
EasyChair Preprint
№ 5663

Generating Custom Set Theories with Non-Set
Structured Objects

Ciarán Dunne, Joe Wells and Fairouz Kamareddine

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 1, 2021

Generating Custom Set Theories
with Non-Set Structured Objects

Ciarán Dunne, J. B. Wells, Fairouz Kamareddine

Heriot-Watt University

Abstract. Set theory has long been viewed as a foundation of math-
ematics, is pervasive in mathematical culture, and is explicitly used by
much written mathematics. Because arrangements of sets can represent a
vast multitude of mathematical objects, in most set theories every object
is a set. This causes confusion and adds difficulties to formalising math-
ematics in set theory. We wish to have set theory’s features while also
having many mathematical objects not be sets. A generalized set theory
(GST) is a theory that has pure sets and may also have non-sets that can
have internal structure and impure sets that mix sets and non-sets. This
paper provides a GST-building framework. We show example GSTs that
have sets and also (1) non-set ordered pairs, (2) non-set natural numbers,
(3) a non-set exception object that can not be inside another object, and
(4) modular combinations of these features. We show how to axiomatize
GSTs and how to build models for GSTs in other GSTs.

1 Introduction

Set Theory as a Foundation of Mathematics. Set theories like Zermelo-
Fraenkel (ZF), and closely related set theories like ZFC and Tarski-Grothendieck
(TG), play many important roles in mathematics. ZF’s axioms allow express-
ing a vast number of mathematical concepts. For most of the last century most
mathematicians have accepted theories like ZF as suitable foundations of math-
ematics. ZF’s axioms have been rigorously evaluated for roughly a century and
have no known inconsistencies. Mathematical theories are often assessed against
the standard of whether models can be constructed for them in theories like
ZF (what Maddy [14] calls risk assessment). Much of mathematical notation
and reasoning is rooted in set theory. A significant amount of mathematics has
been formalised in set theory and computer-verified using proof assistants like
Isabelle/ZF [18,9], Mizar [2], and Metamath [15].

Mathematics varies in the kind and degree of assumptions made of the under-
lying foundation. Some mathematics explicitly specifies a set-theoretic or type-
theoretic foundation and some does not. Set theories like ZF are usually stated in
first-order logic (FOL), but are sometimes stated in higher-order logic (HOL) or
given as theories embedded in a dependent type system. In some mathematics,
functions are sets of ordered pairs while in other mathematics functions are not
even sets. There is variation in how undefined terms are treated [6,19]. When

2 C. Dunne, J. B. Wells, F. Kamareddine

viewing ZF as the underlying foundation, it is assumed that high-level mathe-
matics has meaningful translations into ZF, or that ZF can be safely modified
to accommodate the user’s needs.

Representation Overlap in Set-Theoretic Formalisation. Translating
human-written mathematics into ZF has complications. Every object in ZF’s
domain of discourse is a pure set, so objects of human-written text must be
represented as pure sets. Objects that the mathematician views as distinct can
have the same ZF representation. For example, consider formalising a function
g : (N2∪P(N))→ {0, 1} such that g(〈0, 1〉) = 0 and g({1, 2}) = 1. Let (·)∗ be the
translation of human-written mathematical objects into the domain of ZF. Typi-
cally, N is represented using the von Neumann ordinals, so 0∗ := ∅ and (k+1)∗ :=
k∗ ∪ {k∗}. Also, ordered pairs are usually represented using Kuratowski’s en-
coding where 〈a, b〉∗ := {{a∗}, {a∗, b∗}}. Furthermore, sets of the human-written
text usually get the näıve translation {x1, . . . , xn}∗ = {x∗1, . . . , x∗n}. Using these
representations, the ordered pair 〈0, 1〉 and the set {1, 2} are represented in ZF
by the same pure set : {{∅}, {∅, {∅}}}. Thus, a näıve translation of the definition
of g will require that 0∗ = g(〈0, 1〉∗) = g({1, 2}∗) = 1∗ and there will be no value
for g satisfying its specification, i.e., the näıvely translated definition will fail to
define anything. A standard set-theoretic solution is to not use N2∪P(N) as the
domain of g but instead to use ({0}×N2)∪ ({1}×P(N)), i.e., tag every member
of N2 with 0 and every member of P(N) with 1. This works because {0} × N2

and {1} × P(N) are disjoint. This requires complete foresight of the objects to
be used, obscures the mathematics under a layer of tagging and untagging, and
increases the costs of formalisation.

Furthermore, sometimes the mathematics needs a class (sometimes a proper
class) of objects that are distinct from all sets, adding complication. And some-
times the objects that must be distinct from all sets can contain sets. The proper
set-theoretic solution is to build a hierarchy in ZF to represent both the sets and
the non-set objects of the human-written mathematics using a construction sim-
ilar to the von Neumann cumulative hierarchy. An example of doing this is the
set theory ZFP [5] which has proper classes of both sets and non-set ordered
pairs. A model of ZFP can be built in ZF using tagged ZF sets to represent both
ZFP sets and ZFP non-set ordered pairs.

Proper classes and tagging both involve awkward reasoning. Definitions, lem-
mas, and proofs quickly become messy. The user must redefine and reprove op-
erations and relations, leaving them with duplicate symbols and concepts (e.g.,
the power set operation of ZF vs. the analogous operation on the tagged sets
within ZF that represent the sets of the human-written mathematics). How to
build these models is not obvious to most mathematicians.

Type Theory as an Alternative. Type theories typically avoid representation
overlap by preventing operations that mix types. Operating on multiple types is
done via sum types or inductive datatypes, and something equivalent to tagging

Generating Custom Set Theories with Non-Set Structured Objects 3

and untagging happens in a type theory’s underlying model theory, but the user
is shielded from most details.

Unfortunately, formalising mathematics in type theory is not always the best
option. Removing set-theoretic dependencies can transform a text in ways that
take it far from the author’s conception. As mathematics gets more complex,
the typing combinations push the limits of human cognition. Type error mes-
sages can be beyond human comprehension. The typing rules of proof assistants
can differ in significant ways from the human-readable documentation, and im-
mense expertise in the implementation can be needed. Typing constraints can
add proving obligations that are not relevant to the mathematics being for-
malised. Formalising mathematics in type theories can require awkward and
expensive workarounds that sometimes seem infeasible. To address these issues,
more sophisticated type systems are developed that can require more expertise
to comprehend. Finally, some type-theoretic provers focus on constructive, non-
classical reasoning, but much mathematics is non-constructive, and constructive
reasoning can be an unnecessary burden.

An Arena for Custom Set Theories. We seek to retain the useful qualities of
set theory whilst being able to have mathematical objects that are genuinely not
sets. Some set theories (e.g., ZFA, KPU) have non-set objects called urelements
which contain no set members (but are not the empty set) and can belong to
sets. Typically urelements have no internal structure (an exception is Aczel’s
GST [1]). To avoid confusion with typical structure-free urelements, we use the
phrase non-set object for members of a domain that are not sets. A set is pure
iff all of its members are pure sets; other sets are impure. A generalized set
theory (GST) is a theory that has pure sets and may also have non-sets that can
have internal structure and impure sets. ZFP (mentioned above) is a GST with
non-sets with internal structure.

