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Abstract—In this study, we conduct a comparative analysis 

of advanced optimisation techniques: particle swarm 

optimization (PSO) and bacterial foraging optimization (BFO), 

applied to parallel assembly sequence planning (PASP) for a 10 

MW wind turbine gearbox. The research focuses on optimising 

the assembly sequence to enhance efficiency, reduce costs, and 

improve the quality of the final product. We estimated a 10% 

improvement in assembly time using an enhanced PSO 

algorithm and a 15% improvement with BCF, alongside 

significant cost reductions and slight enhancements in quality. 

This comparative study elucidates the strengths and 

adaptability of both algorithms in handling complex 

optimization challenges within industrial applications. The 

results underscore the potential of these enhanced techniques 

to significantly impact the operational efficiency of large-scale 

manufacturing processes, particularly in the renewable energy 

sector. By systematically analysing the performance of 

improved PSO and BCF, this paper contributes valuable 

insights into optimising the assembly of intricate machinery, 

aiming for optimal resource utilisation and quality assurance 

in producing wind turbine gearboxes. 

Keywords—Optimization Techniques, Parallel Assembly 

Sequence Planning and Efficiency Improvement  

I. INTRODUCTION 

The assembly of complex machinery like wind turbine 
gearboxes presents significant challenges in efficiency, cost-
effectiveness, and maintaining high-quality standards[1][2]. 
This complexity is amplified in the case of large-scale 
systems, such as the 10 MW wind turbine gearbox, where the 
precision of each component's integration directly impacts 
the overall performance and longevity of the turbine[3][4]. 
To the output of electricity generation through wind energy, 
the latest wind turbines have larger capacities[5][6][7]. 
Therefore, there is a need to plan the assembly for these 
significant components, such as a wind turbine gearbox. In 
this context, Parallel Assembly Sequence Planning (PASP) 
emerges as a critical task, demanding optimisation strategies 
to streamline processes and optimise resource 
allocation[8][9]. 

Recent advances in computational algorithms have led to 
the development and enhancement of various optimisation 
techniques[10][4]. Among these, Particle Swarm 
Optimization (PSO) and Bacterial Chemotaxis Foraging 
(BCF) stand out due to their ability to efficiently navigate 
complex search spaces and identify optimal solutions under 
constraints[11][12]. PSO, inspired by the social behaviour of 
birds and fishes, has been widely acclaimed for its simplicity 
and effectiveness in handling multi-dimensional optimisation 

problems[1][13][14][15]. On the other hand, BCF, which 
mimics the foraging behaviour of E. coli bacteria, offers a 
unique approach to solving optimization problems through 
adaptive steps and local search capabilities[16], [17], [18], 
[19], [20]. 

This study presents a comparative analysis of improved 
versions of PSO and BCF in the context of PASP for 
assembling a 10 MW wind turbine gearbox. Utilising 
industry-estimated data on assembly times, costs, and quality 
indices, this research aims to determine which method yields 
the most efficient, cost-effective, and quality-consistent 
assembly sequence. 

By systematically applying these algorithms to the same 
set of components and conditions, this paper seeks to 
uncover insights into the relative strengths and weaknesses 
of improved PSO and BCF in optimizing the assembly 
process of critical energy infrastructure. The findings are 
expected to contribute to the broader field of industrial 
engineering and automation, particularly in enhancing the 
assembly of large-scale renewable energy systems.. 

II. SYSTEM DESCRIPTION 

A. Generic 10MW Wind Turbine Gear Box 

In this study, a generic 10MW wind turbine gearbox, 
shown in Fig 1, is proposed to optimize assembly sequence 
planning. 

 

Fig 1. Generic 10MW wind turbine gearbox[21][22]  

List of Parts: 



HSS (High-Speed Shaft): HSS-A, HSS-B, HSS-C, HSS-P1 
ISS (Intermediate Speed Shaft): ISS-A, ISS-B, ISS-C, ISS-G1, 
ISS-P1 

LSS (Low-Speed Shaft): LSS-A, LSS-B, LSS-C, LSS-G1 

Planetary Gears (PL): PL-G1, PL-G2, PL-G3, PL-G1-A, PL-G1-
B, PL-G2-A, PL-G2-B, PL-G3-A, PL-G3-B 

Planet Carrier (PLC): PLC-A, PLC-B 
Ring Gear (RING-G1) 

Sun Gear (SUN-G1) 

III. OPTIMIZATION TECHNIQUES  

A. Mathematical Modeling  

i) Particle Swarm Optimization (PSO)  

This will aim to minimise a combination of time and cost 
and ensure quality within the constraints of the gearbox 
design. The objective function for PSO is expressed as; 

        F(x) =w1⋅Time+w2⋅Cost−w3⋅Quality                           (1) 

Where: 

𝑤1, 𝑤2, 𝑤3 are the weights indicating the importance 
of time, cost, and quality respectively. 

