
EasyChair Preprint
№ 3215

CAPMAN: Cooling and Active Power
Management in big.LITTLE Battery Supported
Devices

Jie Zhou, Zichen Xu, Wenli Zheng and Yuhao Wang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 20, 2020

CAPMAN: Cooling and Active Power Management

in big.LITTLE Battery Supported Devices

Jie Zhou

Nanchang University

zhoujie@email.ncu.edu.cn

Zichen Xu*

Nanchang University

xuz@ncu.edu.cn

Wenli Zheng*

Shanghai Jiao Tong University

zheng-wl@cs.sjtu.edu.cn

Yuhao Wang

Nanchang University

wangyuhao@ncu.edu.cn

Abstract—Modern smartphone is far from being ubiquitous
due to limited energy capacity. Recent research suggests that
heterogeneous batteries may expose power saving opportunities
that fit dynamic software patterns. Yet it is still a challenge on
thermal and power management for a hybrid battery pack in
a smartphone. To address this challenge, we propose a system
framework, called CAPMAN , which supports joint optimization
of cooling and active power management in smartphones. The
framework consists of three major techniques: 1) A Markov
decision process (MDP) technique that models battery types,
and cooling/active power use from state and action nodes;
2) A structural similarity approximation that speeds up the
convergence of MDP computation, providing battery scheduling
decisions; 3) A TEC and battery management facility to realize
the cooling and active power management. In addition, CAPMAN

provides an online algorithm with a proved worst-case O(
1

1− ρ
)-

competitiveness performance, where ρ is the factor of discount.
We have prototyped CAPMAN with popular smartphones and
heterogeneous batteries, and evaluated them with real-world
workloads. Results show that CAPMAN can achieve 114% longer
service time under skewed loads, compared to the original phone.
Compared to the state-of-the-practice baselines, CAPMAN shows
55% performance gain and 53% less energy use on average.
As such, CAPMAN approves that big.LITTLE batteries with a
careful system design is an effective way to prolong smartphone
service times.

I. INTRODUCTION

Current battery-powered devices suffer from limited battery

capacity. It is worse when popular Apps with rich functions are

usually resource-intensive, draining a considerable amount of

energy and leaking high surface temperature. This fast power-

drain behavior overheats the device [15]. Thus, to achieve

better user experience, cooling and power management is

essential to a battery-powered device design.

System researchers have spent relentless effort on cooling

and power management techniques over the last decade,

such as fetch toggling [41], dynamic frequency and voltage

scaling (DVFS) [27], load migration [21], and chip-level

thermal shutdown [13]. These traditional techniques work with

a tradeoff on the performance and power cost, and hence

may not work for interactive apps, as they cannot tolerate

this significant performance degradation and still yield to a

high power consumption and heat dissipation. Smartphone

industry tries to adapt larger battery packs and secondary

facilities, such as battery banks [10], phase-change material

devices [35], and surface cooling fans [37], in order to at

least mitigate the power and thermal problem. However, these

methods degrade user experience due to their huge volume in

size and additional carry-on weight requirement. Additionally,

active cooling methods usually solve the thermal problem

with higher power consumption. Recently, a work [8] from

Microsoft and Tesla propose the idea of software-defined

battery (SDB), which introduces power saving opportunities

from using heterogeneous battery packs to support various

software patterns. Our research develops this idea and asks: if

the battery permits, how could our system supports dynamic

cooling and power management from heterogeneous batteries

in the mobile system domain?

To address this problem, we first adapt the SDB defi-

nition [8] on the chemistry of different batteries. We then

empirically study what cooling and power characteristics of

different batteries are favored by software. As such, we obtain

important observations as follows:

First, although battery performance may be evaluated in

various dimensions, properties like energy density, discharge

rate, and cost efficiency are essential to software performance

and experience. For example, running specific apps, such as

PCMark [3], one battery chemistry may sustain 37.6% more

discharge time than another. Different properties of batteries

compromise with each other, which exhibits the potential

to jointly optimize the power efficiency by selecting the

most appropriate battery for each specific software behavior.

However, frequently switching batteries may cause additional

energy loss and heat dissipation. Second, battery features,

software patterns, and correlated device power states, can be

modeled into combinatorial states in power management [32].

Actions, such as system calls and user activities, transit these

states from one to another. Third, thermal problems caused

by resource-intensive apps are usually hot spots (i.e., surface

temperature that exceeds 45°C [39]) that call for extra engi-

neering efforts to enable active cooling, which also increases

the active power demand.

To exploit the aforementioned observations, in this paper,

we propose a cooling and active power management frame-

work, or CAPMAN, which models and optimizes cooling and

active power management. CAPMAN works on a system

supported by the one-pair battery design that we propose,

i.e., big.LITTLE batteries, with which the power management

problem becomes categorizing different power demands into

either the big or LITTLE battery use. CAPMAN highlights

three techniques. (1) A modeling process that abstracts the

correlation among layers of batteries, devices, and software,

using a finite state machine model, whose state transitions

can be triggered by resource demand, system calls, etc. states

connected by tensors. Each tensor represents an action of

state transition from resource demand, system calls, etc. (2)

A Markov decision algorithm that schedule the right battery

to use. Since a modern smartphone can have hundreds of

apps, tens of devices, and two batteries, the number of states

explodes in time-series analysis. To enable CAPMAN to

make the right decision within a given time, we derive an

approximate online algorithm, proven to achieve a worst-case

O(
1

1− ρ
)-competitiveness performance. (3) A Thermoelectric

Cooler (TEC) [9] and battery management facility, both hard-

ware and software, to realize the scheduling decision. TEC

is an efficient cooling device yields to runtime active power

consumption, while this active power burst can be addressed

by our big.LITTLE battery and predicted by our Markov

model. As such, we provide a solution for cooling and active

power management in big.LITTLE battery powered systems.

For evaluation, we have prototyped CAPMAN on multiple

mainstream smartphones and analyze it with real-world traces

and workloads. Results show that CAPMAN can achieve

114% longer service time of smartphones while maintaining

the ambient temperature even under skewed loads. Compared

to state-of-the-practice baselines, CAPMAN shows 55.08%

performance gain and 53.27% less energy use on average.

In our prototype design, the total weight of all extra devices

is less than 5 gram. The volume overhead of CAPMAN is

negligible and the devices can fit into a typical smartphone

with proper implementation.

The major contributions are listed below:

- We tackle the thermal and power management of battery-

powered devices for improved software performance and

user experience. For this, we conduct characterization

study of several newly proposed energy storage and cool-

ing facilities, and motivate the opportunity for cooling

and active power management.

- We argue the idea of big and LITTLE batteries can

significantly prolong the battery life time with a penalty

of creating hot spots, while our active cooling facility can

address this limitation gracefully.

- We prove the online scheduling scheme of CAPMAN can

help to achieve a worst-case O(
1

1− ρ
)-competitiveness

performance.