If a set theory S can be shown to be consistent relative to ZF and S is a better
match for some mathematicians’ needs, it is reasonable that they use S instead
of ZF as a foundation. So we ask: Is it possible to give each mathematician
a foundation that matches their intuition and in which their mathematics is
formally true in the original human-written form rather than only becoming
formally true after substantial effort and transformation? With this aim in mind,
we propose what we call an arena in which multiple different GSTs (including
ZF) can co-exist and a toolkit to support showing relative consistency results.
Our plan and its fulfillment in later sections of this paper is as follows.

We begin in section 2 with a logical framework that supplies features needed
for an arena for set theories. Our design is inspired by systems such as the com-
bination of Isabelle/Pure with Isabelle/FOL that underlies Isabelle/ZF, but we
have deliberately used a bare minimum of features. To cleanly support multiple
GSTs simultaneously, we have a countably infinite set of domain types which are
base types of individuals. We have function types to support definitions and set
theory axiom schemas. In any given derivation, one domain type is designated as
the founder domain type. We allow ∀-introduction only at the founder domain

4 C. Dunne, J. B. Wells, F. Kamareddine

type. We allow ∀-elimination at the founder domain type and all non-domain
types, and forbid ∀-elimination at all non-founder domain types. Reasoning in a
derivation about a domain dk other than the derivation’s founder domain di is
intended to work via a connection from dk to a model for dk in another domain;
there should be a chain of connections from domains to their models which
terminates in the founder domain. We supply axioms for using (eliminating)
equality at all types but we only introduce equality at domain types and do so
via domain-specific axioms like ZF’s Axiom of Extensionality.

Section 3 axiomatizes example GSTs with non-set ordered pairs, non-set
natural numbers, a non-set exception element that can not be inside any other
object, and the combination of all of these features. This section gives a gener-
alised specification of Zermelo-Fraenkel set theory (GZF) as a feature of GSTs.
The GZF specification differs from ZF by (1) not expecting everything to be a
set and (2) not specifying well-foundedness because this is handled by our toolkit
for combining features to build a GST. The GZF specification is also used as a
template where the ∀-quantifier may be replaced by a quantifier restricted to a
model constructed within a domain.

Section 4 provides a toolkit for building and reasoning about models of GSTs.
The user can build models of GSTs within any GST to verify the consistency of a
GST or to explore what models are possible and what axiomatizations might be
possible for those models. The main parameter of our model-building machinery
is a constant called Opsi,j which the user axiomatizes to specify the operations
used to build in di the tiers of a cumulative model intended for use as domain
dj . Models are defined using transfinite recursion, the user-supplied axioms for
Opsi,j , and tagging machinery. We show how a user can axiomatize Opsi,j to
yield a model satisfying GZF.

Section 5 defines how to connect to domain dj a model built in domain di
intended for domain dj . Connection is achieved by axiomatizing an isomorphism
between the model and the domain in the style of Gordon/HOL type definitions.

Section 6 builds models for the example GSTs given in section 3 and connects
these GSTs to their models as part of showing consistency.

Related Work. Isabelle/ZF [18] is an embedding of first-order logic and ZF in
Isabelle/Pure, a simply-typed intuitionistic higher-order logic [17]. Isabelle/ZF’s
base library primarily proves theorems about set theory (functions, ordinals, re-
cursion). IsarMathLib [9] is a library of mathematics in areas such as abstract
algebra, analysis, and topology that is formalised in Isabelle/ZF. Mizar [2] pro-
vides a language for proving theorems in TG. A notable feature of Mizar is “weak
typing” which gives some of the advantages of types. Metamath/ZFC [15] de-
velops ZFC in a minimal framework without much proof automation.

Many have sought a middle ground between set theory and type theory.
Krauss [10] worked on adding “soft types” to Isabelle/ZF, and this proposal
was later developed into Isabelle/Set [11], an axiomatisation of TG. Brown [4]
developed extended first-order logic (EFOL), which extends FOL with some
higher-order convenience. The Egal prover [3] axiomatizes TG within EFOL.

Generating Custom Set Theories with Non-Set Structured Objects 5

δ ε̇ Domain ::= d1 | d2 | d3 | · · · a, b, p, q, x, y, z ε̇ Var ::= v1 | v2 | v3 | · · ·
σ, τ ε̇ Type ::= ? | δ | σ ⇒ τ c ε̇ Const ::= → | ∀τ | · · ·
i, j ε̇ N ν ε̇ Var ∪ Const

A, . . . , Z ε̇ Term ::= x | c | BC | λ x : τ .B (if vtyp(x) ≡ τ)

x :: vtyp(x) c :: ctyp(c)

B :: σ vtyp(x) ≡ τ
(λ x : τ .B) :: τ ⇒ σ

B :: τ ⇒ σ C :: τ
(BC) :: σ

Fig. 1. Syntax and typing rules

HOLZF [16] axiomatizes in Isabelle/HOL a type ZF of the pure sets of ZF and
supports conversion between ZF sets and HOL sets of ZF sets.

Aczel and Lunnon [1] worked on GSTs (and coined the phrase “GST”). It
appears that their systems assume the Anti-Foundation axiom instead of ZF’s
Axiom of Foundation. They discuss model building but identify no axioms.

Kunčar and Popescu [8,12,13] developed and proved soundness of methods
for connecting an entire abstract type τ to a subset of a concrete representation
type τ ′ given by a predicate on τ ′; our approach in section 5 has a very similar
essential core. Under the slogan “little theories”, Farmer et al. [7] developed in
the IMPS prover flexible meta-level methods for automatically generating and
using theory interpretations for connecting abstract theories to concrete theories;
here the emphasis is more on using the abstract theories to prove things in the
concrete theories and less on using a trusted believed-to-be-consistent concrete
theory to prove consistency of the abstract theory.

2 Logical Framework

Syntax. Figure 1 defines the meta-level sets Domain, Type, Var, and Const. Each
type di is a domain (of FOL individuals). The function type constructor ⇒ is
right associative, i.e., (τ1 ⇒ τ2 ⇒ τ3) ≡ (τ1 ⇒ (τ2 ⇒ τ3)). The fixed variable
type function vtyp maps every x ε Var to some σ ε Type. For each τ ε Type there
are infinitely many variables y ε Var such that vtyp(y) ≡ τ . The fixed constant
type function ctyp maps every member of Const to some σ ε Type and it holds
that ctyp(→) ≡ ?⇒ ?⇒ ? and for every τ ε Type that ctyp(∀τ) ≡ (τ ⇒ ?)⇒ ?
and ctyp(=τ) ≡ ctyp(6=τ) ≡ τ ⇒ τ ⇒ ?. For any i ε N, we abbreviate ∀di as ∀i.
Fixed meta-level names for the other constants in Const and further details of
ctyp will be revealed incrementally. Subscripts i and i, j on the meta-level names
of constants are used to indicate a constant is relevant to domain di or both
domains di and dj ; these subscripts are often light grey to help the reader not
be distracted by them. Notation of the form C :≡ (ξ1 :: τ1, . . . , ξn :: τn) asserts
for each i ε {1, . . . , n} that ξi ε Const (so the meta-metavariable ξi could have
been written ci) and ctyp(ξi) ≡ τi and C ≡ {ξ1, . . . , ξn}.

