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Abstract. Keypoint detection is an essential part of human pose esti-
mation. However, due to resource constraint, it’s still a challenge to de-
ploy complex convolutional networks to edge devices. In this paper, we
present GoatPose: a lightweight deep convolutional model for real-time
human keypoint detection incorporating attention mechanism. Since the
high computational cost is associated with the frequently-use convolu-
tion block, we substitute it with LiteConv block, which conducts cheap
linear operation to generate rich feature maps from the intrinsic features
with low cost. This method significantly accelerates the model while
inevitablely loses a part of spatial information. To compensate for the
information loss, we introduce NAM attention mechanism. By applying
channel weighting, the model can focus more on the important features
and enhance the feature representation. Results on the COCO dataset
show the superiority of our model. With the complexity of our model
reduced by half and the computational speed doubled, the accuracy of
our model is basically the same as that of the backbone model. We fur-
ther deploy our model on NVIDIA Jetson TX2 to validate its real-time
performance, indicating that our model is capable of being deployed and
widely adopted in real-world scenarios.

Keywords: Human key point detection - Lightweight network - High-
resolution representation - Attention mechanism - Model deployment

1 Introduction

Human pose estimation aims to accurately detect the key points of the human
body such as the head, shoulders, elbows, wrists, knees, and ankles. The de-
tection task has broad applications, including motion capture, human-computer
interaction, pedestrian tracking, etc. Deep learning has been successfully applied
in the human body key point detection task, however, it’s still a challenge to
deploy complex networks to edge devices due to resource constraints.
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Lightweight model are needed for human key point detection tasks in prac-
tical application. One popular approach to designing lightweight networks is to
borrow techniques such as depth-wise separable convolution and channel shuf-
fling from classification networks [1-3] to reduce computational redundancy.
Model compression is also a common approach to generate lightweight model
[4-9]. In this paper, we present a lightweight high-resolution network GoatPose.
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Fig.1: AP and Speed on MSCOCO val set

Using high-resolution network HRNet[10] as our backbone, GoatPose maintains
high-resolution representations through the whole process,therefore obtaining
strong semantic information. Considering that the frequently-used convolutions
excessively consume computational resources, we redesign the convolution block,
incorporating cheap linear operation into it, which can generate rich feature maps
from the intrinsic features with cheap cost[11,12]. To compensate for the infor-
mation loss caused by linear operation, we introduce the attention mechanism.
By weighting the channels, the model can adaptively find areas that need atten-
tion and highlight important features while suppressing irrelevant features[13—
15]. Our method on the COCO keypoint detection dataset[16] demonstrates su-
perior results, as shown in Figure 1. We further deploy our model on NVIDIA
Jetson TX2 to validate the real-time performance. It turns out that our model
has a high AP of 74.5% with only 3.48 GFLOPSs, outperforming prior state-
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of-the-art efficient pose estimation models. We believe our work will push the
frontier of real-time pose estimation on edge.
Our main contributions include:

e We propose a lightweight network GoatPose that generates highresolution
feature maps with low cost. The key of the model lies in the introduction of
cheap operation and attention mechanism.

e We demonstrate the effectiveness of GoatPose on the COCO dataset. Our
model outperforms all other models and achieves excellent result, reaching
high average precision while maintaining low computational and memory
consumption.

e We deploy our model on NVIDIA Jetson TX2 to validate its real-time per-
formance. The results demonstrate that our model is remarkable efficient in
practical applications and can be easily generalized to the human keypoint
detection task.

2 Related Work

High Resolution Representation Tasks that require position-sensitive in-
formation rely on high-resolution representations. There are two mainstream
approaches to obtaining high-resolution representations. One method is to em-
ploy a high-resolution recovery process to enhance the representation resolution.
This is achieved by improving the low-resolution output obtained from a clas-
sification network[17-22] through sequentially-connected convolutions, typically
upsampling. However, spatial sensitivity information has already been lost in the
previous downsampling and cannot be recovered. The other way is to replace
the downsampling and normal convolution layers with dilated convolutions|23-
32]which will significantly increases the computational complexity and number
of parameters. HRNet[10, 33] is proposed as an efficient way to maintain high-
resolution representation throughout the network. HRNet consists of parallel
multi-resolution branches. By repeated multi-scale fusion, HRNet can generate
high-resolution representation with rich semantic.

