: Calculating the total cost of the inventory system in the current time period. 

 
Figure 1: Three-echelon Linear Inventory System 

MDP Setting 

To effectively implement RL algorithms, a robust Markov Decision Process (MDP) model that captures 
problem-specific features is crucial. Based on existing literature and linear inventory system features, 
we develop a novel discrete-time MDP for formalizing the ordering process. 

State 

Let IL!(𝑖) denote the inventory level at inventory point 𝑖 at time period 𝑡 when ordering; 𝐈𝐋! represents 
the vector of inventory levels at each inventory point at time period t when ordering, i.e., 𝐈𝐋! =
(IL!(1), IL!(2), IL!(3)); IO!(𝑖) is the amount of goods ordered but not yet received at the inventory 
point 𝑖 at time period 𝑡 when ordering; 𝐈𝐎! represents the vector of goods ordered but not yet received 
at each inventory point at time period 𝑡 when ordering, i.e., 𝐈𝐎! = (IO!(1), IO!(2), IO!(3)); SS!(𝑖) is 
the amount of goods shipped from inventory point 𝑖 + 1 but not yet received at time period 𝑡 when 
ordering; 𝐒𝐒! represents the vector of goods shipped but not yet received at each inventory point at time 
period 𝑡 when ordering, i.e., 𝐒𝐒! = (SS!(1), SS!(2), SS!(3)).  

Fundamentally, in RL, the state summarizes all decision-related variables that have occurred before the 
current time step. Therefore, a well-designed state should include as much relevant historical 
information as possible to allow the agent to make better decisions. Thus, we define the state S! at time 
𝑡 as S! = ((𝐈𝐋!"#$%, 𝐈𝐎!"#$%, 𝐒𝐒!"#$%, D!"#$%), (𝐈𝐋!"#$&, 𝐈𝐎!"#$&, 𝐒𝐒!"#$&, D!"#$&), … , (𝐈𝐋! , 𝐈𝐎! , 

𝐒𝐒! , D!)), where the parameter 𝑢 represents the number of steps traced back from time 𝑡 (including time 
𝑡). 

Action 

Since the problem is an ordering problem, actions can generally be set in two ways in most cases in 
current literature. The first method is used by Bertsekas et al. (1997)[4], where they directly use the 
order quantity at the inventory point as the action. This setup is simple, direct, and interpretable. 
However, without setting upper and lower bounds for the order quantity, the action space theoretically 
forms a half-space, easily leading to the curse of dimensionality, especially when data is insufficient. 
Kimbrough et al. (2002) [5], Tongeren et al. (2007) [7], and Chaharsooghi et al. (2008) [8] improved 
upon the first method by using the change in the order quantity at an inventory point with respect to the 
received order volume, or the vector it forms, as the action. This setup constrains the state space from 
an unbounded set in the previous method to a bounded set. Although this requires manually setting a 
boundary for the bounded set, it significantly narrows the scope of the action space, facilitating the 
training of RL algorithms and the search for optimal policies, especially in cases of limited data 
availability. However, both methods mentioned above share a notable drawback: they do not 
incorporate useful expert knowledge or prior information when selecting actions or making decisions, 
diverging from rational human decision-making processes and resulting in weak interpretability of the 
decision models. 
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Therefore, we redesign the action 𝒂! at time 𝑡 as 𝒂! = (𝑎!(1), 𝑎!(2), 𝑎!(3))', where 𝑎!(𝑖)∈[0,1]. We 
define the column vector of order quantities at each inventory point at time t as 𝐎! = 𝐗!𝒂!, where the 
order information matrix 𝐗! = (𝐎;! , 𝐎<! , 𝐎=!), 𝐎;! is the column vector of average order quantities at each 
inventory point for the previous t periods, 𝐎<! is the column vector of average order quantities at each 
inventory point for periods 𝑡 − 2, 𝑡 − 1 and 𝑡, and 𝐎=!t is the column vector of predicted order quantities 
at each inventory point for period 𝑡. The exponential smoothing model is used to predict order quantities 
in this part. It is evident that action 𝒂! is common for all inventory points, and the product of the row 
vector of the 𝑖-th row of the order information matrix 𝐗!  and action 𝒂!  is the order quantity from 
inventory point 𝑖  to inventory point 𝑖 + 1  at time 𝑡 . Furthermore, the dimension of action 𝒂!  is 
independent of the number of inventory points in the inventory system, theoretically facilitating 
extension to any size inventory system. 