- We evaluate CAPMAN with realworld benchmarks,

CAPMAN can double the service times than original

phone with the same battery capacity.

The remainder of this paper is organized as follows. Section

II highlights our motivation on a heterogeneous battery design.

Section III describes CAPMAN and proves that it retains

performance guarantee. Section IV describes CAPMAN im-

plementation. Section V empirically studies CAPMAN per-

formance. Section VI provides a brief on the related work. At

LiMn2O4

(LMO)
Graphite

Li+

Li+

Li+

Li+

Li+

Li+

+ -

V

e-

Separator

E2E1

Li+ Li+

Li+Li+ LiNiCoAlO2

(NCA)
GraphiteLi+

Li+

Li+

Li+

Li+

Li+

+ -

V

e-

Separator

E2E1

(a) LiMn2O4 (LMO) (b) LiNiCoAlO2 (NCA)

Fig. 1. LMO (a) and NCA (b) batteries behave significantly different in
releasing electrons, or power supply.

last, Section VII concludes the paper.

II. SYSTEM IDENTIFICATION AND MOTIVATION

As aforementioned in Section I, recent efforts focus on

smart utilization of batteries, using various control, optimiza-

tion, and scheduling techniques [14]. The smartphone manu-

facturing limits the size of available batteries, invoking battery

pack design composed of heterogeneous battery chemistry,

to meet specific software requirements. This calls for a deep

understanding on the correlation between battery chemistries,

system power consumption, and software patterns. Figure 1

shows that LiMn2O4 (LMO) has more electrons exchange

than LiNiCoAlO2 (NCA) in the same time. In other words,

the discharge rate of LMO is much higher than that of NCA.

In this section, we refer to a battery with a high energy

density as a big battery (low discharge rate), and a battery with

a small energy density as a LITTLE battery (high discharge

rate). As such, the study enables our system modeling to

accurately profile and control the power and performance in

CAPMAN design for big.LITTLE battery powered system.

Battery Chemistry and User Behaviors. We first try to

understand the power saving potential from using different

batteries. We perform different apps on a Nexus 6 phone

with Android 5.0.1, collect its discharge cycle (e.g., battery

on time), and repeat the same experiment with different bat-

teries 1. Though running simple applications, such as keeping

the phone screen on, and streaming video, or keep turn on

and off the phone at different frequency scales, using two

battery chemistries with the same capacity (i.e., 2500mAh),

as LiMn2O4 (LMO) and LiNiCoAlO2 (NCA), leads to

significantly different discharge cycles, as shown in Figure 2.

Figure 2(a) shows that using the LMO battery can sustain

14.3% longer than using the NCA battery when keeping the

phone on and idle. If the phone plays some videos, the result

reverses. The NCA battery can outperform 24% longer than

that of LMO. One explanation is these simple applications

expose different power demand patterns that favor different

battery discharge features. Given the same application, e.g.,

turning phone on then off, repeatedly, as shown in Figure 2(b),

the NCA battery is always better at handling this short

burst of power demand, prolonging the discharge cycle time.

However, when such behavior frequency increases, from low

1More detailed experimental setup can be found in Section V

Light up
screen

Play video
0

20

40

60

80

100

120

140

160

180
B

at
te

ry
 L

ife
 C

yc
le

(m
in

) LMO
NCA

Low freq High freq
0

50

100

150

200

250

300

B
at

te
ry

 L
ife

 C
yc

le
(m

in
) LMO

NCA

(a) Applications (b) Frequencies

Fig. 2. Different applications (a) and frequencies of switching phone on/off
(b) may favor different battery chemistries in a Nexus 6.

0 0.1 0.2 0.3 0.4 0.5

Time(s)

3.8

3.85

3.9

3.95

4

V
o

lt
ag

e(
V

)

Ideal curve
D2

D1

Fitted curve
D3

(a) Video Streaming

0 0.1 0.2 0.3 0.4 0.5

Time(s)

3.8

3.85

3.9

3.95

4

V
o
lt

ag
e(

V
)

Ideal curve

Fitted curve

D1

D3
D2

(b) Screen ON/OFF

Fig. 3. Power saving potentials from serving a heavy (i.e., video streaming
(a)) and light (i.e., Screen ON/OFF (b)) workload.

(e.g., each minute) to high (i.e., each second), the relative

benefit from using the NCA battery decreases, from 46%

longer service time to 35%. As such, this nonlinear behavior

of running various apps supported by different batteries calls

for a modeling on the power demand surge and its frequency,

with a consideration of battery features.

Active Power Savings. To meet load changes, a smartphone

may schedule right battery to use. This is already a common

practice in electric vehicles (EVs). Fengyuan Xu et al. [42]

discovers the V-edge phenomenon. That is when a new power

demand arrives, the battery output voltage first quickly drops,

and then rises up at a relative lower level than the initial

voltage, i.e., the V-edge, shown in Figure 3. We further extend

this direction on measuring output voltage with multiple loads

and batteries, using an Agilent 34410A multi-meter [1].

Figure 3(a) and (b) illustrate the voltage drop when stream-

ing video and lighting up the screen, respectively. The blue

Fig. 4. Metrics comparison between popular smartphone batteries.

dots are collected voltage samples, the red line is the fitted

curve, and the bold line is the ideal case. After one peak of

power demand, the estimated ideal power leak consumption

is D2 +D3 while the actual consumption is D1 +D2. The

area (D3−D1) is the potential power saving we seek. Thus,

if this V-edge curve happens frequently, we are looking for

one battery chemistry that minimizes D1, called the LITTLE

battery or if the duration of the curve is long, we need one

different battery that maximizes D3, called the big battery.

Battery Features at Different Dimensions. In order to find

the batteries with above features, we perform literature study

on current available Li-ion battery features used in smartphone

power supply [2]. With the same battery capacity, different

battery chemistries outperform others in different dimensions.

To this end, we provide a radar map of popular smartphone

batteries, such as NCA and LMO, on important features, with

normalized data shown in Figure 4. There are two important

observations from this map. First, no single battery provides

the optimal coverage in all the five dimensions, i.e., discharge

rate, energy density, cost, lifetime, and safety. However, com-

bining various batteries can help to achieve this goal. Second,

a fully mixed battery pack is complex to schedule yet hard

to reason the optimal scheduling solution, as proved in [6].

In this report, we mainly focus on the power savings in one

discharge cycle, and thus, without losing any generosity, we

pick two batteries that perform almost orthogonal in important

features, such as discharge rate and energy density, to suit our

battery scheduling to software demand. In our paper, we call

this big.LITTLE battery.

Active Power Management with Cooling. Adapting a

big.LITTLE battery design further complicates the smartphone

design. One issue is that frequently switching between batter-

ies and fast voltage drop raises temperature on some spots.