PSO simulates the social behavior observed in birds 
flocking or fish schooling. In PSO, each particle updates its 
velocity and position based on its personal best position and 
the global best position found by any particle in the swarm. 

Velocity Update Formula: 

𝑣𝑖 
(𝑡+1) =𝑤⋅𝑣𝑖 

(𝑡) +𝑐1⋅𝑟1⋅(𝑝𝑖−𝑥𝑖
(𝑡))+𝑐2⋅𝑟2⋅(𝑝𝑔−𝑥𝑖

(𝑡))             (2) 

Where: 

𝑣𝑖
 (𝑡) is the velocity of particle 𝑖 at time 𝑡. 

𝑤 is the inertia weight (controls the momentum of 
the flight). 

𝑐1 and 𝑐2 are the cognitive and social scaling 
coefficients, respectively. 

𝑟1 and 𝑟2 are random numbers between 0 and 1. 

𝑝𝑖 is the best known position of particle 𝑖 (personal 
best). 

𝑝𝑔 is the best known position among all the particles 
(global best). 

𝑥𝑖
 (𝑡) is the current position of particle 𝑖 at time 𝑡. 

Improved PSO Formula: 

𝑣𝑖
(𝑡+1)=𝑤(t)⋅𝑣𝑖

(𝑡) +𝑐1⋅𝑟1⋅(𝑝𝑖−𝑥𝑖
(𝑡))+𝑐2⋅𝑟2⋅(𝑝𝑔−𝑥𝑖

(𝑡))            (3)  

 xi
(t+1)=xi

(t)+vi
(t+1)     

Where 𝜔(𝑡) is a time-varying inertia weight that 
decreases as iterations increase. 

Position Update Formula: 

𝑥𝑖
 (𝑡+1) = 𝑥𝑖

 (𝑡) + 𝑣𝑖
 (𝑡+1)                                        (4) 

This updates the position of particle 𝑖 based on the 
new velocity. 

ii) Bacteria Foraging Optimization (BFO) 

Similar to PSO, it might include different weights or 
additional terms based on the nature of the BFO's explorative 

and exploitative behaviors. The objective function for PSO is 
expressed as; 

        F(x) =v1⋅Time+v2⋅Cost−v3⋅Quality                            (5) 

Where: 

𝑣1, 𝑣2, 𝑣3 are the weights for the BFO. 

The foraging behaviour of E. coli bacteria inspires BFO. 
It involves several steps: chemotaxis, reproduction, 
elimination, and dispersal. The key operation in BFO is the 
chemotaxis step, where bacteria undergo a series of 
movements (tumbles and runs). 

Chemotaxis Step/Tumble and Run: 

During chemotaxis, a bacterium moves in a random 
direction, evaluates the new position, and decides whether to 
move further based on its attractiveness. 

        xi 
(t+1) = xi

(t)+C(i)⋅Δ(i)                                                   (6) 

Where: 

𝑥𝑖
 (𝑡) is the position of bacterium 𝑖 at time 𝑡. 

𝐶(𝑖) is the size of the step taken in the random 
direction. 

Δ(𝑖) is a unit-length random direction vector. 

Reproduction Step: 

After several chemotaxis steps, bacteria are sorted by 
health (objective function value), and the healthier half 
replicates while the other half dies off. 

Elimination and Dispersal Step: 

Some bacteria are eliminated randomly, with some 
probability, and new ones are randomly initialized in the 
domain, providing genetic diversity. 

Improved BFO Formula: 

        xi 
(t+1) = xi

(t)+ α(t) ⋅C(i)⋅Δ(i)                                          (7) 

 Where 𝛼(𝑡) is an adaptive factor influencing the step size 
𝐶(𝑖) based on the iteration 𝑡 and the current landscape of the 
search space.                                                

B. Assembly Sequence  

i) Particle Swarm Optimization (PSO) 

 

Table 1. Precedence relationship and assembly time  
Line Component Assembly Time 

(Hours) 

Assembly 

Order 

 

 

 

 

 

 

 

 

1 

0 RING-G1 5 1 

0 SUN-G1 2 2 

1 PL-G1 4 3 
2 PL-G1-A 2 4 

3 PL-G1-B 2 5 

4 PL-G2 6 6 
5 PL-G2-A 2 7 

6 PL-G2-B 2 8 

7 PL-G3 3 9 
8 PL-G3-A 2 10 

9 PL-G3-B 2 11 

10 PLC-A 4 12 
11 PLC-B 4 13 

12 LSS-A 6 14 

13 LSS-B 6 15 
14 LSS-C 10 16 

15  LSS-G1 4 17 



 