Model Lightweighting Lightweight model are needed for practical real-time
application. Separable convolutions and group convolutions, derived from clas-
sification networks|2, 3, 32, 34-39] are commonly used techniques to reduce com-
putational redundancy. MobileNetv3 is built upon depthwise separable convo-
lutions and introduces the inverted residual structure to construct lightweight
networks. ShuffleNetv2, on the other hand, incorporates pointwise group con-
volutions and channel shuffling to maintain model performance. Although these
models achieve relatively robust performance with fewer computations, they do
not fully explore the redundancy between feature maps to further compress the
model. In contrast, the Ghost module[11], proposed by Kai Han et al., can gen-
erate additional feature maps from the intrinsic features through cheap linear
operations, significantly conserving computational and storage costs.
Attention Mechanisms Network lightweighting inevitably leads to the loss
of spatial information. Incorporating attention mechanisms into convolutional
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networks allows the model to adaptively allocate weights to different regions and
highlight important features to enhance the network’s representation, therefore
compensate for the loss of information to some extent. Prior studies on at-
tention mechanisms focus on enhancing the performance of neural networks by
suppressing insignificant weights[13-15, 40] and lack consideration for the contri-
bution factor of the weights, which could further suppress insignificant features.
In contrast, NAMJ[41] uses batch normalization scaling factors to represent the
importance of weights and fully exploits the contribution factor of the weights to
enhance attention, which not only lowers network complexity and computational
costs, but also leads to improved efficiency and model performance.

3 Approach

3.1 Parallel Multi-Branch Architecture

The model we proposed in this paper uses HRNet as the backbone to improve the
performance of image processing tasks. HRNet is a high-resolution convolutional
neural network capable of capturing high semantic information while maintaining
high-resolution representations. It is characterized by two key features: parallel
multi-resolution representations and repeated multi-resolution fusion.

Parallel Multi-Resolution Representation Starting with a high-resolution
representation as the first stage, each subsequent stage includes the previous
stage’s resolution representation and expands a lower-resolution representation,
as shown in Figure 2. The resolutions of all four representations are 1/4, 1/8,
1/16, and 1/32, respectively. Representations of different resolutions are con-
nected in parallel to avoid information loss. Also feature extraction are simulta-
neously performed on multiple scales.
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Fig. 2: Parallel Multi-Resolution Representation

Repeated Multi-Resolution Fusion The purpose of fusion is to exchange
information between representations of different resolutions. Take the fusion of
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2-resolution representations for example, the input consists of three representa-
tions: {an, r=1, 2}, with r is the resolution index, and the associated output
representations are {R%,r = 1,2}. Each output representation is the sum of the
transformed representations of the two inputs:RS = f1,.(R%) + fo,(R%). There
will be an additional output from stage 2 to stage 3, which is the expanded
lower-resolution representation: R = fi3(R})+ f23(R%).The choice of the trans-
form function f,,(-) is dependent on the input resolution index 2 and the output
resolution index r. If z = r, f,.(R) = R. If z < r, f(R) downsamples the in-
put representation R through (rs) stride-2 3 x 3 convolutions.If z > r, fu(R)
upsamples the input representation R through the bilinear upsampling followed
by a 1 x 1 convolution for aligning the number of channels. The functions are
depicted in Figure 3.
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Fig. 3: Repeated Multi-Resolution Fusion

The low-resolution branch can capture the global features of the image, while
the high-resolution branch can preserve more local details. HRNet performs well
in various image processing tasks, especially for tasks that require high-resolution
representations, such as human pose estimation, semantic segmentation, and
object detection.

3.2 Model Lightweighting

Considering the limited resources of embedded devices, model lightweighting is
necessary to deploy convolutional neural networks. The Ghost module can be
used as a plug-and-play component to accelerate model.