Traditional cooling method in smartphone is a cooling plate

that dissipates heat evenly and slowly. Yet hot spots lead to

unexpected additional energy loss and heat dissipation. To

address this problem, we introduce active cooling technique,

i.e., Thermoelectric Cooling (TEC), a very promising heat

sink, into the phone design. Recently, TEC has been used for

electronic cooling [25], with the advantages on size, quietness,

and high reliability. TEC can reduce the temperature fast and

Profiling

Workload

System State
A A

Power FSM Model

Calibration

System Model

Similarity
Approx.

LITTLE

big

Y

TEC Plate Actuator

Reward

Time t

Time t+1

Fig. 5. The CAPMAN framework. Shaded part is CAPMAN’s contributions.

to the spot, with an expense on an active power surge. This

power surge shall also be considered and supported in the

big.LITTLE battery scheduling design. Thus, it motivates us

to design CAPMAN, to support cooling and active power

management for big.LITTLE battery powered smartphones.

III. CAPMAN DESIGN

CAPMAN schedules big.LITTLE batteries as a cooling and

active power management framework, in order to prolong the

service time that suits software demand. It supports system

modeling on power consumption, profiles the runtime cooling

and active power cost, and controls big and LITTLE batteries.

CAPMAN targets software with these features:

• Software is accessed frequently enough to invoke transi-

tion between device power states;

• User interaction can turn on and off a phone frequently.

Yet this leaking power surge is stable when the same

operation happens;

• On the scale of one discharge cycle, i.e., duration between

two device charges, the arrivals of software demands are

frequent with a skewed distribution.

Figure 5 highlights our overall design of CAPMAN. CAP-

MAN collects runtime workload, TEC, and system statistics

for the whole system power profiles. The device power mod-

eling is an extensively studied area [12]. CAPMAN adapts

the finite-state machine model (C. Hu et al [32]), and treats

all power profiles as metrics, depending on related power

states. Using the power profile, the scheduling decision process

is formulated as a Markov decision process (MDP). Based

on the calculated maximum likelihood from the MDP, an

algorithm can enable CAPMAN to extract the right decision.

However, we prove that the algorithm is complex in time

that may not provide the right battery decision on time. As

such, we further develop an online approximation algorithm

based on MDP similarity. We prove the theoretical bound of

our online algorithm, which outputs the battery selection onto

CAPMAN implementation. CAPMAN can switch between

batteries in milliseconds. The subsequent sections discuss

system modeling, algorithms, and actuator design in details.

A. System Modeling

CAPMAN operates the battery and cooling modules of a

smartphone system for cooling and active power management,

and the decisions are made based on relevant models.

Battery Model. Different batteries are suitable for power

demands with different characteristics. We investigate six types

of widely used lithium batteries and summarize their major

properties in Table I. The two properties energy density and

Fig. 6. Top: Temperature distribution in mobile phones, with red for
high temperature and blue for normal temperature.The thickness of TEC is
generally 2mm. For the convenience of labeling, we have enlarged it. Bottom:
Relationship between TEC heat dissipation and its operating current.

discharge rate determine the energy storage capacity and

instantaneous power discharge capacity. We can find that a

battery with higher energy density can store more energy given

the same volume, but discharge less electricity instantaneously.

Such a battery is more suitable for the scenarios with long

discharge time but gentle changes, such as playing a video.

In contrast, a battery with a large discharge rate is preferred

when the discharge power changes dramatically, e.g., when

an application is launched, or a user lights up an inactive

phone and then turns it off soon. Based on the two properties,

we classify those batteries into two categories: the batteries

with high energy density as big batteries, and those with large

discharge rates as LITTLE batteries, which is shown in Table

I. Without loss of generality, we select LiMn2O4(LMO) and

LiNiCoAlO2(NCA) as the LITTLE battery and big battery

in our setup, respectively.

Cooling Model. The top half of Figure 6 shows a typical

temperature distribution across the main components in a

smartphone. For the best cooling effect, TECs are placed upon

the CPU, to cool the hottest component.

We use a cooling model [16] to describe how a TEC works,

which is related to the thermoelectric coefficient ST , resistance

R and thermal conductivity K. The heat Qc transferred

through a TEC can be calculated by Equation (1),

Qc = STTcI −
1

2
I2R−K(Th − Tc) (1)

where I is the operating current in Ampere, and Th and Tc
are the temperatures on the hot and cold sides of the TEC,

respectively, in Kelvin. We can see that the heat dissipation rate

of TEC is not simply proportional to its operating current. This

is also demonstrated by Figure 6, which shows the relationship

between the temperature difference between the two sides of

TEC and the operating current. As the operating current in-

creases from 0, the temperature difference gradually increases

at first, reaches the maximum when the operating current

is around 1.0 A (i.e., its rated operating current), and then

gradually decreases. Therefore, for the best cooling efficiency,

we propose to maintain the TEC at its rated operating current.

TABLE I
BATTERY MODEL.

Battery Cost Efficiency Lifetime Discharge Rate Energy Density Result

LiCoO2(LCO) ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ big

LiNiCoAlO2(NCA) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ big

LiMn2O4(LMO) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ LITTLE

LiNiMnCoO2(NMC) ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ LITTLE

LiFePO4(LFP) ⋆⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ LITTLE

LiT i5O12(LTO) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ LITTLE

TABLE II
POWER MODELS.

Component Model Citation

CPU

PCPU = γCPU
freq × µ+ CCPU

µ : utilization, 0 6 µ 6 100
freq : frequency index, freq = 0, 1, 2 · · · , n

[36]

Screen

PScreen =
(

αb+αw

2 ×Blevel

)

+ CScreen

αb, αw, CScreen : power coefficients
Blevel : brightness level, 0 6 Blevel 6 255

[7]

WIFI
PWiFi =

{

γWIFI
l × p + Cl if p 6 t

γWIFI
h × p + Ch if p > t

p : packet rate, t : threshold
[44]

TEC
PTEC = αI∆T + I2R

where I can be calculated from Equation (1).
[16]

CPU Screen TECWiFi
C0

C2

C1

Sleep

Idle

Send

AccessOn

Off

On

Off

Fig. 7. Hardware status and state transitions in CAPMAN.

Power Model. Power modeling of smartphone components,

especially those major energy-consuming ones, has been ex-

tensively studied in previous research. Thus for CAPMAN,

we adopt the commonly used power models for CPU, screen

and WIFI, and integrate them with the power model of TEC.

The four power models are listed in Table II. The CPU power

consumption is linearly related to its utilization given a specific

frequency level [36]. The screen power consumption depends

on the brightness [7]. The power consumption of WIFI is

piece-wise linearly related to the packet rate [44]. The TEC

power can be derived based on its operating current I [16],

which can be obtained by Equation (1).