The rules in figure 1 define the meta-level set Term. As is standard for a
λ-calculus, each abstraction λ x : σ .C binds the variable x and this is the only

6 C. Dunne, J. B. Wells, F. Kamareddine

(hyp) {ϕ} `i ϕ
(impI) If Γ `i ψ, then Γ − ϕ `i ϕ→ ψ
(impE) If Γ `i ϕ→ ψ and Γ ′ `i ϕ, then Γ ∪ Γ ′ `i ψ
(allIi) If Γ `i ϕ, x :: di, and x 6 ε FV[Γ], then Γ `i ∀i (λ x : di . ϕ)
(allEi) If Γ `i ∀τ P , and B :: τ , and ∀ j 6= i . τ 6= dj , then Γ `i P B

Init :=

{
∀ p . ∀τ x, y . x = y → (p x↔ p y),
(6=τ) = (λ x, y .¬ (x = y))

τ ε Type

}
∪ {∀? p, q . (¬ p→ ¬ q)→ q → p, ∀? p, q . (p↔ q)→ p→ q,
∀? p, q . (p↔ q)→ q → p, ∀? p, q . (p→ q)→ (q → p)→ (p↔ q),

∧ = (λ p, q .¬ (p→ ¬ q)), ∨ = (λ p, q .¬ p→ q)}

FOLQuantsi := { ∃i = (λ p .¬ (∀i (λ x .¬ (p x)))), ∀i[·] = (λ p, q .∀i x . p x→ q x),

∃≤1
i = (λ p .∀i y, z . p y ∧ p z → y = z), ∃i[·] = (λ p, q .∃i x . p x ∧ q x)}

Fig. 2. Inference rules, initial theory, and simple definitions for quantifiers

way variables can be bound. We identify terms modulo α-equivalence. We then
define the free variable function FV so that FV(B) is the set of variables free in
the β-normal-form of B. We then further identify terms modulo β-equivalence
and lift FV accordingly. Substitution B[ν:=C] is defined as usual. Constants can
not be bound by λ.

Figure 1 defines the typing relation :: between Term and Type. Inside a term
expression B :: τ we allow omitting the type σ that is part of the name of an
occurrence of ∀σ, =σ, or 6=σ, or that is part of an abstraction λx : σ .C, provided
that σ can be uniquely determined by the other type information in or about B
including what is known about the types of constants.

We say that a term B is a formula iff B :: ?. Let ϕ,ψ, γ range over formulas,
and let Φ, Ψ, Γ range over sets of formulas. Let Γ + ϕ denote Γ ∪ {ϕ} and let
Γ − ϕ denote Γ \ {ϕ}. Let FV[Γ] be the union of all FV(ϕ) for each ϕ ε Γ . Let
Γ [ν := B] be the set of all ϕ[ν := B] for each ϕ ε Γ .

Propositional and First-Order Logic. A sequent is a syntactic object Γ `i ϕ
with founder domain di. Figure 2 give inference rules that define the entailment
relation `i. We write Γ `i Ψ iff Γ `i ϕ for every ϕ ε Ψ . Note that `i can only
do ∀-introduction for ∀i (which abbreviates ∀di) and cannot do ∀-elimination for
∀j where i 6= j. We will later supply simple definitions for ∀j where i 6= j that
make these rules admissible:

(allIi,j)

Γ `i ϕ x :: dj x 6 ε FV[Γ]

Γ `i ∀j (λ x : dj . ϕ) (allEi,j)

Γ `i ∀j P B :: dj

Γ `i P B

We write Γ `i (allIi,j), (allEi,j) iff both (allIi,j) and (allEi,j) are admissible
using Γ . The rule (allEi) allows us to eliminate universal quantifications at di
and any non-domain type, which supports simple definitions.

Generating Custom Set Theories with Non-Set Structured Objects 7

Figure 2 defines the initial theory Init that defines the other logic operators (¬,
↔, ∧, ∨), and proves their usual introduction and elimination rules, establishes
classical logic, and implements equality. A simple definition is a formula of the
form c =τ B. The first axiom in Init allows eliminating equalities at all types, but
we only introduce equalities via domain-specific axioms at domain types. The
constants =τ , ∧, ∨,↔, and→ are all binary infix operators, listed in descending
order of precedence. If c is infix, an application (cX)Y may be written X c Y .
If B1, . . . , Bn, C are terms and ∼ is a binary infix operator, then we may write
B1, . . . , Bn ∼ C for B1 ∼ C∧· · ·∧Bn ∼ C. Negation (¬) and function application
take precedence over infix operators, e.g., F x =τ Gx is (F x) =τ (Gx).

If Q is a constant for a quantifier, then Q (λ x : τ . ϕ) may be written Qx .ϕ.
The notation Q x1, . . . , xn . ϕ abbreviates the nested applications of quantifiers
and abstractions Q (λx1 : τ . · · · Q (λxn : τ . ϕ)). Quantification has lower prece-
dence than all other logical constants. Thus, ∀0 x . ϕ→ ψ is ∀0 x . (ϕ→ ψ).

From each constant ∀i that represents a universal quantifier at type di, the set
FOLQuantsi of simple definitions in figure 2 defines existential (∃), at-most-one
(∃≤1), and bounded (also called restricted) quantification (∀[·],∃[·]). Formulas of
the form (∀[·]P)Q and (∃[·]P)Q may be written as ∀[P] x .Qx and ∃[P] x .Qx
respectively. If ∼ is a binary infix operator, we may write ∀ x ∼ B .ϕ and
∃ x ∼ B .ϕ for ∀[λ y . y ∼ B] x . ϕ and ∃[λ y . y ∼ B] x . ϕ respectively, where
y is fresh. If Γ `i (allIi,j), (allEi,j) and Γ `i Init ∪ FOLQuantsj , then each
quantifier satisfies its usual introduction and elimination rules on dj .

3 Example Axiomatizations of Generalized Set Theories

This section axiomatizes five example GSTs. We define four example modular
features that each characterise a kind of mathematical object. So the reader does
not mix them up, we index features by odd numbers and later in section 6 we
index example domains by even numbers. Feature k in domain di is given by
(1) a signature of constants sigki , (2) a set of formulas theoryki that characterizes
the constants in sigki , (3) an unary predicate idenki that identifies objects added
by the feature, and (4) a binary predicate childki that declares internal structure.

The Set feature provides sets. Figure 3 defines constants GZFConstsi and
formulas GZFi. The feature’s theory, signature, identification predicate, and
structure predicate are given by sig1i ≡ GZFConstsi, and theory1i ≡ GZFi, and
iden1i ≡ Seti, and child1i ≡ ∈i. The axioms in GZFi allow non-sets. The Founda-
tion axiom is missing from GZFi and will be supplied when features are combined.

The Pair feature adds non-set ordered pairs. Figure 3 defines constants
PConstsi and formulas PTheoryi. We define sig3i ≡ PConstsi, and theory3i ≡
PTheoryi, and iden3i ≡ Pairi, and child3i ≡ (λ x, p .∃i y . p =di (x, y)i ∨ p =di

(y, x)i). The axioms include the standard characteristic property of ordered pairs.

