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Abstract

Goldbach’s conjecture is one of the most difficult unsolved problems in
mathematics. This states that every even natural number greater than
2 is the sum of two prime numbers. The Goldbach’s conjecture has been
verified for every even number N ≤ 4 · 1018. In this note, we prove
that for every even number N ≥ 4 · 1018, if there is a prime p and a
natural number m such that n < p < N − 1, p + m = N , N

σ(m)
+

n0.889 +1+ m−1
2

≥ n and p is coprime with m, then m is necessarily
a prime number when N = 2 · n and σ(m) is the sum-of-divisors
function of m. The previous inequality N

σ(m)
+n0.889 +1+ m−1

2
≥ n

holds whenever N
eγ ·m·log log m

+ n0.889 + 1 + m−1
2

≥ n also holds
and m ≥ 11 is an odd number, where γ ≈ 0.57721 is the Euler-
Mascheroni constant and log is the natural logarithm. This implies that
the Goldbach’s conjecture is true when the Riemann hypothesis is true.

Keywords: Goldbach’s conjecture, Prime numbers, Sum-of-divisors function,
Euler’s totient function

MSC Classification: 11A41 , 11A25

1 Introduction

As usual σ(n) is the sum-of-divisors function of n∑
d|n

d,
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where d | n means the integer d divides n. Define s(n) as σ(n)
n . In number

theory, the p-adic order of an integer n is the exponent of the highest power of
the prime number p that divides n. It is denoted νp(n). Equivalently, νp(n) is
the exponent to which p appears in the prime factorization of n. We can state
the sum-of-divisors function of n as

σ(n) =
∏
p|n

pνp(n)+1 − 1

p− 1

with the product extending over all prime numbers p which divide n. In
addition, the well-known Euler’s totient function φ(n) can be formulated as

φ(n) = n ·
∏
p|n

(
1− 1

p

)
.

Chen’s theorem states that every sufficiently large even number can be written
as the sum of either two primes, or a prime and a semiprime (the product of
two primes) [1]. Tomohiro Yamada using an explicit version of Chen’s theorem

showed that every even number greater than ee
36 ≈ 1.7 · 101872344071119343 is

the sum of a prime and a product of at most two primes [2]. A natural number
is called k-almost prime if it has k prime factors [3]. A natural number is prime
if and only if it is 1-almost prime, and semiprime if and only if it is 2-almost
prime. Let N be a sufficiently large even integer. Ying Chun Cai proved that
the equation

N = p+ P2, p ≤ N0.95,

is solvable, where p denotes a prime and P2 denotes an almost prime with at
most two prime factors [3]. The Goldbach’s conjecture has been verified for
every even number N ≤ 4 · 1018 [4]. In mathematics, two integers a and b
are coprime, if the only positive integer that is a divisor of both of them is 1.
Putting all together yields the proof of the main theorem.

Theorem 1 For every even number N ≥ 4 ·1018, if there is a prime p and a natural
number m such that n < p < N − 1, p + m = N , N

σ(m)
+ n0.889 + 1 + m−1

2 ≥ n

and p is coprime with m, then m is necessarily a prime number when N = 2 ·n. The
previous inequality N

σ(m)
+ n0.889 + 1 + m−1

2 ≥ n holds whenever N
eγ ·m·log logm +

n0.889 + 1 + m−1
2 ≥ n also holds and m ≥ 11 is an odd number, where γ ≈ 0.57721

is the Euler-Mascheroni constant and log is the natural logarithm. This implies that
the Goldbach’s conjecture is true when the Riemann hypothesis is true.

2 Proof of Theorem 1

Proof Suppose that there is an even number N ≥ 4 · 1018 which is not a sum of two
distinct prime numbers. We consider all the pairs of positive integers (n− k, n+ k)
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where n = N
2 , k < n− 1 is a natural number, n+ k and n− k are coprime integers

and n+ k is prime. By definition of the functions σ(x) and φ(x), we know that

2 ·N = σ((n− k) · (n+ k))− φ((n− k) · (n+ k))

when n− k is also prime. We notice that

2 ·N < σ((n− k) · (n+ k))− φ((n− k) · (n+ k))

when n − k is not a prime. Certainly, we see that (n − k) + (n + k) = N and thus,
the inequality

2 · ((n− k) + (n+ k)) + φ((n− k) · (n+ k)) < σ((n− k) · (n+ k))

holds when n− k is not a prime. That is equivalent to

2 · ((n− k) + (n+ k)) + φ(n− k) · φ(n+ k) < σ(n− k) · σ(n+ k)

since the functions σ(x) and φ(x) are multiplicative. Let’s divide both sides by (n−
k) · (n+ k) to obtain that

2 ·
(
(n− k) + (n+ k)

(n− k) · (n+ k)

)
+

φ(n− k)

n− k
· φ(n+ k)

n+ k
< s(n− k) · s(n+ k).

We know that
s(n− k) · s(n+ k) > 1

since s(m) > 1 for every natural number m > 1 [5]. Moreover, we could see that

2 ·
(
(n− k) + (n+ k)

(n− k) · (n+ k)

)
=

2

n+ k
+

2

n− k

and therefore,

1 >
2

n+ k
+

2

n− k
+

φ(n− k)

n− k
· φ(n+ k)

n+ k
.