B. System Modeling and Profiling

Figure 8 presents our Markov representation of one-round

battery scheduling. The hardware state layer reacts to the

upper software demand changes, e.g., the screen on event that

wakes the entire phone and begins to receive Internet data,

in the form of a MDP model M = {S,A, T,R}. S and A
are the finite sets of states and actions, which in CAPMAN

are the device power state vector in Figure 7 and the system

call vector [32], respectively. T : S × A × S → [0, 1]
and R : S × A × S → [0, 1] are the state transition

big

Battery
LITTLE

Battery

S1 S2 Si Sm-1 Sm... ...Observable

state

C0

C1

SLE

EP

IDLE

ACC

ESS

SEN

D

ON

OFF

ON

OFF

Battery

state

Hardware

state a/0.2/0.6

b/0.3/0.65

a/0.4/0.6
b/0.35/0.7a/0.75/0.4

b/0.5/0.7

a/0.15/0.2

a/0.15/0.2

b/0.45/0.2

a/0.25/0.6

b/0.7/0.2

b/0.25/0.7
a/0.55/0.3

a/0.15/0.4

Software

Fig. 8. The Markov Decision Process in CAPMAN. The phone is waked up
to receive a Wikipedia update.

function and the reward function. In our system model, for

example, when the phone wakes, the CPU state turns from

sleep to C0 and the screen is switched from off to on,

CAPMAN switches the battery supply from big to LITTLE,

in order to meet this short power surge. Our model presents

it as T ({SLEEP,OFF, ..., big}, a, {C0,ON, ...,LITTLE}),
which gives the probability that the phone is awake, and

R({SLEEP,OFF, ..., big}, a, {C0,ON, ...,LITTLE}) is the

reward for taking such action a. Specifically, the reward is

a function of a normalized variable in [0, 1] and CAPMAN

can compute the distribution with the mean represented as µi.

In our current setup, these reward distributions are i.i.d.

One problem with the classic MDP representation is that it

does not distinguish between actions that lead to a battery

switch decision and other internal transitions between the

state nodes. In our case, we need to reduce the unnecessary

state transitions between devices, so as that CAPMAN could

improve its performance. To tackle this problem, we consider

the following MDP graph representation.

The MDP graph for our M = {S,A, T,R} can be defined

as a graph model GM = {V,Λ, E, ψ, p, r}, which is a directed

bipartite graph with the state nodes (V) and action nodes (Λ).

We only generate this graph, in which the action node v ∈ Λ
connects two state nodes u ∈ V have different battery states.

E is the set of decision edges from state nodes to action nodes

and ψ is the set of transition edge from action nodes to state

nodes, as the solid and dash lines in Figure 5, respectively.

At the beginning of generating the correlated MDP graph,

the decision edge is unweighted while transition edges are

weighted by transition probability p and a reward r. It is clear

that the designed MDP M corresponds with the GM in a

one-to-one relationship. Therefore, solving the GM provides

a unique solution to our original MDP problem.

C. Runtime Calibration

For battery scheduling, the MDP graph GM allows CAP-

MAN to find future battery states. CAPMAN computes the

nth-order optimality by searching and updating the MDP

graph, and predicts the correct policy π to control the batteries.

Classic solutions [24] show that the order of the polynomials

could be large enough that the theoretically efficient algorithms

are not efficient in practice, not to mentioned that our battery

scheduling shall be done at circuit level with time granularity

of micro to milliseconds. To simply the search and solving the

entire MDP graph, we propose to use a structural similarity

method [38] that computes the similarity between MDP graph

at different order such that the decision can be extract from

history patterns without actual recompute the entire graph.

Further, this computation works as an index for the decision

process, that can be executed when the device is not busy at

the background.

As mentioned above GM is a bipartite, thus the out-

neighbors of a state node are always action nodes, whereas

those of an action node are always state nodes. Before we

present our structural similarity definition and runtime cali-

bration algorithm, let us first define the state similarity δS and

the action similarity δA in Equation (2):

δS(u, v)
def
= 1− σS(u, v), ∀u, v ∈ V

δA(a, b)
def
= 1− σA(a, b), ∀a, b ∈ Λ

(2)

State/Action Similarity Recursion. To define similarity, like

SimRank [23], we have δS and δA from state nodes and action

nodes. It is easy to understand that two nodes are similar if

and only if their neighbors are similar. We repeat this process

to find all similarities. As the base case, we define

δS(u, v)
def
=







0, if u = v
1, if u or v, but not both, is absorbing,

du,v, if both u and v are absorbing.
(3)

Here, a state is absorbing when the out-degree of the node is

zero, which is the target state for battery scheduling in practice.

Therefore, the configuration of du,v ∈ [0, 1] is a description

of the relationship between the target states depending on the

application. du,v ≡ 1 and du,v ≡ 0 are two special cases,

indicating that the two target states should be identified as

completely different or the same, respectively. To compute

state similarity σS and σA, we adopt distance computation

Algorithm 1 Structural Similarities Recursion

Input: MDP graph GM = (V,Λ, E,Ψ, p, r)
Parameter: Discount factors CA ∈ (0, 1)
Output: Solution (σ∗

S, σ
∗
A) to the recursion

// Initialization

1: S ← I |V |×|V |,A← I |Λ|×|Λ|

// Iterative computation.

2: While NOT S and A converge

3: for all a ∈ Nu and b ∈ Nv(u, v ∈ V, u 6= v) do

4: d← EMD(pa, pb;GM ,1− S)
5: Compute Aa,b with CA, d and S
6: for all u, v ∈ V with Nu 6= ∅ and Nv 6= ∅ do

7: Compute Su,v with CS, d and A
8: return (σ∗

S, σ
∗
A)← (S,A)

using Hausdorff distance and earth movers distance (EMD) as

in Equation (4):

σS(u, v) =CS · (1− δHaus (Nu, Nv; δA))

σA(a, b) =1− (1− CA) δrwd(a, b)

− CAδEMD (pa, pb; δS) ,

(4)

where 0 < CS , CA <1 is the parameter to weight the impor-

tance of the reward similarity and the transition similarity.

D. Recursive Computation

Algorithm 1 shows the iterative algorithm for computing σ∗
S

and σ∗
A by repeating the recursion. The algorithm computes

similarity between state and actions to find the finalized pair,

with which we can explore the battery decision. Note that in

Line 4, Algorithm 1 calls for a the successive shortest path

(SSP) algorithm [40] to compute the distance between two

distributions, which is the EMD parameter.

Space and Time Complexity Analysis. Given the graph

GM = (V,Λ, E,Ψ, p, r) of the MDP M = (S,A, T,R),
Algorithm 1 requires Θ

(

|V |2 + |Λ|2
)

= O
(

|S|2|A|2
)

space

to store S and A. SSP takes O
(

K2
max

)

working memory,

where Kmax ≤ |V | is the maximum out-degree of action

nodes in GM. In our case, our finite MDP has 50 state nodes

and over 200 system calls recorded (i.e., cardinality in S and

A, respectively). In our experiments, the memory footprint

records no more than 400kB for this similarity exploration.