Key of the Ghost module is cheap linear operation. Given the input data
X € R the operation of an arbitrary convolutional layer for producing n
feature maps can be formulated as Equation 1:

Y=X=xf+b (1)

where * is the convolution operation, b is the bias term, Y € Rh xw'xn g the
output feature map, f € R*F*FX" ig the convolution filters, and the convolution
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kernel is k. Taking into account the similarity between the generated feature
maps, these redundant feature maps are called ghost feature maps. Suppose that
those ghost feature maps can be easily transformed from smaller-scale intrinsic
feature maps, we can modify the above equation as follows, as Equation 2 and
Equation 3:

Y =X« f (2)
yij:@,j(y;% Vizl,...,m, jzl,...,s (3)

where f/ € Re*kxXkxm ig the utilized filters, m < n ,the bias term is omitted
for simplicity, y; is the i-th intrinsic feature map in Y’, and @;; is the ji
linear operation used to generate the j, ghost feature map y;;. The last &; ; is
the identity mapping for preserving the intrinsic feature maps. We can obtain
m =n - s feature maps as shown in Figure 4.

identity

input output

Fig. 4: Cheap Operation

3.3 Adaptive Attention Mechanism

In order to improve the accuracy and robustness of the model without increasing
the complexity of the network, we introduce the adaptive attention mechanism
NAM. NAM consists of two sub-modules: the channel attention and the spatial
attention sub-module.

For the channel attention sub-module, NAM uses a scaling factor from BN
to reflect the importance of channels, as shown in Equation 4 .

Bin — puB
G
op t+€
where uB and ¢B are the mean and standard deviation of the mini-batch B,
respectively; v and [ are trainable affine transformation parameters for scaling

Bout - BN(B’LTL) 6 (4)
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and translation operations, so that the model can adaptively adjust the activated
range and central location. The process of weighting channels is shown in Figure
5, where F} is the input feature map, 7; is the scaling factor of each channel,

and its weight is W; = v,/ ;‘Zo'
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Fig. 5: Channel Attention Submodule

The weighting process of spatial attention submodule is similar to channel
weighting, as illustrated in Figure 6, where the output is denoted as M, A is
the scaling factor, and the weights are W; = X;/ Zj”:o

Pixel Normalization

Pixel weighting
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Fig. 6: Spacial Attention Submodule

In addition , NAM also introduces L1 regularization as a weight sparsity penalty
in the loss function,as shown in Equation 5, where = represents the input ,y rep-
resents the output , W represents the network weights , I(+) is the loss function;
g(+) is the L1 norm penalty function and p is uEsed to balance g(v) and g(\)
penalty item. By introducing sparsity constraints into model weights, the model
is prompted to focus on more important features while reducing unnecessary
calculations.

LOSS = Y U(f(@,W),y)+pY_9(y) +pY_9(A) (5)

(z,y)

3.4 GoatPose

The GoatPose model proposed in this paper is a lightweight high-resolution
network. Using HRNet as the backbone, GoatPose redesigns the convolution
unit and introduces cheap operation into the conventional convolution module
to reduce the amount of parameters. In order to compensate for the imformation
loss and further strengthen feature extraction, GoatPose incorporates the NAM
attention mechanism into its architecture. Goat symbolizes that the model in
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this paper runs as quickly and lightly as a goat. Just as a goat’s two horns stand
out, certain channels or features in the network receive more attention due to
their higher importance in the task.

Design of Convolution Block We redesign the normal convolution block by
incorporating cheap linear operation, and name this modified block LiteConv, as
shown in Figure 7. The purpose is to obtain rich feature maps with limited com-
putational resources. For each LiteConv block, the input X first passes through
a normal convolution, followed by BatchNorm and ReLLU to upsample the input
feature maps. The resulting feature maps are denoted as X1. Then, we conduct
cheap linear operation on the intrinsic feature mapX1to generate Ghost feature
maps X2, including a sequence of a depthwise separable convolution, Batch-
Norm and ReLU, and the output is concatenated with the previous output X1.
Considering that the normal convolution block is the most frequently-used part,
substituting it with LiteConv block not only reduces the computational burden
but also improves the overall efficiency of the model by reducing the number of
parameters.