It is enough to see that

1 >
2

2 · 1018
+

2

9
+

2

3
≥ 2

n+ k
+

2

n− k
+

φ(n− k)

n− k
· φ(n+ k)

n+ k

when n+ k is prime and n− k is composite for N ≥ 4 · 1018. Indeed, when n+ k is
prime and n− k is composite, then n+ k > 2 · 1018 and n− k ≥ 9 for N ≥ 4 · 1018.
Under our assumption, all these pairs of positive integers (n− k, n+ k) imply that

2 ·N < σ((n− k) · (n+ k))− φ((n− k) · (n+ k))

holds whenever n = N
2 , k < n− 1 is a natural number, n+ k and n− k are coprime

integers and n+ k is prime. Hence, we have

N <
1

2
· (σ(n− k) · σ(n+ k)− φ(n− k) · φ(n+ k)) .

Since n+ k is prime, then

φ(n+ k)

1 + n0.889
=

n+ k − 1

1 + n0.889

≥ n

1 + n0.889

≥ 2 ·
(
eγ · log log(n− 1) +

2.5

log log(n− 1)

)2

≥ 2 ·
(
eγ · log log(n− k) +

2.5

log log(n− k)

)2
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> 2 ·
(

n− k

φ(n− k)

)2

=
n− k

φ(n− k)
· 2 ·

∏
q|(n−k)

(
q

q − 1

)

> s(n− k) · 2 ·
∏

q|(n−k)

(
q

q − 1

)

=
2 · σ(n− k)

(n− k) ·
∏

q|(n−k)

(
1− 1

q

)
=

2 · σ(n− k)

φ(n− k)

when we know that b
φ(b)

< eγ · log log(b) + 2.5
log log(b)

holds for every odd number

b ≥ 3 [6]. Moreover, we have

n

1 + n0.889
≥ 2 ·

(
eγ · log log(n− 1) +

2.5

log log(n− 1)

)2

for every natural number n ≥ 2 · 1018 under the supposition that N ≥ 4 · 1018.
Certainly, the function

f(x) =
x

1 + x0.889
− 2 ·

(
eγ · log log(x− 1) +

2.5

log log(x− 1)

)2

is strictly increasing and positive for every real number x ≥ 2 · 1018 because of its
derivative is greater than 0 for all x ≥ 2 ·1018 and it is positive in the value of 2 ·1018.
Furthermore, it is known that

∏
q|b

(
q

q−1

)
= b

φ(b)
> s(b) =

σ(b)
b for every natural

number b ≥ 2 [5]. Finally, we would have that

−1

2
· φ(n− k) · φ(n+ k) < −σ(n− k) · (1 + n0.889)

and so,

N <
1

2
· σ(n− k) · σ(n+ k)− σ(n− k) · (1 + n0.889).

We would have
N

σ(n− k)
+ n0.889 + 1 <

σ(n+ k)

2

which is
N

σ(n− k)
+ n0.889 + 1 +

n− k − 1

2
< n.

In this way, we obtain a contradiction when we assume that N
σ(n−k)

+ n0.889 + 1 +
n−k−1

2 ≥ n. By reductio ad absurdum, the natural number n−k is necessarily prime

when N
σ(n−k)

+n0.889+1+ n−k−1
2 ≥ n. Moreover, we know that σ(b) < eγ ·b·log log b

holds for every odd number b ≥ 11 [5]. Consequently, the inequality N
σ(n−k)

+n0.889+

1 + n−k−1
2 ≥ n holds whenever N

eγ ·(n−k)·log log(n−k)
+ n0.889 + 1 + n−k−1

2 ≥ n also

holds and (n− k) ≥ 11 is an odd number. In 2014, Dudek proved that the Riemann
hypothesis implies that for all x ≥ 2 there is a prime p satisfying [7]

x− 4

π

√
x log x < p ≤ x.
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Fig. 1 Plot of function H4(x) [8]

Fig. 2 Plot of function H8(x) [9]

In this way, there is always a prime n + k for 4
π ·

√
n · logn ≤ k ≤ 8

π ·
√
n · logn.

However, we know the inequality 2·n
eγ ·(n−k)·log log(n−k)

+n0.889+1+ n−k−1
2 ≥ n holds

for all positive integers n ≥ 2 · 1018 and 4
π ·

√
n · logn ≤ k ≤ 8

π ·
√
n · logn since the

functionHa(x) =
x

(x− a
π ·

√
x·log x)·log log(x− a

π ·
√
x·log x)

+x0.889+1+
x− a

π ·
√
x·log x−1
2 −x

is positive for all x ≥ 2 · 1018 and a ∈ {4, 8} (See Figures 1 and 2). Certainly, we
know that Ha(n) ≤ 2·n

eγ ·(n−k)·log log(n−k)
+ n0.889 + 1 + n−k−1

2 − n for all positive

integers n ≥ 2 · 1018 and 4
π ·

√
n · logn ≤ k ≤ 8

π ·
√
n · logn, where we select the

appropriated value of 4 ≤ a ≤ 8 according to the value of k. □
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