Given a predefined precision ǫ (e.g., ǫ = 0.01), SSP is guar-

anteed to terminate in O
(

1
ǫ2
·
(

K2
max +Kmax logKmax

))

=
O
(

106
)

, which is almost constant. To further speed up the

computation, we use Dijkstras algorithm with a Fibonacci

heap. Each iteration of Algorithm 1 (Lines 3-7) makes

Θ
(

|Λ|2
)

calls to SSP. Computing the Hausdorff distances

takes Θ
(

|V |2L2
max

)

time, where Lmax ≤ |A| is the maximum

out-degree of state nodes in GM. The overall time cost is

therefore O
(

N · |S|2|A|2K2
max/ǫ

2
)

, which is linear to N, the

number of iterations before convergence.

Uniqueness and Stability. We now prove that σ∗
S and σ∗

A are

well-defined by showing that Algorithm 1 always terminates.

Let S(k) and A(k) be versions of the matrices S and A after

the k-th execution of Lines 3-7 of Algorithm 1 (k = 1, 2,

· · ·). In addition, let S(0) and A(0) be the contents of S and A

right before the algorithm enters the main loop. It is easy to

see that when the order k increases, the sizes of Sk and Sk is

always less than Sk+1 and Sk+1. Meanwhile, when introducing

discount factor (0 < CS , CA <1), we have Si ∈ [0, 1] and

Ai ∈ [0, 1] for all i > 0. Thus, the k increases to ∞, we have

lim
k→∞

S(k) = σ∗
S ∈ [0, 1]

lim
k→∞

A(k) = σ∗
A ∈ [0, 1]

(5)

Thus, Algorithm 1 always terminates correctly with the unique

solution (σ∗
S, σ

∗
A).

Upper Bound. Given the graph GM = (V,Λ, E,Ψ, p, r) and

an arbitrary initial state u0 ∈ V , following a probabilistic

policy π : V × Λ → [0, 1], there will be a trajectory of state

transitions:

u0
a0=π(u0)
−−−−−−→

r1
u1

a1=π(u1)
−−−−−−→

r2
u2

a2=π(u2)
−−−−−−→

r3
· · ·

Given a discount factor ρ ∈ (0, 1), the state value of u ∈ V
under policy π, written Vπ

u , is the expected total accumulative

return starting from the state node u, i.e.,

Vπ
u

def
= Eπ

[

∞
∑

k=0

ρkrk+1|u0 = u

]

. (6)

Similarly, the action value of a ∈ Λ under policy π is

Pπ
a

def
= Eπ

[

∞
∑

k=0

ρkrk+1|a0 = a

]

. (7)

Now, consider the optimal value functions V∗ and Q∗ under

the optimal policy π∗. The Bellman equations [34] state that

V∗
u = max

a∈Nu

P∗
a , (8)

P∗
a =

∑

u∈Na

p(a, u) (r(a, u) + ρV∗
u) . (9)

We show that the proposed distance measures, σ∗
S and σ∗

A, can

be used to bound the difference between the optimal values.

Therefore, we have:

|V∗
u − V

∗
v | ≤

1

1− ρ
· δ∗S(u, v)

|P∗
a − P

∗
b | ≤

1

1− ρ
· δ∗A(a, b)

(10)

Let CS = 1 and CA = ρ, meaning two state nodes

are diverged and transition similarity weight bounded for

the competitiveness, since the reward function r ∈ [0, 1],
∑∞

k=0 ρ
k = 1

1−ρ
. Detailed proof is skipped due to space

limit. That is, if we relax the similarity discount factor and

let ρ = 0.05, the upper bound of Algorithm 1 is within

O(1.05)-competitiveness, compared to the optimal policy. This

competitiveness guarantees the upper bound performance of

battery scheduling in CAPMAN.

E. Actuator

Actuator converts the output of computed MDP state into

battery selection decisions. In big.LITTLE batteries, the bat-

Clock

Signal

Time

1
0

1
0

Time

Circuit

Time

Start Switch Hold SwitchHoldSwitch Switch

0 1 2 3 4 5 6 7 8

Fig. 9. Timing diagram for battery switching.

Fig. 10. The full prototype of big.LITTLE battery support for mobile devices.
We implement a switch facility to convert CAPMAN algorithm output into
battery switch signal. For the LITTLE battery, the voltage is unstable in spike.
We installed a supercapacitor to boost and filter the LITTLE output, such that
CAPMAN can have a reliable power supply.

tery decision is a binary choice between switching from big

to LITTLE and vice versa. For this implementation, we use

a simple digital logic to control the switch using high/low

voltage in TTL gates. Figure 9 highlights a sample of our

designed signal. The control process starts at time 1, where

the voltage signal raises to the high level. Each voltage flip

(e.g, 0 → 1 or 1 → 0) indicates a switch event. Otherwise,

the system holds to the same battery. In Figure 9, the battery

switch flips at time 2, 5, 7, 8. Each flip can cause extra heat,

which invokes TEC to cool the system down. As shown later

in Section V, CAPMAN actually favors LITTLE battery due

to frequently wake TEC to cool the phone actively.

IV. IMPLEMENTATION

In this section, we detailed our CAPMAN prototype in

implementation, as illustrated in Figure 10.

Profile and Monitor. The approximation in CAPMAN ab-

stracts patterns, operations, and user interactions from the

software level into a set of device power states. As illustrated

in Figure 7, we consider a limited number of power states for

each device in mobile phones. The connection between these

power states are system calls and binder message as actions,

e.g., when the package number p is larger than 100kB (i.e.,

t in the third row of Table II) in Android 5.0.1, the WIFI

is switched to a high power state. These power profiles are

Mos TubeMos Tube

Voltage
Comparator

Load

big
Battery

LITTLE
Battery

SC
V1 V2

Fig. 11. Circuit diagram of the battery switcher.

obtained offline, measured from a multimeter. In all, the whole

system are connected and measured in Figure 10.

For active cooling, CAPMAN adds a TEC device, covering

the CPU spot in implementation. Without making the system

further complicated, we profile our TEC chip offline, and

always power it at its maximum cooling efficiency. Thus, the

TEC works with an on/off model in CAPMAN. In the physical

setup, TEC is powered on directly from the switch facility

when the temperature is higher than 45°C threshold.

The Switch Facility. To implement the big.LITTLE battery

support, we design a physical implementation with power

monitors and the switch facility, as shown in Figure 10.

The Switch taps its internal clock on communicating with

the smartphone. The Switch installs an oscillator with a 20 kHz

range, which allows us to produce big.LITTLE battery switch

at a millisecond scale. The circuit schematic of the Switch

in illustrated in Figure 11. The Switch operates at different

voltage level. When a different battery demand arrives, the

comparator raises to 3.5V, indicating a upper signal that

turns on the left Mos Tube in Figure 11. If received signal

flips again, the specified voltage drops to 0.3V, causing the

comparator switch to the right Mos Tube, that turning on the

LITTLE battery. As such, CAPMAN can manage the battery

supply from big.LITTLE batteries.