Input X

Output
—> @_> Otlell)ul —»{ Separable Conv @—> ‘j—

Cheap Operation

Fig. 7: LiteConv Block

Compensate for the Information Loss Considering that replacing convo-
lutions with linear operations for feature map generation can inevitably lead to
information loss, we introduce the NAM attention mechanism to compensate for
this loss. The NAM module is inserted after the stack of Basic Blocks to timely
augment the feature representation.

Lightweight High-Resolution Network GhostNet consists of four stages.
Starting from a high-resolution convolutional stream W x H x C', the first stage
includes 4 bottlenecks for extracting image features and downsampling. Then
a 3 x 3 convolution is applied to generate an additional haif-resolution stream
W/2 x H/2 x 2C. The two convolutional streams output to the next stage in
parallel. The second, third, and fourth stages consist of 1, 4, and 3 Stage Modules,
respectively.

Each Stage Module contains parallel multi-resolution convolutional streams
and implements fusion of different resolution streams. It consists of Basic block,
channel attention module NAM-C, and fusion unit. The convolutional streams
of different resolutions first pass through four Basic Blocks and then go through
the NAM-C module. Finally, they are fused with other convolutional streams
through the fusion unit.
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The basic block consists of four residual units, each containing two 3 x 3
convolutions followed by BN and ReLU. In the NAM-C module, the input X is
first normalized using a BN layer. Then we compute the weights for channel-wise
normalization. The weighted feature maps are obtained by element-wise multi-
plication of the weights with the input. Finally, the weighted feature maps are
scaled using the sigmoid function to obtain the adjusted feature maps through
the channel attention mechanism. The fusion unit connects the outputs of dif-
ferent resolutions in a fully connected manner, as illustrated in the previous
example. Transition modules are used between stages to expand the convolu-
tional streams, adding an additional parallel convolutional stream with halve
resolution using a 3 x 3 convolution. This stream is then concatenated with the
convolutional streams from the previous stage and serves as the input for the
next stage.

The GhostPose model is a lightweight convolutional network suitable for de-
ployment on small embedded devices for human pose estimation, as shown in
Figure 8. It significantly reduces computational complexity and model param-
eter count while maintaining high accuracy.

——= LiteConv X2 ——

Fig.8: GoatPose Architecture

4 Experiments

4.1 Dataset

Microsoft COCO Our model is evaluated on the most popular MSCOCO
dataset for human pose estimation, which contains an extensive collection of ap-
proximately 200,000 images and 250,000 person examples. For training, we use
the train2017 dataset consisting of 57,000 images and 150, 000 person instances,
and the val2017 dataset containing 5,000 images is used for the evaluation pro-
cess.

Evaluation Metric In the MS’s COCO2017 dataset, the standard evaluation
metric is based on Object Keypoint Similarity (OKS),as shown in Equation 6:
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> €xXp (—%) d (v; > 0)
S5 (0, > 0) (6)

where d; is the Euclidean distance between a detected keypoint and its cor-
responding ground truth position, s is the object scale, k; is a per-keypoint
constant that controls falloff, and v; denotes the visibility flag of keypoint .
We report standard average precision and recall scores, as shown in Figure
9a: AP50 (AP at OKS = 0.50), AP75, AP (the mean of AP scores at OKS =

OKS =

0.50, 0.55, . . ., 0.90, 0.95), APM for medium objects, APL for large objects,
and AR (the mean of recalls at OKS = 0.50, 0.55, . . ., 0.90, 0.95).
4.2 Setting

The network is trained on NVIDIA GeForce RTX 308012G, and the installed
CUDA Version is Cudal2.0. We train the model for a total of 280 epochs. We
adopt Adam optimizer with an initial learning rate of 0.001 and a decay rate
of 0.4. The base learning rate dropped to 0.0004 and 0.00016 at the 170th and
230th and 260th epoch respectively,as shown in Figure 9b.