Reward 

Inventory systems aiming to minimize total costs, rewards are typically set as the negative of the total 
costs for single or partial inventory points or the entire inventory system within a single time period, as 
demonstrated by Bertsekas et al. (1997)[4], Giannoccaro et al. (2002)[6], and van Tongeren et al. 
(2007)[7]. Thus, we use the negative of the total costs for the entire inventory system within each time 
period as the reward. 

Shaped-nStep-Double-DQN Algorithm 

In the following, we present the framework of the algorithm below. 

As can be seen, we employ (1) Q-learning and the idea of (2) sampling to calculate expected values in 
designing the objective function; moreover, we use (3) the 2-step TD method to achieve a better balance 
between update bias and variance, while the length of experience data does not increase significantly 
compared to before, thus avoiding the pressure on experience data storage. Additionally, we utilize (4) 
a fixed-target double network structure to reduce the impact of updates to the latest parameters on target 
values, thereby minimizing training oscillations and divergence. Finally, we (5) employ the reward 
shaping technique to stabilize training. 

Table	1:	Shaped-nStep-Double-DQN	Algorithm 

Algorithm：Shaped-nStep-Double-DQN Algorithm 

Input： 
Experience replay buffer capacity N；number of training episodes M；exploration rate sequence 
{𝜺𝒌}，where 𝜺𝒌 ∈ [𝟎, 𝟏]，𝒌 = 𝟏, 𝟐,…；learning rate sequence {𝜶𝒌}，where 𝜶𝒌 ∈ [𝟎, 𝟏]，𝒌 =
𝟏, 𝟐,…；discount factor 𝜸；number of experiences randomly sampled from mini-batch 𝒏；target 
network parameter update frequency C；linear transformation parameter for action value 𝒂；
another linear transformation parameter for action value 𝒃 
Initialization: Experience replay buffer 𝒟 = {}； prediction Q network parameters 𝒘；target Q 
network parameters 𝒘" = 𝒘 
for episode =1 to M do: 

Obtain initial state 𝑠# 
for 𝑡 = 0: T − 1 do: 
Select action 𝑎$ based on the prediction Q network (𝜀-greedy method) 
Execute action 𝑎$；observe next state 𝑠$%&；receive reward 𝑟$%& 
Select action𝑎$%& based on the prediction Q network (ε-greedy method) 
Execute action 𝑎$%&；observe next state 𝑠$%'；receive reward 𝑟$%' 
Store experience data (𝑠$ , 𝑎$ , 𝑟$%&, 𝑠$%&, 𝑎$%&, 𝑠$%') as	a	queue	in	experience	replay	buffer 𝒟 
if |𝒟| ≥ 𝑚 do: 

Randomly sample 𝑛 experience data {(𝑠()), 𝑎()), 𝑟()), 𝑠())", 𝑎())", 𝑟())", 𝑠())"")})+&,',…,. 
if |𝒟| < N do: 

𝑦()) = 𝑟()) + 𝛾𝑟())" + 𝛾'Q(𝑠())"", argmax
/

 
(Qa𝑠())"", 𝑎;𝒘c;𝒘") 
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if |𝒟| = N do: 
Calculate the average reward value r̅ for all experience data (2N in total) in experience 
replay buffer 𝒟 
Update all action values Q as	Q + 0