V. RESULTS

In this section, we evaluate the performance of CAPMAN

by prototyping it onto our physical testbed and workloads.

Hardware/Software Setup. We build a physical test platform

to evaluate the runtime performance of CAPMAN. The testbed

extends our prototype in Figure 10 to power meters (i.e., Ag-

ilent 34410A multi-meter). We install the big.LITTLE battery

pack including one LiNiMnCoO2 (LMO) and LiNiCoAlO2

(NCA) each. The voltage comparator is an LM339AD chip

that outputs battery switch signal from Pin 10. For active

cooling, we use an ATE-31-2.2A TEC, weighting less than

2 gram. We perform tests onto three phones, with CPU

frequency ranging from 1040kHz to 2000kHz, with installed

Android ROM version 5.0-7.1. The detailed power profile of

each device used in our test is shown in Table III.

Workloads and Traces. We verified the performance of CAP-

MAN using real world workloads and traces. Each benchmark

TABLE III
AVERAGE POWER COSTS OF ALL HARDWARE STATES IN TESTED

DEVICES.

Hardware CPU [4] Screen [29]

Status C0 C1 C2 Sleep Off On

Power(mW) 612 462 310 55 22 790

Hardware WiFi [20] TEC [36]

Status Idle Access Send Off On

Power(mW) 60 1284 1548 0 29.17

can verify the performance of CAPMAN in the wild. The

benchmarks are as follows:

• Geekbench is a resource intensive benchmark. This work-

load always fulfills the system utilization, making the

power profile easier to predict.

• PCMark is a CPU intensive benchmark, modified with

occasional user interactions. This is used to test CAP-

MAN behavior when software pattern changes.

• Video is a stable workload that keeps playing short videos.

• η-Static is a mixed workload batch controlled by η, where

η is the ratio for mixing PCMark and Video workloads.

Baselines: We mainly evaluate CAPMAN with the follow-

ing baselines:

• Oracle is a baseline based on offline analysis, serving

ground truth.

• Practice is the baseline that phone equips a single battery

with the same capacity.

• Dual deploys big.LITTLE batteries but always uses LIT-

TLE battery first.

• Heuristic is a dual battery baseline with a utilization-

based prediction model in Table II.

One Discharge Cycle Performance. We first plot an one-

discharge-cycle performance of CAPMAN, compared to other

baselines. Figure 12 illustrates this comparison using six

different workloads, namely, Geekbench, PCMark, Video and

three setups of η−∗ static workloads. The green dots are data

collected from multiple simulation experiments and the green

line is the fitted curve. It is worth mentioning that, in addition

to the typical high power consumption hardwares, CAPMAN

also includes the power consumption of running TEC here.

In Geekbench, the system is fully occupied with CPU and

memory intensive jobs, leading to a fully occupied system.

In this workload, CAPMAN works in a way similar to Dual

and Heuristic, (Figure 12(a)). It is because CAPMAN spends

extra on maintaining the MDP representation of the system

and constantly updates the similarity, which is unnecessary

in stationary workloads like Geekbench. However, CAPMAN

can still prolong 50% more service time than the Practice.

For the PCMark workload, as the system is not fully utilized.

CAPMAN gradually learns the state behavior, and reacts to

the right battery decision. Thus, though the energy drains

fast in the beginning, CAPMAN improves the performance

by 21.3%, 25.7%, compared to Dual and Heuristic at last

(Figure 12(b)). When the software demand becomes dynamic,

such as Video, CAPMAN can significantly outperform other

baselines, namely 53.27%, 55.08%, and 67.1% longer service

0 200 400 600 800 1000 1200 1400

Time(Epoch)

0

500

1000

1500

2000

2500
E

n
er

g
y
(m

A
h
)

Oracle

Practice

Dual

Heuristic

CAPMAN

(a) Geekbench.

0 500 1000 1500 2000

Time(Epoch)

0

500

1000

1500

2000

2500

E
n
er

g
y
(m

A
h
)

Oracle

Practice

Dual

Heuristic

CAPMAN

(b) PCMark.

0 200 400 600 800 1000 1200 1400

Time(Epoch)

0

500

1000

1500

2000

2500

E
n
er

g
y
(m

A
h
)

Oracle

Practice

Dual

Heuristic

CAPMAN

(c) Video.

0 200 400 600 800 1000 1200 1400

Time(Epoch)

0

500

1000

1500

2000

2500

E
n
er

g
y
(m

A
h
)

Oracle

Practice

Dual

Heuristic

CAPMAN

(d) η=20%.

0 200 400 600 800 1000 1200 1400

Time(Epoch)

0

500

1000

1500

2000

2500

E
n

er
g

y
(m

A
h

)

Oracle

Practice

Dual

Heuristic

CAPMAN

(e) η=50%.

0 500 1000 1500 2000

Time(Epoch)

0

500

1000

1500

2000

2500

E
n

er
g

y
(m

A
h

)

Oracle

Practice

Dual

Heuristic

CAPMAN

(f) η=80%.

Fig. 12. Performance comparison of CAPMAN and different baselines. (The green dots are data collected from multiple simulation experiments for CAPMAN
and the green line is the fitted curve.)

 0

 10

 20

 30

 40

 50

 60

G
eekB

ench

PC
M
ark

Video

eta-20%

eta-50%

eta-80%

 0

 500

 1000

 1500

 2000

 2500

 3000

Te
m

p
e
ra

tu
re

 (
°
)

A
c
ti

v
e
 P

o
w

e
r

(m
W

)

Temperature Active Power

Fig. 13. Cooling and active power consumption of different workloads.

time than Heuristics, Dual, and Practice, respectively (Fig-

ure 12(c)). Note that, it is also very close to the theoretical

best–Oracle, within 9.6% less service time.

When executing a mixed workload (Figure 12(e)-(f)), CAP-

MAN extends 76%, 105%, and 114% more service time than

Practice. On average, CAPMAN can double the service time

by smartly scheduling heterogeneous dual batteries, compared

to a single battery with the same capacity. CAPMAN shows a

closer curve than all the baselines to the offline optimal Oracle

at most times.

Cooling and Active Power Management. Figure 13 presents

how CAPMAN handles cooling when the active power varies.

0%

20%

40%

60%

80%

100%

G
eekB

ench

PC
M
ark

Video

eta-20%

eta-50%

eta-80%

 0

 5

 10

 15

 20

b
ig

.L
IT

T
L
E
 R

a
ti

o

Δ
Te

m
p
e
ra

tu
re

 (
°
)

big
LITTLE

Temperature Deduction

Fig. 14. The relationship between big.LITTLE ratio and temperature reduction
in different workloads.

In all workloads, CAPMAN can maintain the temperature

around 45 degree, as predefined. When the active power

reaches to 2300mW and the whole system works at its

designed highest utilization, CAPMAN boots up the TEC to

reduce the surface temperature. When the workload is less

intensive, such as the Video workload, the active power is

much smaller, due to less consumption from both mobile

phone and TEC cooling.