AP on MS COCO val set (%)
Loss function (%)

epoch epoch
(a) Accuracy (b) Loss

Fig.9: Accuracy and Loss

4.3 Results

Comparisons on COCO dataset By adjusting the resolution and number
of channels of the input image, we construct four versions of GoatPose, each
with the same hyperparameter configuration. Among them, B means that the
model input has 32 channels, X represents the model input has 48 channels;
L means the size of the input is 256 x 192, and H means the size of the input
image is 384 x 288. In the following context We mainly analyze the performance
improvement of GoatPose-BL.



GoatPose: A Lightweight and Efficient Network with Attention Mechanism 11

Table 1 reports the comparison of AP and AR score between our networks
and other state-of-the-art methods. Compared to models based on the HRNet-
W32 backbone, GoatPose-BL achieves similar average precision to HRNet-W32L
and TokenPose-B, and outperforms TransPose-H-S by 1.5%. Meanwhile, GoatPose-
BL shows significant improvements in AR score over all aforementioned models,
with increases of 3% and 2.9% compared to HRNet-W32 and TokenPose-B,
respectively. Table 2 presents the comparison of complexity between our net-

Table 1: Comparison on Accuracy.

Model Backbone |Input Size|Feature Size| AP [AP50{AP75| AR
Simple Baseline | ResNet-152 | 256 x 192 1/32 72 1 89.3 | 79.8 |77.8
TokenPose-B | HRNet-W32| 256 x 192 1/4 74.7| 89.8 | 81.4 {80.0
TokenPose-L /D6 | HRNet-W48 | 256 x 192 1/4 75.4] 90.0 | 81.8 |80.4
TokenPose-L/D24| HRNet-W48 | 256 x 192 1/4 75.8] 90.3 | 82.5 80.9
TransPose-H-S |HRNet-W32| 256 x 192 1/4 73.4/ 91.6 | 81.1 | -
TransPose-H-A4 |HRNet-W48 | 256 x 192 1/4 74.7191.9 | 82.2 | -
TransPose-H-A6 | HRNet-W48 | 256 x 192 1/4 75 92.2 | 82.3 |80.8
HRFormer-BL. |HRFormer-B| 256 x 192 1/4 75.6| 90.8 | 82.8 {80.8
HRFormer-BH |HRFormer-B| 384 x 228 1/4 77.2 91 | 83.6| 82
ViTPose-B ViT-B 256 x 192 1/16 75.8/ 90.7 | - |81.1
ViTPose-L ViT-L 256 x 192 1/16 78.31 91.4| - 835
HRNet-W32L |HRNet-W32| 256 x 192 1/4 74.4] 90.5 | 81.9 |79.8
HRNet-W32H |HRNet-W32| 384 x 288 1/4 75.8/ 90.6 | 82.7 | 81
HRNet-W48L |HRNet-W48| 256 x 192 1/4 75.1] 90.6 | 82.2 |80.4
HRNet-W48H |HRNet-W48 | 384 x 288 1/4 76.3| 90.8 | 82.9 |81.2
GoatPose-BL.  |HRNet-W32| 256 x 192 1/4 74.5 92.6 | 82.5 |82.3
GoatPose-BH |HRNet-W32| 384 x 288 1/4 75.6] 92.7 | 82.3 |83.5
GoatPose-XL |HRNet-W48| 256 x 192 1/4 76.1| 93.5 | 83.5 |83.8
GoatPose-XH |HRNet-W48|384 x 1288 1/4 76.5| 93.7 | 83.6 |83.9

works and other state-of-the-art methods. GoatPose-BL has fewer parameters
compared to the majority of models, meanwhile, its execution speed is signif-
icantly faster than all other models. GoatPose-BL has only 15.51M parame-
ters, which is nearly half of the parametes of HRNet-W32L. Additionally, its
computational speed is 3.48 GFLOPs, which is approximately twice as fast as
HRNet-W32L.Compared to the model TransPose-H-S with the least parameters,
GoatPose has slightly more parameters but achieves a four-fold improvement in
computation speed.