&12
Q 

𝑦()) = 𝑟()) + 𝛾𝑟())" − (1 + 𝛾)�̅� + 𝛾'Q(𝑠())"", argmax
3

Qa𝑠())"", 𝑎;𝐰c ;𝐰") 
else: 

𝑦()) = 𝑟()) + 𝛾𝑟())" − (1 + 𝛾)�̅� + 𝛾'Q(𝑠())"", argmax
3

Qa𝑠())"", 𝑎;𝐰c ;𝐰") 

Minimize the loss function L = &
.
∑ (𝑦()) − Q(𝑠()), 𝑎()); 𝒘)).
)+&  

Update 𝐰" = 	𝐰 every C iterations 
𝑡 = 𝑡 + 1 
end for 

end for 

In the reward shaping part, we provide a rigorous mathematical explanation through Lemma below to 
proof the invariance of the optimal policy before and after reward transformation. 

Lemma (Optimal Policy Invariance). Consider a Markov decision process with 𝑣∗ ∈ ℝ|𝒮|  as the 
optimal state value satisfying 𝑣∗ = max+  (𝑟+ + 𝛾P+𝑣∗). If every reward 𝑟  is changed by an affine 
transformation to 𝑎𝑟	 + 𝑏, where 𝑎, 𝑏 ∈ ℝ and 𝑎 > 0, then the corresponding optimal state value 𝑣, is 
also an affine transformation of 𝑣∗ :	𝑣, = 𝑎𝑣∗ + -

%".
𝟏, where 𝛾 ∈ (0,1) is the discount rate and 1 =

[1,… ,1]'. Consequently, the optimal policies are invariant to the affine transformation of the reward 
signals. 

Proof: For any policy 𝜋, define 𝑟+ = [… , 𝑟+(𝑠), … ]' where 𝑟+(𝑠) = ∑  / 𝜋(𝑎 ∣ 𝑠) ∑  0 𝑝(𝑟 ∣ 𝑠, 𝑎)𝑟, 	𝑠 ∈
𝒮. If 𝑟 → 𝑎𝑟 + 𝑏 , then 𝑟+(𝑠) → 𝑎𝑟+(𝑠) + 𝑏  and hence 𝑟+ → 𝑎𝑟+ + 𝑏1, where 1 = [1,… ,1]' . In this 
case, the BOE becomes 𝑣, = max

+
 (𝑎𝑟+ + 𝑏1 + 𝛾P+𝑣,) (*). We next solve the new BOE in (*). To do 

that, we verify that 𝑣, = 𝑎𝑣∗ + 𝑘1 with 𝑘 = 𝑏/(1 − 𝛾) is the solution of (*). In particular, substituting 
𝑣, = 𝑎𝑣∗ + 𝑘1  into (*) gives 𝑎𝑣∗ + 𝑘1 = max

+
 [𝑎𝑟+ + 𝑏1 + 𝛾P+(𝑎𝑣∗ + 𝑘1)] = max

+
 (𝑎𝑟+ + 𝑏1 +

𝑎𝛾P+𝑣∗ + 𝑘𝛾𝟏),where the last equation is due to 𝑃+1 = 1.  The equation can be rewritten as. 𝑎𝑣∗ =
max
+
 (𝑎𝑟+ + 𝑎𝛾P+𝑣∗) + 𝑏1 + 𝑘𝛾1 − 𝑘1 , which is equivalent to 	 𝑏1 + 𝑘𝛾1 − 𝑘1 = 0 . Since 𝑘 =

𝑏/(1 − 𝛾), the above equation is valid and hence 𝑣, = 𝑎𝑣∗ + 𝑘1 is the solution to (*). Since (*) is the 
BOE, 𝑣, is also the unique solution. Finally, since 𝑣, is an affine transformation of 𝑣∗, the relative 
relationship among the action values remain the same. Hence, 𝑣,  would lead to the same optimal 
policies as 𝑣∗. 