The Nat feature adds non-set natural numbers obeying Peano Arithmetic.
Figure 3 defines constants NConstsi and formulas NTheoryi. We define sig5i ≡
NConstsi, and theory5i ≡ NTheoryi, and iden5i ≡ Nat, and leave child5i undefined.

8 C. Dunne, J. B. Wells, F. Kamareddine

GZFConstsi :≡ (∈i :: di ⇒ di ⇒ ?, ∅i :: di, Seti :: di ⇒ ?,
⋃
i :: di ⇒ di,

⊆i :: di ⇒ di ⇒ ?, Pi :: di ⇒ di, succi :: di ⇒ di,
Infi :: di, Ri :: (di ⇒ di ⇒ ?)⇒ di ⇒ di)

GZFi := { (empi) ∀i a . a /∈i ∅i, (seti) ∀i x . (Seti x)↔ (x = ∅i ∨ ∃i y . y ∈i x),
(subi) ⊆i = (λ x, y .Seti x ∧ Seti y ∧ ∀i a ∈i x . a ∈i y),
(exti) ∀i[Seti] x, y . (∀i a . a ∈i x↔ a ∈i y)→ x = y,

(unii) ∀i[Seti] x . Seti (
⋃
i x) ∧ ∀i a . a ∈i (

⋃
i x)↔ (∃i z ∈i x . a ∈i z),

(powi) ∀i[Seti] x . ∀i z . z ∈i (Pi x)↔ z ⊆i x,
(suci) ∀i[Seti] x . ∀i a . a ∈i (succi x)↔ (a ∈i x ∨ a = x),
(infi) ∅i ∈i Infi ∧ ∀i x ∈i Infi . (succi x) ∈i Infi,
(rpli) ∀di⇒di⇒? p . ∀i[Seti] x . (∀i a ∈i x . ∃

≤1
i b . p a b)

→ (Seti (Ri p x) ∧ ∀i b . b ∈i (Ri p x)↔ ∃i a ∈i x . p a b) }
PConstsi :≡ (pairi :: di ⇒ di ⇒ di,Pairi :: di ⇒ ?) (X,Y)i := pairiX Y
PTheoryi := { ∀i a, b, x, y . (a, b)i = (x, y)i ↔ (a = x ∧ b = y),

∀i p .Pairi p↔ ∃i x, y . p = (x, y)i }
NConstsi :≡ (0i :: di, Si :: di ⇒ di, Nati :: di ⇒ ?)
NTheoryi := {Nati 0i, 0i = 0i, ∀i[Nati] x .Nati (Si x),

∀i[Nati] x, y . x = y ↔ Si x = Si y,
∀i[Nati] x .Si x 6= 0i,
∀di⇒? p . p0i → (∀i[Nati] x . p x→ p (Si x))→ ∀i[Nati] y . p y }

EConstsi :≡ (•i :: di,

ι

i :: (di ⇒ ?)⇒ di)

ETheoryi := { ∃!i = (λ p .∃i x . p x ∧ ∃≤1
i x . p x),

∀di⇒? p . (∃!i x . p x)→ (∀i y . p y ↔ y = (ιi z . p z)),
∀di⇒? p .¬ (∃!i x . p x)→ (ιi z . p z) = •i }

Fig. 3. Signatures and theories for the Set, Pair, Nat, and Exception features

The Exception feature adds a non-set exception element •i and a definite
description operator ι

i that uses •i as its default. Figure 3 defines constants
EConstsi and formulas ETheoryi. We define sig7i ≡ EConstsi, and theory7i ≡
ETheoryi, and iden7i ≡ (λ x . x =di •i), and we leave child7i undefined. The only
object this feature adds is •i, which has no internal structure.

To combine features to make a GST, figure 4 defines formulas that state that
a combination of features is well behaved. The formula Iden(k1, . . . , kn) states
that every object in di belongs to at least one of the features k1, . . ., kn, while the
formula AllDistincti(k1, . . . , kn) states that every such object belongs to exactly
one such feature. The formula WFi(k1, . . . , kn) asserts the well-foundedness of
the union of the internal structure relations given by childk1i , . . ., childkni . The
formula ExOutsidei(k1, . . . , kn) states that the exception element •i is not a direct
immediate child of any objects belonging to the features k1, . . ., kn.

We define ZF in domain di via the axioms ZFi in figure 4 as a GST that uses
just the Set feature. Let PureZFi be a traditional formulation of ZF obtained
by replacing all bounded ∀i[Seti] quantifiers in GZFi with unbounded ∀i quanti-
fiers and adding the Axiom of Foundation. Because Ideni(1) allows us to prove
∀i x .Seti x, it follows that ZFi `i PureZFi and also that PureZFi `i ZFi.

Generating Custom Set Theories with Non-Set Structured Objects 9

Ideni(k1, . . . , kn) :=∀i x . idenk1i x ∨ · · · ∨ idenkni x

distincti(k, l) :=∀i x .¬ idenki x ∨ ¬ idenli x
AllDistincti(k1, . . . , kn) := distincti(k1, k2) ∧ · · · ∧ distincti(k1, kn)

∧ · · · ∧ distincti(kn−1, kn)
WFi(k1, . . . , kn) :=∀di⇒? p . (∀i x .¬ p x)

∨(∃i[p] a .¬∃i[p] b . childk1i b a ∧ · · · ∧ childkni b a)

ExOutsidei(k1, . . . , kn) :=∀i x .¬ childk1i •i x ∨ · · · ∨ ¬ child
kn
i •i x

Basei := Init ∪ FOLQuantsi ∪ GZFi
ZFi := Basei + Ideni(1) + WFi(1)

ZFPi := Basei ∪ PTheoryi + Ideni(1, 3) + AllDistincti(1, 3) + WFi(1, 3)
ZFNi := Basei ∪ NTheoryi + Ideni(1, 5) + AllDistincti(1, 5) + WFi(1)

ZFEi := {∀ 6=•i =(di⇒?)⇒? (λ p .∀i x . x 6=di •i → p x)}
∪ (Basei ∪ ETheoryi)[∀i := ∀ 6=•i]
+ Ideni(1, 7) + AllDistincti(1, 7) + WFi(1) + ExOutsidei(1)

ZF+
i := {∀ 6=•i =(di⇒?)⇒? (λ p .∀i x . x 6=di •i → p x)}

∪ (Basei ∪ PTheoryi ∪ NTheoryi ∪ ETheoryi)[∀i := ∀ 6=•i]
+ Iden(1, 3, 5, 7) + AllDistincti(1, 3, 5, 7) + WFi(1, 5) + ExOutsidei(1, 5)

Fig. 4. Operations for combining features, and axiomatisations of various GSTs

We define ZFP in di via the axioms ZFPi as a GST with non-set ordered
pairs that combines the Set and Pair features. Note that the non-set ordered
pairs of ZFP do not have any extraneous properties.