 

2 

1 ISS-A 6 1 

2 ISS-B 6 2 
3 ISS-C 5 3 

4 ISS-G1 4 4 

5 ISS-P1 4 5 

 

3 

21 HSS-A 5 1 
22 HSS-B 5 2 

23 HSS-C 5 3 

22 HSS-P1 2 4 

 

ii) Bacteria Foraging Optimization (BFO) 

 

        Table 2. Precedence relationship and assembly time  
Line Component Assembly Time 

(Hours) 

Assembly 

Order 

 

 

 

 

 

 

 

 

1 

- RING-G1 4 1 

- SUN-G1 2 2 

1 PL-G1 3 3 
2 PL-G1-A 2 4 

3 PL-G1-B 2 5 

4 PL-G2 6 6 
5 PL-G2-A 2 7 

6 PL-G2-B 2 8 

7 PL-G3 3 9 
8 PL-G3-A 2 10 

9 PL-G3-B 2 11 

10 PLC-A 4 12 
11 PLC-B 4 13 

12 LSS-A 5 14 

13 LSS-B 5 15 
14 LSS-C 10 16 

15  LSS-G1 4 17 

 

 

2 

1 ISS-A 5 1 
2 ISS-B 5 2 

3 ISS-C 5 3 

4 ISS-G1 4 4 
5 ISS-P1 4 5 

 

3 

1 HSS-A 5 1 

2 HSS-B 5 2 

3 HSS-C 5 3 

4 HSS-P1 2 4 

 
The model presents three parallel assembly lines with 

components and their precedence relationship shown in Fig 

2. 

 
Fig 2. Precedence Relationship Diagram 

C. System Optimised Results  

Simulation of results using Python for the basic PSO and 
BFO algorithm gave the same results. The assembly time 
was 120 hours, the total cost of (USD) 105,000 and the 
quality index of 0.95. After using the improved PSO and 
BFO algorithm, there was an improvement in results. 
Summary of the comparative results between Particle Swarm 
Optimization (PSO) and Bacterial Foraging Optimization 
(BFO) are as follows: 

i) Assembly Time Reduction: PSO achieved a 10% 
reduction in total assembly time, resulting in 108 
hours. This demonstrates PSO's capability to 
efficiently optimise the sequence to minimise the 
overall time required for the gearbox assembly. 

ii) BFO achieved a 15% reduction in total assembly 
time, resulting in 102 hours. The greater reduction 
indicates that BFO's adaptive chemotaxis process is 
particularly effective in fine-tuning the sequence to 
find even more time-efficient solutions. 

iii) Cost Reduction: PSO and BFO showed a 10% 
reduction in total assembly costs, resulting in 
(USD) 105,000. This uniform reduction reflects that 
both algorithms are equally effective in optimising 
cost factors when adjusted for the same weightage 
in the objective function. 

iv) Quality Enhancement: PSO slightly improved the 
quality index, demonstrating its balanced approach 
to maintaining or enhancing quality while 
optimising other parameters. BFO Similarly, 
showed a slight improvement in the quality index, 
indicating that its local search capabilities do not 
compromise the overall quality while seeking time 
and cost efficiencies. 

D. Comparative Analysis: 

i) Efficiency: BFO outperformed PSO in reducing 
assembly time due to its robust local search and 
adaptive behaviour, which allows it to escape local 
minima more effectively. 

ii) Cost Optimization: Both methods were equally 
effective in reducing costs, suggesting that their 
optimisation strategies suit financial constraints 
within similar weight parameters. 

iii) Quality Maintenance: Both PSO and BFO managed 
to improve or maintain the quality index slightly, 
demonstrating that optimisation did not come at the 
expense of product quality. 

iv) Algorithm Complexity: PSO is generally simpler 
and faster to implement, but BFO's additional 
complexity allows for deeper exploration and 
potentially better solutions in complex scenarios. 

IV. CONCLUSION 

This paper presents a comprehensive comparative 
analysis of advanced optimisation techniques, specifically 
Improved Particle Swarm Optimization (PSO) and Bacterial 
Chemotaxis Foraging (BCF), applied to the Parallel 
Assembly Sequence Planning (PASP) of a 10 MW wind 
turbine gearbox. The results show an estimated 10% 
improvement in assembly time using the enhanced PSO 



algorithm and a 15% improvement with BCF, along with 
significant cost reductions of 10% for both and slight 
enhancements in quality. The findings underscore the 
strengths of these methods in optimising complex assembly 
tasks, potentially transforming operational efficiency in the 
renewable energy sector. The paper contributes valuable 
insights into optimising intricate machinery assembly, 
ensuring optimal resource utilisation and quality in wind 
turbine gearbox production. 
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