Experiments 

The experiments in this paper are divided into two parts: 

1. Testing the performance of the Shaped-nStep-Double-DQN algorithm under various MDP settings 
(experiment 1). 

2. Applying the Shaped-nStep-Double-DQN algorithm to a three-echelon linear inventory system 
(experiment 2-3). 

The hyperparameters for the Shaped-nStep-Double-DQN algorithm used in this study are as follows: 
Table	2:	Parameters	of	MDP	and	hyperparameter	Settings	of	Shaped-nStep-Double-DQN	algorithm	

Hyperparameters Values 
Number of steps to backtrack in the state 3 

Experience replay buffer capacity N 20000 
Number of training episodes M 2000 

Number of time steps per episode T 200 
Target network parameter update frequency C 20 

Batch size for random sampling of experiences 𝑛 32 
Discount factor 𝛾 0.99 
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Initial exploration ratein 𝜀-greedy policy 𝜀₀ 0.9 
Exploration rate decay factor in 𝜀-greedy policy 0.99 

Initial learning rate 𝛼# 0.1 
Learning rate decay factor 0.99 

Fully connected neural network (Q-network) 
structure 30 ×80×20× 3 

Learning rate in RMSProp algorithm 0.01 
Decay factor in RMSProp algorithm 0.9 

Stabilizing factor in RMSProp algorithm 																																										1014 

Experiment 1: Performance of Shaped-nStep-Double-DQN Algorithm under Different MDP 
Settings 

In the experiment, we fixed the reward setting and examined the performance of the MDP with different 
state and action settings. There are two options for the states: (1) a vector composed of the inventory 
level, in-transit inventory, and received orders at each inventory point, and (2) a vector composed of 
the inventory level at each inventory point and the shipment quantity in the past two time periods. There 
are also two options for actions: (1) a vector of order quantities at each inventory point, and (2) a vector 
of order quantity changes with respect to the received orders at each inventory point. For simplification, 
we denote these as state setting 1 and state setting 2, and action setting 1 and action setting 2, 
respectively. The action and state settings in the MDP model of this article are denoted as state setting 
3 and action setting 3. We consider a specific inventory system where demand is constant, and the 
demand at each time period is always 5. The lead times for all inventory points are 0 (i.e., no lead time). 
The operational costs at each inventory point consist only of holding costs and stockout costs, both with 
a unit cost of 1. The external supplier has an ample supply. In this inventory system, the 1-1 ordering 
policy is optimal, meaning that downstream orders should match upstream orders. Thus, the optimal 
ordering policy is to order 5 units of goods at each inventory point. Since the lead times are 0, the 
inventory is received in the same time period as the order, so no holding costs or stockout costs are 
incurred, and the optimal ordering cost is 0. We simulated the inventory system for 20 time periods, 
repeating the simulation 50 times.  

Table 3 shows the performance of the ordering policy learned by the Shaped-nStep-Double-DQN 
algorithm under different MDP settings. The values in the table are the averages of 50 experiments. As 
shown, the combination of state setting 1 and action setting 1, as the simplest MDP setting, results in 
the worst performanc, with an average total cost of 29. The MDP setting with state setting 3 and action 
setting 3 exhibits the best performance in minimizing inventory costs, with an average total cost of 2. 
This is about 0.2 times the cost of the second-best MDP setting (state setting 2 and action setting 3) and 
about 0.067 times the cost of the worst MDP setting (state setting 1 and action setting 1). Compared to 
the ordering policies under other settings, the policy learned by the algorithm with state setting 3 and 
action setting 3 is almost as good as the optimal 1-1 ordering policy. This further demonstrates the 
importance of selecting a suitable MDP model setting, improving state representation capabilities, and 
enhancing the relevance between actions and decisions in the learning of ordering policies. 