We define ZFN in di via the axioms ZFNi as a GST with non-set natural
numbers that combines the Set and Nat features. Because NTheoryi only pro-
vides a predicate symbol Nati , the user of ZFNi will want a set N containing
exactly all the objects that satisfy Nati (i.e., the non-set natural numbers), and
this can be done via the axiom (rpli) and the von Neumann natural numbers.

We define ZFE in di via the axioms ZFEi as a GST with a non-set exception
element that is excluded from the domain of quantifiers and is not contained
in any set. It is intended that a ZFE user does not directly use the (allI) and

(allE) rules, but instead uses a different quantifier ∀ 6=•i (and other quantifiers
derived from it) that excludes the exception element. Note that all occurrences

of ∀i are replaced by ∀ 6=•i in the formulas GZFi and FOLQuantsi.

We define ZF+ in di via the axioms ZF+
i as a GST that combines all four

example features. Note that this uses the same ∀ 6=•i quantifier as ZFE.

Remember the example specification from section 1 of a function g : (N2 ∪
P (N))→ {0, 1} such that g(〈0, 1〉) = 0 and g({1, 2}) = 1. How can g be handled
in our five example GSTs? Assume we use non-set natural numbers if we have the
Nat feature (ZFN, ZF+) and otherwise we use the von Neumann naturals, and
similarly we use non-set ordered pairs if we have the Pair feature (ZFP, ZF+)
and otherwise we use Kuratowski pairs. Represent g as the least set such that
〈x, y〉 ∈ g whenever input x should map to output y. In ZF, g is not a function
because 〈0, 1〉 = {1, 2} and the set-function application binary infix operator ‘i

10 C. Dunne, J. B. Wells, F. Kamareddine

{X,Y }i := upairiX Y, {X}i := {X,X}i, 〈X,Y 〉i := kpairiX Y,
0i := ∅i, 1i := succi 0i, 2i := succi 1i 3i := succi 2i, . . .

ZFUtilsi := {
⋂
i = (λ x . { y ∈i

⋃
i x | ∀i a ∈i x . y ∈i a }),

φi = (λ x, y, a, b . (a =di ∅i ∧ b =di x) ∨ (a =di Pi ∅i ∧ b =di y)),
upairi = (λ x, y .Ri (φi x y) (Pi (Pi ∅i))),
kpairi = (λ x, y . {{x, y}i, {x}i}i),
π1
i = (λ p .

⋃
i

⋂
i p), π2

i = (λ p .
⋃
i {x ∈i

⋃
i p | x 6= π1

i p }),
×i = (λ x, y .

⋃
i { z | ∃i a ∈i x . z = { p | ∃i b ∈i y . p = 〈a, b〉i } }),

∪i = (λ x, y .
⋃
i {x, y}i), Tri = (λ x .SetiX ∧ ∀i y ∈i X . y ⊆i X),

Ordi = (λ x .Tri x ∧ (∀i y ∈i x .Tri y)),
<i = (λ x, y . x ∈i y ∧ Ordi y),
Limiti = (λ x .Ordi x ∧ (0i <i x) ∧ (∀i y <i x . succi y <i x)),
ωi =

⋂
i {x ∈i Pi Infi | Limiti x },

TagSetMemsi = (λ a, x . {a}i ×i x), TagOfi = π1
i ,⊎

i = λ y .
⋃
i {TagSetMemsi b (y b) | b ∈i ωi },

Parti = (λ a, x . { y ∈i x | TagOfi y = a }),
−i = (λ x, y . { a ∈i x | a /∈i y }),
OrdReci =(di⇒di⇒di)⇒di⇒di⇒di Ti }

Fig. 5. Set theoretic utilities

can not make both g ‘i 〈0, 1〉 = 0 and g ‘i {1, 2} = 1 true. Also, depending on how
we “define” the “function” g, we might prove incorrect results or even make our
entire system inconsistent. In ZFP, ZFN, and ZF+ it holds that 〈0, 1〉 6= {1, 2}, so
g is a function and we are happy. In ZFE, g is not a function but the Exception
feature makes some failure-handling options a bit easier. One option uses the
definite description operator ι

i in defining the set-function application operator
‘i to be (λ x, y . ιi z . 〈y, z〉 ∈i x), which makes g ‘i x = •i if g is not functional
at x. Another option is taking a predicate gSpec specifying a function with the
desired input/output behavior for g and then defining g as (ιi z . gSpec z), which
would evaluate to •i. The exception object •i is useful in these cases because
it can not accidentally get embedded inside larger results and can not equal a
value tested by the ∀ 6=•i quantifier.

4 Model Building Kit

This section defines tools for building within GZF-domains models of GSTs with
the Set feature that can be specified to support additional features.

Set Theory Tools. We define three variants of set comprehension notation. If
a, b 6ε FV(P) ∪ FV(X), we write { b | ∃i a ∈i X .P a b } for Ri P X, and { a ∈i X |
P a } for Ri (λ a, b . a =di b ∧ a ∈i X ∧ P a)X. If F :: di ⇒ di and x, y 6ε FV(B) ∪
FV(F), we write {F x | x ∈i B, P x } for { y | ∃i x ∈i B .P x ∧ y =di F x }.

Figure 5 defines the set ZFUtilsi of simple definitions for operators including
those related to ordered pairs, ordinals, and tagging. The operators π1

i and π2
i ,

Generating Custom Set Theories with Non-Set Structured Objects 11

(OrdReci F A 0i) = A
∀i[Ordi] b . (OrdReci F A (succi b)) = F (succi b) (OrdReci F Ab)
∀i[Limiti] z . (OrdReci F Az) =

⋃
i {OrdReci F Ab | b ∈i z }

Modeli,j := {Tieri,j = OrdReci (λ z, x . x ∪i
⊎
i (λ y .Opsi,j y z (x−i Ignoredi,j)))

(
⊎
i (λ y .Opsi,j y 0i ∅i)),

inModeli,j = (λ x .∃i[Ordi] a . x ∈i (Tieri,j a)),

∀i,j = (λ p .∀i[inModeli,j] x . p x) }

Fig. 6. Recursion equations, and simple definitions for building a model for dj in di

called the left and right projections (resp.), are defined such that if X and Y are
sets, then 〈X,Y 〉i =di 〈π1

i 〈X,Y 〉i, π2
i 〈X,Y 〉i〉i. A set X is transitive iff every

set member of X is also a subset of X. A set X is an ordinal iff it is a transitive
set whose set members are all transitive sets. We say that X is a limit ordinal
iff LimitiX. The constant ωi is defined as the intersection of all subsets of Infi
that are limit ordinals. Thus, ωi is the smallest limit ordinal.

If X is a set and A is an object, then TagSetMemsiAX is the set whose set
members are exactly all ordered pairs 〈A, Y 〉i where Y is a set member of X.
If X =di 〈A, Y 〉i for some A and Y , then TagOfiX =di A. We say that X is
tagged with A or A-tagged iff TagOfiX =di A.

We now describe operators that use tagging to build disjoint unions and
extract partitions from disjoint unions. Let S be a term such that Γ `i A∈iωi →
Seti (S A), i.e., S has type di ⇒ di and represents a sequence of sets indexed
by von Neumann natural numbers. Then

⊎
i S is a set called the disjoint union

of S, which is the result of tagging the members of each set in the sequence S
with the set’s index and collecting all the tagged objects. Hence X ∈i

⊎
i S iff

X =di 〈A, Y 〉i where Y ∈iS A for some ordinal A. If X is a set containing objects
with many different tags, then PartiAX gives a set whose members are exactly
all of the members of X tagged with A.