Ablation Study We empirically study how cheap operation and attention
mechanism influence the performance, as shown in Table 3. We constructed
NAM-HRNet by incorporating the NAM attention mechanism onto the HRNet
architecture.On COCO val, NAM-HRNet demonstrates a significant improve-
ment in AP compared to HRNet, with an increase of 1.5%. The improvement
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Table 2: Comparison on Complexity.

Model Params(M)|GFLOPs|Speed(fps)| AP | AR
Simple Baseline 60 15.7 123 72 |77.8
TokenPose-B 14 5.7 - 74.7| 80
TokenPose-L /D6 21 9.1 - 75.4180.4
TokenPose-L/D24 28 11 89 75.8(80.9
TransPose-H-S 8 10.2 54 734\ -
TransPose-H-A4 17 17.5 49 744 —
TransPose-H-A6 18 21.8 46 75 180.8
HRFormer-BL 43 12.2 23 75.6(80.8
HRFormer-BH 43 26.8 12 77.2| 82

ViTPose-B 86 17.1 140 75.8(81.1
ViTPose-L 307 70.0+ 61 78.3(83.5
HRNet-W32L 29 7.1 136 74.4179.8
HRNet-W32H 29 16 64 75.8| 81
HRNet-W48L 64 14.6 96 75.1(80.4
HRNet-w48H 64 32.9 46 76.3(81.2
GoatPose-BL(ours)| 15.51 3.48 277 |74.5/82.3
GoatPose-BH(ours) 15.51 7.84 131 75.6(83.5
GoatPose-XL(ours) 34.76 7.81 180 76.1(83.8
GoatPose-XH(ours) 34.76 17.53 86 76.5(83.9

confirms that the weight allocation of the attention mechanism can effectively
enhance model performance. Compared to NAM-HRNet , GoatPose-BL achieves
an AP score of 74.5 while reducing both computational complexity and param-
eters by half, which validates the efficiency and effectiveness of cheap operation.

Table 3: Ablation about Cheap Operation and Attention mechanism.

Model Params|GFLOPs AP
HRNet 29 7.1 74.4
NAM-HRNet(ours)| 35 7.8 |76.1 (up 1.5)

GoatPose(ours) | 1551 | 3.48 74.5

4.4 Deployment

In order to verify the real-time performance of our model, we deploy GoatPose
on NVIDIA Jetson TX2.

NVIDIA Jetson TX2 We picked NVIDIA TX2 platform as the testing plat-
form for our model. The NVIDIA Jetson series processors are frequently used to
support mainstream CNN models and seamless integration with CUDA. Addi-
tionally, they are compatible with NVIDIA’s TensorRT, an accelerated inference
framework that facilitates fast and user-friendly inference methods.
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Model Performance After preliminary verification, we convert and deploy
our model on Jetson TX2 platform. We first install JetPack on the TX2 and
configure the necessary environment. Then we debug the code on a server, train
the model, and conduct initial tests. Afterwards, the trained model in the .pth
format is converted to a compatible format trt with the TensorRT acceleration
module. We use TensorRT to accelerate the converted model and perform in-
ference.Our testing result shown in Tabel 4 demonstrates that GoatPose can
achieve excellent performance with a high speed even under limited hardware
resources.

Table 4: Application on Jetson TX2.
Heading level Example|Font size and style|speed(TX2)|AP(%)
HRNet-W32L 29 7.1 23 74.4
GoatPose-BL(ours)| 15.51 3.48 51 74.5

5 Conclusion

By incorporating cheap linear operations, we novelly propose a a lightweight deep
convolutional network GoatPose, which can reduce the amount of computation
and parameters by half while maintaining the same or even slightly higher accu-
racy compared with the backbone HRNet. Specifically, the lightweight modules
are combined with NAM attention machanism, greatly improve the effectiveness
of GPU computing. Experiments on COCO dataset shows that our model can
boost the sample efficiency of the baseline HRNet, supported by significantly
improved performance. The successful deployment on NVIDIA Jetson TX2 fur-
ther demonstrates the superiority and generalizability of our model , paving the
way to real-time human pose estimation for edge applications.
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