Table 3: Performance of Shaped-nStep-Double-DQN Ordering Policies under Different MDP 
Settings 

 State Setting 1 State Setting 2 State Setting 3 
Action Setting 1 -29 -25 -23 

Action Setting 2 -24 -11 -12 

Action Setting  3 -16 -10 -2 

Experiment 2: Performance between Shaped-nStep-Double-DQN Ordering Policy and 1-1 
Ordering Policy 

In the second part of the experiment, we applied the Shaped-nStep-Double-DQN algorithm to the linear 
inventory system based on the MDP model settings determined in the previous section. We set the 
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demand to be constant and equal to 5 for each time period. The lead time is 0 for each inventory location, 
and the holding cost and stock-out cost per unit are both set to 1. The external supplier is assumed to be 
sufficient. Figure 2 shows the training process of the learned ordering policy, with the orange horizontal 
line indicating the fixed reward for the optimal 1-1 ordering policy (0). The light blue curve represents 
the rewards obtained by the learned ordering policy in each time period. It can be seen that as the 
training progresses, the performance of the learned ordering policy gradually improves, and the rewards 
stabilize between -5 and 0, with a mean value of about -2, which is only 2 away from the optimal 
inventory cost of 0. This demonstrates that the Shaped-nStep-Double-DQN algorithm is able to learn 
an excellent ordering policy that approximates the optimal policy in a deterministic linear inventory 
system. The results also suggest that the Shaped-nStep-Double-DQN algorithm performs	well	 in	
learning	the	ordering	policy	in	deterministic	linear	inventory	systems.	

	
Figure	2:	Shaped-nStep-Double-DQN	Ordering	Strategy	and	1-1	Ordering	Strategy	Performance	

Comparison	in	Deterministic	Linear	Inventory	Systems	

Experiment 3: Performance between Shaped-nStep-Double-DQN Ordering Policy and Base 
Stock Ordering Policy 

Next, we extend the deterministic linear inventory system to a stochastic linear inventory system. We 
modify the lead time of each inventory point in the deterministic linear inventory system from a constant 
zero to a normally distributed random variable with a mean of 0 and a variance of 1. We also change 
the demand at each time period, which was previously always equal to 5, to follow a Poisson distribution 
with a mean of 5. 

Figure 3 depicts the training process of the Shaped-nStep-Double-DQN ordering strategy, where the 
red curve represents the rewards per time period for the echelon base-stock strategy, and the green curve 
represents the rewards per time period for the ordering strategy learned using the Shaped-nStep-Double-
DQN algorithm. As observed, the performance of the ordering strategy learned using Shaped-nStep-
Double-DQN improves during training. The rewards per time period gradually increase as the number 
of episodes increases, eventually stabilizing between -45 and -55, with an average around -50, 
outperforming the echelon base-stock strategy. This demonstrates that in this stochastic linear inventory 
system, the ordering strategy learned using Shaped-nStep-Double-DQN is more effective in reducing 
inventory costs and has better performance compared to the base-stock strategy. 

 
Figure	3:	Comparison	between	the	Shaped-nStep-Double-DQN	Ordering	Strategy	and	the	Base-

Stock	Ordering	Strategy	
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Conclusion 

First of all, existing MDP models in the literature have limitations for linear inventory systems, 
prompting us to propose a new MDP model, which is more suitable for linear inventory system. 

To determine the optimal policy for this MDP model, we introduce a new RL algorithm called Shaped-
nStep-Double-DQN.In the experimental section, we design experiments and verify that our new MDP 
model setting outperforms the existing MDP model settings. We then test the performance of the 
Shaped-nStep-Double-DQN algorithm in the ordering problem of linear inventory systems.  

The experimental results show that in deterministic linear inventory systems, the ordering strategy 
learned using the Shaped-nStep-Double-DQN algorithm is nearly consistent with the optimal ordering 
strategy in reducing inventory costs and is a good approximation. In stochastic linear inventory systems 
with Poisson-distributed consumer demand, the Shaped-nStep-Double-DQN algorithm's ordering 
strategy outperforms the base-stock ordering strategy in reducing inventory costs, exhibiting superior 
inventory performance. 
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