For any GZF-domain, we conjecture the existence of a term Ti such that
the simple definition OrdReci =τ Ti defines OrdRec to do transfinite recursion
on the ordinals.1 The characterisation of OrdReci in figure 6 is equivalent to
such a definition, where A :: di and F :: di ⇒ di ⇒ di is such that Γ `i
∀i[Ordi] b .∀i[Seti] x .Set (F bx). The set A is used for the zero case, F is used
for the successor case, and unions are taken at limit ordinals.

Model Framework. The constant Opsi,j acts as a table of operations used
for building in di the tiers of a model for dj . The constant Ignoredi,j is a set
of objects which are not to be used in building further objects. The user must
axiomatize both of these constants. For this to work, if A and B are ordinals, then
Opsi,j AB must be an operator which returns a set when given a set. We call
the A-indexed aspect of Opsi,j the slot A. Each slot is used for a different kind

1 Our belief is based on tracing the expansion of uses of transrec3 in Isabelle/ZF.

12 C. Dunne, J. B. Wells, F. Kamareddine

swapi,j(?) := ? swapi,j(di) := dj swapi,j(dj) := di
swapi,j(σ ⇒ τ) := swapi,j(σ)⇒ swapi,j(τ)

transi,j(x,m) :=m(x)

transi,j(∀dj ,m) := ∀i,j
transi,j(♥j ,m) :=♥i,j if ♥ ε { ι, ∀ 6=•}
transi,j(♥j ,m) :=♥i otherwise, e.g., ♥j ≡ Setj
transi,j(∀τ ,m) := ∀swapi,j(τ) if τ 6= dk for any k ε N
transi,j(=τ ,m) := (=swapi,j(τ)

)

transi,j(6=τ ,m) := (6=swapi,j(τ)
)

transi,j(BC,m) := transi,j(B,m) transi,j(C,m)
transi,j(λ x : τ .B,m) := λ y : swapi,j(τ) . transi,j(B,m[x 7→ y])

transi,j(Γ) := { transi,j(ϕ,∅) | ϕ ε Γ }

ZFOpsi,j := {Opsi,j 1i 0i = (λ x . ∅i), ∀i[Ordi] b .Opsi,j 1i (succi b) = Pi }

ZFModelDefsi := { ∅i = 〈1i, ∅i〉i, Seti = (λ x .TagOfi x =di 1i),

∈i = (λ x, y .Seti y ∧ x ∈i (π2
i y)),

⊆i = (λ x, y : di .Seti x ∧ Seti y ∧ ∀i a ∈i x . a ∈i y),

Pi = (λ x . 〈1i,TagSetMemsi 1i (Pi (π2
i x))〉),⋃

i = (λ x . 〈1i,
⋃
i {π

2
i y | y ∈i (π2

i x) }〉),
succi = (λ x .

⋃
i 〈1i, {x, 〈1i, {x}〉}〉i),

Θi = (λ a .OrdReci (λ b, x . { succi y | y ∈i x }) {〈1i, ∅i〉i}i a),

Infi = 〈1iΘi ωi, , 〉i
Ri = (λ p, x . 〈1i,Ri p (π2

i x)〉i) }
BuildModeli,j := ZFUtilsi∪ZFOpsi,j ∪Modeli,j ∪ transi,j(FOLQuantsj)∪ZFModelDefsi

Fig. 7. Definition of swapi,j on types and transi,j and formula sets for model building

of mathematical object, e.g., set, non-set ordered pair, non-set natural number,
etc. When building a model, Opsi,j AB is given the previous model tier minus
the ignored objects and returns a set of objects, each of which is then tagged by
A before being added to the next tier.

For each pair of domain types, Modeli,j in figure 6 is a set of simple definitions
that builds a model in di for dj and gives a membership predicate and a ∀-
quantifier restricted to the model. The operator Tieri,j :: di ⇒ di uses OrdReci to
map di ordinals to model tiers. The formula inModeli,j X holds if there exists an
ordinal A such that Γ `k X∈i(Tieri,j A). The quantifier ∀i,j allows quantification
over the model by restricting ∀i to objects satisfying inModeli,j .

Figure 7 defines a function transi,j for translating formulas that speak about
dj to formulas that speak about the model in di for dj . The function is defined
recursively on terms mostly by translating constants to their “model versions”.
For example transi,j(∀j) ≡ ∀i,j , and transi,j(Pj) ≡ Pi. Sets of formulas can
also be translated. For example, we use transi,j(FOLQuantsj) to generate extra
quantifiers relativized to a model.

Generating Custom Set Theories with Non-Set Structured Objects 13

GZF Models. We now show how to configure the set slot of Opsi,j to obtain a
model satisfying GZF. We reserve slot 1 for sets. Each model tier must contain
all subsets of all previous tiers, tagged with 1. Figure 7 defines the formula set
ZFOpsi,j that specifies that Opsi,j invokes the power set operator (Pi) in slot
1 at each successor ordinal. The formulas in ZFOpsi,j allow proving that every
1-tagged set of model sets belongs to some model tier. A crucial fact used for
demonstrating this is:

Γ `i ∀i[Ord] b . {1i} ×i (Pi (Tieri,j b)) ⊆i Tieri,j (succi b)

Figure 7 defines ZFModelDefsi as a set of simple definitions for each model
constant in transi,j(GZFConstsj). Because the definitions in ZFModelDefsi only
make use of the set slot of the model, they can be shared amongst all models
we build in di. The constants in transi,j(GZFConstsj) act on the “model sets”,
and have been shown to satisfy the formulas in transi,j(GZFj) when used in a
model. Figure 7 also defines BuildModeli,j as a set of simple definitions for (1) set
theoretic utilities for model building, including ordinal recursion, (2) specifying
slot 1 of Opsi,j to invoke (Pi) at successor ordinals (3) building model tiers,
checking model membership, quantifying over the model, (4) extra quantifiers
relativized to the model, and (5) simple definitions for transi,j(GZFConstsj).

We say that Γ builds a GZF-model in di for dj iff Γ `k transi,j(GZFj). We
have proved that if Γ `k (allIk,i), (allEk,i) and Γ `k Basei ∪ BuildModeli,j ,
then Γ builds a GZF-model in di for dj .

5 Connecting Models to Domains

Section 3 showed how to axiomatize a GST in domain di directly using di as the
founder domain. We now show how to combine an axiomatization Γi of a GST
S1 in domain di with model building definitions Ψi,j to justify an axiomatization
Γj of a GST S2 in domain dj so that Γi∪Ψi,j `i Γj . This connects S2 to a model
for it built in S1, which supports stating that S2 is consistent if S1 is.