To further illustrate the performance, here we show the

performance between temperature reduction, which compares

to no TEC, and the ratio of activation time between big

and LITTLE batteries in Figure 14. CAPMAN selects the

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7 8 9 10

P
o
w

e
r

(m
W

)

Epoch

Lenovo
Honor
Nexus

Fig. 15. A snapshot of CAPMAN on different phones.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1O
v
e
rh

e
a
d
 (

m
ic

ro
s
e
c
o
n
d
s
)

ρ

Lenovo
Honor
Nexus

Fig. 16. The impact of the discount factor ρ.

appropriate battery based on the current state of the system. It

is clear that when LITTLE battery takes in charge, it means

more dynamic power surges arrive in the system, which could

be either a CPU intensive job, or the whole system boosts

up. In either case, TEC is highly likely to be on for active

cooling. Therefore, in PCMark, and η − 80%, it reduces the

most temperature beyond the default cooling plate.

Stability and Scalability. We test CAPMAN onto three

different phones, namely Nexus, Honor, and Lenovo. One

snapshot of runtime performance is shown in Figure 15.

CAPMAN shows similar active power management between

phones, under the same workload traces, raising from 100mW

to 450mW. In our implementation, we build CAPMAN within

the OS ROM, such that all Android phones can have system

support for big.LITTLE batteries.

In CAPMAN design, ρ is an important factor that mea-

sures the performance competitiveness between CAPMAN and

optimal solution. However, setting a ρ too high could also

lead to more recursion calculation in Algorithm 1. We show

the impact of ρ on the computation overhead in Figure 16.

This impact varies from different phones, as the computation

resource varies. However, all curves show an exponential

behavior when ρ increases. When ρ reaches 1, the overhead

reaches to 300 microseconds in Nexus, which makes the

battery control unstable. Thus, for each device, CAPMAN

needs to recalibrate to find a suitable configuration.

VI. RELATED WORK

CAPMAN is a framework designed for cooling and active

power management in battery-powered system domain. Re-

lated work are from battery scheduling and cooling and power

management as follows.

Battery Scheduling. Battery life is a critical performance

and user experience metric on mobile devices [30]. Falaki et

al. [19] develop the prototype that manages multiple batteries

for electric vehicles. Jin Lu et al. [26] further provide a more

detailed controller design for battery charging. There are many

work that leverage hybrid batteries in different areas such as

EV [33], datacenters [17], [43], smart grid [11], etc. Our paper

is one of the first attempts to provide system support for battery

scheduling, based on the SDB idea from [8].

Power and Cooling Management. Power management has

been studied for a long time in battery-powered device domain.

Carroll et al. [12] propose a basic power modeling set. Y. Hu

et al. [22] propose a power analog circuit level analysis. Their

works pile as the early pioneers in the modeling field, however,

not in energy conservation management. Clara Martinez et

al. [28] present a comprehensive analysis of energy manage-

ment strategies (EMSs). Yuvraj Agarwal et al. [5] present the

Cell2Notify power management framework to reduce the high

energy consumption of WiFi. Our work focuses on battery

management to prolong smartphone service times. To reduce

the temperature, plenty of research has been devoted [18], [31]

for thermal modeling. In this field, the work from Dai [16] is

closest to ours. They propose to use a small thermoelectric

generator (TEG) to generate surge power, in order to support

active cooling using thermoelectric coolers. However, adopting

a TEG device into a smartphone is another challenge for

manufacturing. Our work focuses on a more practical aspect

for cooling and active power management: exploiting the

existing battery chemistries to harvest more service times.

VII. CONCLUSION

Modern smartphone design is constrained by its power

and thermal wall. Battery engineering suggests a pack of

big.LITTLE batteries can perform better than one single bat-

tery with the same capacity. To provide the system support for

big.LITTLE batteries, we propose CAPMAN, a cooling-aware

battery management facility that effectively extends the service

time and enables efficient TEC cooling on phones. CAPMAN

models power profiles and provides runtime calibration for

battery scheduling, as well as an online algorithm with a

proved worst-case O(
1

1− ρ
)-competitiveness performance. We

implement CAPMAN on popular smartphones and find it can

significantly extend (114%) the service time while maintaining

the ambient temperature. Compared to state-of-the-practice

baselines, CAPMAN shows an average 55.08% performance

gain with 53.27% less power use.

VIII. ACKNOWLEDGEMENT

This work is supported by NSFC funding No. 61702250

and 61702329, MST National RD Key project No.

2018YFB14043033, and Jiangxi Thousands of Talents project

No. jxsq106018. We would like to thank Prof. Hao Wang on

reviewing the theory proof and all anonymous reviewers for

their valuable comments and suggestions.

REFERENCES

[1] Agilent 34410a multimeter. https://www.keysight.com/. Accessed
December 4, 2019.

[2] Battery university. https://batteryuniversity.com/. Accessed December
4, 2019.

[3] Pcmark. https://benchmarks.ul.com/zh-hans/pcmark10. Accessed De-
cember 4, 2019.

[4] Ahmed Abdelmotalib and Zhibo Wu. Power consumption in smart-
phones (hardware behaviourism). International Journal of Computer

Science Issues (IJCSI), 9(3):161, 2012.

[5] Yuvraj Agarwal, Ranveer Chandra, Alec Wolman, Paramvir Bahl, Kevin
Chin, and Rajesh Gupta. Wireless wakeups revisited: energy man-
agement for voip over wi-fi smartphones. In Proceedings of the 5th

international conference on Mobile systems, applications and services,
pages 179–191. ACM, 2007.

[6] Aakash Agrawal, Krunal Shah, Amit Kumar, and Ranveer Chandra.
Battery scheduling problem. In International Conference on Theory and

Applications of Models of Computation, pages 1–12. Springer, 2019.

[7] Farhan Azmat Ali, Pieter Simoens, Tim Verbelen, Piet Demeester, and
Bart Dhoedt. Mobile device power models for energy efficient dynamic
offloading at runtime. Journal of Systems and Software, 113:173–187,
2016.

[8] Anirudh Badam, Ranveer Chandra, Jon Dutra, Anthony Ferrese, Steve
Hodges, Pan Hu, Julia Meinershagen, Thomas Moscibroda, Bodhi
Priyantha, and Evangelia Skiani. Software defined batteries. In
Proceedings of the 25th Symposium on Operating Systems Principles,
pages 215–229. ACM, 2015.

[9] Avram Bar-Cohen and Peng Wang. On-chip hot spot remediation
with miniaturized thermoelectric coolers. Microgravity Science and

Technology, 21(1):351–359, 2009.

[10] Matthew Bartlett and Brad Sherrill. Battery pack including an emergency
back-up battery for use in mobile electronic devices, June 1 2010. US
Patent 7,728,549.