Start by assuming that Γ `k BuildModeli,j and we will connect the model
built in di to dj so we can prove things about dj using `k. Figure 8 defines
the set Connectioni,j that axiomatizes that the operators Absi,j :: di ⇒ dj and
Repi,j :: dj ⇒ di are an isomorphism between the objects satisfying Tieri,j
and dj . Figure 8 defines the meta-level function swapi,j that translates terms
with types involving the abstract domain dj to corresponding terms with types
involving the representation domain di, and vice versa. We also define Delegatei,j
to generate simple definitions for a set of constants for use in dj in terms of
the translation of those constants to corresponding constants for use with the
model in di. In particular, swapping ∀i,j supplies a definition for ∀j such that
(allIi,j), (allEi,j) are admissible with `i.

If Γ `k Basei∪BuildModeli,j , then we can give simple definitions for GZFConstsj
using Delegatei,j(GZFConstsj). Hence we define AbsModeli,j in figure 8 as the set
of formulas which (1) axiomatizes an isomorphism between members of di sat-
isfying Tieri,j and dj and (2) gives simple definitions for quantifiers over dj

14 C. Dunne, J. B. Wells, F. Kamareddine

Connectioni,j := { ∀i,j x .Repi,j (Absi,j x) = x, ∀j = swapi,j(∀i,j),
∀j y .Absi,j (Repi,j y) = y, ∀j y . inModeli,j (Repi,j y) }

swapi,j(B) :=


swapi,j(C) swapi,j(D) if B :: ?, B = C D
B if B :: ?, B ε Var ∪ Const
Absi,j B if B :: di
Repi,j B if B :: dj
(λ x : swapi,j(σ) . swapi,j(B (swapi,j(x))) if B :: σ ⇒ τ

Delegatei,j(C) := { c =τ swapi,j(transi,j(c)) | c ε C, c :: τ }

AbsModeli,j := Connectioni,j ∪ FOLQuantsj ∪ Delegatei,j(GZFConstsj)

Fig. 8. Formulas axiomatising Absi,j and Repi,j , definitions of swapi,j on terms and
Delegatei,j , and formulas for connecting a model built in di to dj

and GZFConstsj by swapping their model versions in di. To prove that the
swapped constants and quantifiers form a GZF-domain, we show that if Γ `k
(allIk,i), (allEk,i) and Γ `k Basei ∪ BuildModeli,j ∪ AbsModeli,j , then Γ `k
GZFj . This is achieved by expanding the delegated definitions of GZFConstsj in
each formula of GZFj . In practice, the instances of Absi,j and Repi,j in these
formulas cancel each other out because the terms they are applied to always be-
long to the model. We are then left with exactly the formulas of transi,j(GZFj),
which hold because Γ `k BuildModeli,j can be shown to entail these formulas.

6 Examples of Models of GSTs

We now build models for each of the GSTs shown in section 3. We use d0 as our
founder domain with ZF0 as axioms.

We build a model of ZF in d0 for d2, then of ZFP in d2 for d4, then of ZFN
in d4 for d6, then of ZFE in d6 for d8, and finally of ZF+ in d0 for d10. First we
define a meta-level function in figure 9 for building formulas which restrict Opsi,j
to only invoke certain slots. We then define specifications of Opsi,j in figure 9
for the Set, Nat and Exception features, and simple definitions for the model
translations of each constant in their signatures. The sets of formulas ΨZF, ΨZFP,
ΨZFN, ΨZFE, and Ψ

ZF+ in figure 10 build models according to these specifications,
including the simple definitions for acting on these models. The case for ZFE
and ZF+ is again more complex, requiring generation of definitions for model

quantifiers using ∀ 6=•i,j . Finally, we define the sets of formulas ΨZF, ΨZFP, ΨZFN,
ΨZFE, and ΨZF+ which connect each of the models to d2, d4, d6, d8, d10 respectively,
and delegate the constants of each signature.

We now briefly explain how to prove that ΨZF `0 ZF2, ΨZFP `0 ZFP4, ΨZFN `0
ZFN6, ΨZFE `0 ZFE8, and Ψ+

ZF `0 ZF+
8 . Because ΨZF `0 (allI0,0), (allE0,0)

and ΨZF `0 BuildModel0,2, we have that ΨZF `0 trans0,2(GZF2). Then because
ΨZF `0 AbsModel0,2, we have that ΨZF `0 Base0 and ΨZF `0 (allI0,2). The same

Generating Custom Set Theories with Non-Set Structured Objects 15

RestrictOpsi,j(β1, . . . , βn) := ∀i[Ordi] α . (α 6= β1 ∧ . . . ∧ α 6= βn)
→ Opsi,j α = (λ β, x . ∅i)

PairOpsi,j := {Opsi,j 3i 0i = (λ x . ∅i),
∀i[Ordi] β <i 0i .Opsi,j 3i β = (λ x . x×i x) }

NatOpsi,j := { ∀i[Ordi] β <i ωi .Opsi,j 5i β = (λ x . {β}i),
∀i[Ordi] ωi <i β .Opsi,j 5i β = (λ x . ∅i) }

ExOpsi,j := {Opsi,j 7i 0i = (λ x . {∅i}i),
∀i[Ordi] β .Opsi,j 7i β

+i = (λ x . ∅i) }

PairModelDefsi := { pairi = (λ x, y . 〈3i, 〈x, y〉i〉i),
Pairi = (λ p .TagOfi p = 3i) }

NatModelDefsi := {0i = 〈5i, 0i〉i
Si = (λ x . 〈5i, succi (π2

i x)〉i),
Nati = (λ n .TagOfi n = 5i) }

ExModelDefsi,j := { •i = 〈7i, ∅i〉i,

ι

i,j = (λ p . ιSeti x . inModeli,j x ∧ p x),

∀ 6=•i,j = (λ p .∀i,j x 6= • . p x) }

Fig. 9. Specifications of Opsi,j and simple definitions for model constants

argument can be repeated for the other instances of Ψ , with the exception of
ΨZFE and ΨZF+ for which we are required to show ΨZFE `0 Base8[∀8 := ∀ 6=•8] and

ΨZF+ `0 Base10[∀10 := ∀ 6=•10]. With some work, we can also show:

ΨZFP `0 trans2,4(PTheory4), ΨZFN `0 trans4,6(NTheory4),
ΨZFE `0 trans6,8(ETheory4),
Ψ
ZF+ `0 trans8,10(PTheory10 ∪ NTheory10 ∪ ETheory10)

The translations of AllDistinct and WF formulas are easy to prove from the
structure of the model. After this, we have that ΨZF `0 ZF2, ΨZFP `0 ZFP4,
ΨZFN `0 ZFN6, ΨZFE `0 ZFE8, and Ψ+

ZF `0 ZF+
10.

We now argue that the reasoning above can be completed to conclude the
consistency of ZF2, ZFP4, ZFN6, ZFE8, and ZF+

10. We begin with belief in the
consistency of first-order logic and ZF, which are embedded in our system as
Base0. We now discuss why we believe consistency is preserved by our methods
of extending Base0 to ΨZF, ΨZF to ΨZFP, and so on. Most of the extensions are
done by adding simple definitions, which preserve consistency. We have not yet
written the term Ti in the simple definition for OrdReci, but we believe this can be
done because Isabelle/ZF does it. Our specifications of Opsi,j and RestrictOpsi,j
are currently not simple definitions, but we believe we know how to reformulate
them as simple definitions. The axiomatizations of Absi,j and Repi,j are not
simple definitions, but this technique is widely used in Isabelle/HOL and has
been argued to preserve consistency by Kunčar and Popescu [13].

16 C. Dunne, J. B. Wells, F. Kamareddine

ΨZF := ZF0 ∪ BuildModel0,2 + RestrictOps0,2(1) + Ignored0,2 = ∅0
ΨZFP := ΨZF ∪ BuildModel2,4 ∪ PairOps2,4 ∪ PairModelDefs2

+ RestrictOps2,4(1, 3) + Ignored2,4 = ∅2
ΨZFN := ΨZFP ∪ BuildModel4,6 ∪ NatOps4,6 ∪ NatModelDefs4

+ RestrictOps4,6(1, 5) + Ignored4,6 = ∅4
ΨZFE := ΨZFE ∪ BuildModel6,8[∀6,8 := ∀ 6=•6,8] ∪ ExOps6,8 ∪ ExModelDefs6

+ RestrictOps6,8(1, 7) + Ignored6,8 = {•6}6
Ψ
ZF+

:= ZF0 ∪ BuildModel0,10[∀0,10 := ∀ 6=•0,10]
∪ PairOps0,10 ∪ NatOps0,10 ∪ ExOps0,10
∪ PairModelDefs10 ∪ NatModelDefs10 ∪ ExModelDefs10
+ RestrictOps0,10(1, 7) + Ignored0,10 = {•0}0

ΨZF := ΨZF ∪ AbsModel0,2
ΨZFP := ΨZFP ∪ AbsModel2,4 ∪ Delegate2,4(PConsts4)
ΨZFN := ΨZFN ∪ AbsModel4,6 ∪ Delegate2,4(NConsts6)
ΨZFE := ΨZFE ∪ Connection6,8 ∪ Delegate6,8(GZFConsts8 ∪ EConsts8)

∪ {∀ 6=•8 =(d8⇒?)⇒? swap6,8(∀ 6=•6,8)} ∪ FOLQuants8[∀8 := ∀ 6=•8]
ΨZF+ := Ψ

ZF+
∪ Connection0,10

∪ Delegate0,10(GZFConsts10 ∪ PConsts10 ∪ NConsts10 ∪ EConsts10)

∪ {∀ 6=•10 =(d10⇒?)⇒? swap0,10(∀ 6=•0,10)} ∪ FOLQuants10[∀10 := ∀ 6=•10]

Fig. 10. Sets of formulas for building and abstracting models for GSTs

7 Conclusion and Future Work

This paper presented methods for generating custom set theories intended to
be more suitable for the formalisation of mathematics by being closer to math-
ematical practice. Our logical framework and toolkit supports reasoning about
axiomatizations and models for a variety of GSTs. We show how to define ZF
as a GST and give four examples of how to extend ZF with non-set features.
We show how to use a GST via an axiomatization and also how to use it via a
connection to a model.

Toward an Isabelle Implementation. We aim to mechanize the results of
this paper in Isabelle/Pure using locales and overloading with type classes. This
includes adapting the development of transfinite ordinal recursion in the Is-
abelle/ZF library to our setting.

Toward User-Friendly GST Specification and Use. We aim that users
should be able to construct a structure and specify some properties of the struc-
ture and request a fresh copy of it and the system should be able to generate a
new GST domain where that structure exists as non-set objects with no other
properties than those specified. We also aim that users should be able to specify
identifications (e.g., quotienting) and then have a GST generated where those

Generating Custom Set Theories with Non-Set Structured Objects 17

identifications are true. Ideally, there will be support for doing this locally within
part of a formal development and the user should not need to be aware that they
are temporarily operating in a new GST.

References

1. P. Aczel. Generalised set theory. In Logic, Language and Computation, vol. 1 of
CSLI Lecture Notes, 1996.

2. G. Bancerek, C. Byliński, A. Grabowski, A. Korni lowicz, R. Matuszewski, A. Nau-
mowicz, K. Pa̧k, J. Urban. Mizar: State-of-the-art and beyond. In Intelligent
Computer Mathematics, LNCS. Springer, 2015.

3. C. E. Brown, K. Pak. A tale of two set theories. In Intelligent Computer Mathe-
matics, LNCS. Springer, 2019.

4. C. E. Brown, G. Smolka. Extended first-order logic. In Theorem Proving in Higher
Order Logics. Springer, 2009.

5. C. Dunne, J. B. Wells, F. Kamareddine. Adding an abstraction barrier to ZF set
theory. In Intelligent Computer Mathematics, vol. 12236 of LNCS. Springer, 2020.

6. W. M. Farmer. Formalizing undefinedness arising in calculus. In International
Joint Conference on Automated Reasoning. Springer, 2004.

7. W. M. Farmer, J. D. Guttman, F. J. Thayer. Little theories. In Automated De-
duction: CADE-11, vol. 607 of LNCS. Springer-Verlag, 1992.

8. B. Huffman, O. Kunčar. Lifting and transfer: A modular design for quotients in
Isabelle/HOL. In Certified Programs and Proofs, vol. 8307 of LNCS. Springer,
2013.

9. S. Kolodynski. IsarMathLib. https://isarmathlib.org/, 2021. Accessed 2021-
03-03.

10. A. Krauss. Adding soft types to Isabelle, 2010.
11. A. Krauss, J. Chen, K. Kappelmann. Isabelle/Set.
12. O. Kunčar, A. Popescu. From types to sets by local type definitions in higher-order

logic. In Interactive Theorem Proving, vol. 9807 of LNCS. Springer, 2016.
13. O. Kunčar, A. Popescu. A consistent foundation for Isabelle/HOL. Journal of

Automated Reasoning, 62(4), 2019.
14. P. Maddy. What Do We Want a Foundation to Do? Springer, 2019.
15. N. Megill, D. A. Wheeler. Metamath: A Computer Language for Mathematical

Proofs. LULU Press, 2019.
16. S. Obua. Partizan games in Isabelle/HOLZF. In Theoretical Aspects of Computing

– ICTAC 2006, LNCS. Springer, 2006.
17. L. C. Paulson. The foundation of a generic theorem prover. Journal of Automated

Reasoning, 5(3), 1989.
18. L. C. Paulson. Set theory for verification: I. From foundations to functions. Journal

of Automated Reasoning, 11(3), 1993.
19. F. Wiedijk, J. Zwanenburg. First order logic with domain conditions. In Theorem

Proving in Higher Order Logics, LNCS. Springer, 2003.

http://link.springer.com/10.1007/978-3-030-53518-6_6
http://link.springer.com/10.1007/978-3-030-53518-6_6
http://link.springer.com/10.1007/978-3-319-03545-1_9
http://link.springer.com/10.1007/978-3-319-03545-1_9
https://isarmathlib.org/
https://www21.in.tum.de/~krauss/publication/2010-soft-types-note/
https://bitbucket.org/cezaryka/tyset/src/master/
http://link.springer.com/10.1007/978-3-319-43144-4_13
http://link.springer.com/10.1007/978-3-319-43144-4_13
https://doi.org/10.1007/978-3-030-15655-8_13