[11] Bocklisch and Thilo. Hybrid energy storage systems for renewable
energy applications. Energy Procedia, 73:103–111.

[12] Aaron Carroll, Gernot Heiser, et al. An analysis of power consumption
in a smartphone. In USENIX annual technical conference, volume 14,
pages 21–21. Boston, MA, 2010.

[13] Guy Chemla. Integrated circuit temperature monitoring and protection
system, September 8 1998. US Patent 5,805,403.

[14] C-F Chiasserini and Ramesh R Rao. Energy efficient battery manage-
ment. IEEE journal on selected areas in communications, 19(7):1235–
1245, 2001.

[15] Victor Chiriac, Steve Molloy, Jon Anderson, Ken Goodson, and Victor
Chiriac. A figure of merit for smart phone thermal management. A

Figure of Merit for Smart Phone Thermal Management, page 16, 2017.

[16] Yuting Dai, Tao Li, Benyong Liu, Mingcong Song, and Huixiang Chen.
Exploiting dynamic thermal energy harvesting for reusing in smartphone
with mobile applications. In ACM SIGPLAN Notices, volume 53, pages
243–256. ACM, 2018.

[17] Wang Di, Chuangang Ren, Anand Sivasubramaniam, Bhuvan Urgaonkar,
and Hosam Fathy. Energy storage in datacenters: What, where, and how
much? Acm Sigmetrics Performance Evaluation Review, 40(1), 2.

[18] Begum Egilmez, Gokhan Memik, Seda Ogrenci-Memik, and Oguz
Ergin. User-specific skin temperature-aware dvfs for smartphones. In
2015 Design, Automation & Test in Europe Conference & Exhibition

(DATE), pages 1217–1220. IEEE, 2015.

[19] Mohamamd Hossein Falaki. Automating personalized battery manage-

ment on smartphones. PhD thesis, UCLA, 2012.

[20] Roy Friedman, Alex Kogan, and Yevgeny Krivolapov. On power
and throughput tradeoffs of wifi and bluetooth in smartphones. IEEE

Transactions on Mobile Computing, 12(7):1363–1376, 2012.

[21] Koji Hasebe, Tatsuya Niwa, Akiyoshi Sugiki, and Kazuhiko Kato.
Power-saving in large-scale storage systems with data migration. In 2010

IEEE Second International Conference on Cloud Computing Technology

and Science, pages 266–273. IEEE, 2010.

[22] Y. Huh. Future direction of power management in mobile devices. In
IEEE Asian Solid-State Circuits Conference 2011, pages 1–4, Nov 2011.

[23] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context
similarity. In Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 538–543.
ACM, 2002.

[24] Nicholas K Jong and Peter Stone. State abstraction discovery from
irrelevant state variables. In IJCAI, volume 8, pages 752–757. Citeseer,
2005.

[25] Allan D Kraus and Avram Bar-Cohen. Thermal analysis and control of
electronic equipment. Washington, DC, Hemisphere Publishing Corp.,

1983, 633 p., 1983.
[26] Jin Lu, Todd Scott Kelly, and Lee Cheung. Battery management system

and method, November 12 2013. US Patent 8,583,955.
[27] Dongsheng Ma and Rajdeep Bondade. Enabling power-efficient dvfs

operations on silicon. IEEE Circuits and Systems Magazine, 10(1):14–
30, 2010.

[28] Clara Marina Martinez, Xiaosong Hu, Dongpu Cao, Efstathios Velenis,
Bo Gao, and Matthias Wellers. Energy management in plug-in hybrid
electric vehicles: Recent progress and a connected vehicles perspective.
IEEE Transactions on Vehicular Technology, 66(6):4534–4549, 2016.

[29] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering
developers to estimate app energy consumption. In Proceedings of

the 18th annual international conference on Mobile computing and

networking, pages 317–328. ACM, 2012.
[30] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering

developers to estimate app energy consumption. In Proceedings of

the 18th Annual International Conference on Mobile Computing and

Networking, Mobicom ’12, pages 317–328, New York, NY, USA, 2012.
ACM.

[31] Francesco Paterna, Joe Zanotelli, and Tajana Simunic Rosing. Ambient
variation-tolerant and inter components aware thermal management for
mobile system on chips. In 2014 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 1–6. IEEE, 2014.
[32] Abhinav Pathak, Y Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min

Wang. Fine-grained power modeling for smartphones using system call
tracing. In Proceedings of the sixth conference on Computer systems,
pages 153–168. ACM, 2011.

[33] Ziyou Song, H Hofmann, JQ Li, Xuebing Han, and Minggao Ouyang.
Optimization for a hybrid energy storage system in electric vehicles
using dynamic programing approach. Applied Energy, 139:151–162.

[34] Richard S Sutton and Andrew G Barto. Reinforcement learning: An

introduction. MIT press, 2018.
[35] FL Tan and SC Fok. Thermal management of mobile phone using

phase change material. In 2007 9th Electronics Packaging Technology

Conference, pages 836–842. IEEE, 2007.
[36] FL Tan and SC Fok. Methodology on sizing and selecting thermoelectric

cooler from different tec manufacturers in cooling system design. Energy

conversion and management, 49(6):1715–1723, 2008.
[37] Eric Wang. Mobile electronic devices with integrated personal cooling

fan, August 11 2011. US Patent App. 12/919,473.
[38] Hao Wang, Shaokang Dong, and Ling Shao. Measuring structural

similarities in finite mdps. In International Joint Conference on Artificial

Intelligence, pages 3684–3690, 2019.
[39] V Wienert, H Sick, et al. Local thermal stress tolerance of human skin.

Anasthesie, Intensivtherapie, Notfallmedizin, 18(2):88–90, 1983.
[40] S JEWELL William. Optimal flow through networks. Operations

Research, 10:476–499, 1962.
[41] Qing Xie, Jaemin Kim, Yanzhi Wang, Donghwa Shin, Naehyuck Chang,

and Massoud Pedram. Dynamic thermal management in mobile devices
considering the thermal coupling between battery and application pro-
cessor. In 2013 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pages 242–247. IEEE, 2013.
[42] Fengyuan Xu, Yunxin Liu, Qun Li, and Yongguang Zhang. V-edge:

Fast self-constructive power modeling of smartphones based on battery
voltage dynamics. In Presented as part of the 10th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 13), pages
43–55, Lombard, IL, 2013. USENIX.

[43] Yang, Hu, Hongbin, Sun, Juncheng, Gu, Longjun, Liu, Tao, and Li and.
Heb: Deploying and managing hybrid energy buffers for improving
datacenter efficiency and economy.

[44] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P
Dick, Zhuoqing Morley Mao, and Lei Yang. Accurate online power esti-
mation and automatic battery behavior based power model generation for
smartphones. In Proceedings of the eighth IEEE/ACM/IFIP international

conference on Hardware/software codesign and system synthesis, pages
105–114. ACM, 2010.

