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Abstract— Stack Overflow is used to solve programming 

issues during software development. Research efforts have looked 

to identify relevant content on this platform. In particular, 

researchers have proposed various modelling techniques to 

predict acceptable Stack Overflow answers. Less interest, 

however, has been dedicated to examining the performance and 

quality of typically used modelling methods with respect to the 

model and feature complexity. Such insights could be of practical 

significance to the many practitioners who develop models for 

Stack Overflow. This study examines the performance and quality 

of two modelling methods, of varying degree of complexity, used 

for predicting Java and JavaScript acceptable answers on Stack 

Overflow. Our dataset comprised 249,588 posts drawn from years 

2014–2016. Outcomes reveal significant differences in models’ 

performances and quality given the type of features and 

complexity of models used. Researchers examining model 

performance and quality and feature complexity may leverage 

these findings in selecting suitable modelling approaches  for Q&A 

prediction.                                                                 

Keywords— Feature Selection; Modelling and Prediction; 

Neural Network; Random Forest; Stack Overflow 

I. INTRODUCTION  

Stack Overflow is one of the most popular question and 

answer (Q&A) portals used regularly by software developers 

[1]. Studies have shown that most questions that are asked on 

Stack Overflow receive an answer [2]; hence, developers turn 

to this portal to solve programming-specific issues during 

software development [3]. The answer that is accepted by the 

user who posted the question is usually regarded as accepted (or 

acceptable). This mechanism satisfies the user who created the 

post and credits the answer provider. The foregoing process 

makes it appropriate for others searching for similar help to 

locate solutions that have been accepted by others. Despite 

Stack Overflow being popular among software engineers, at 

times accepted answers are delayed [4]. This delay could 

increase the time it takes software developers to investigate and 

assess a working solution when using the platform. To reduce 

such issues researchers have proposed various modelling 

techniques to predict acceptable answers on Stack Overflow, 

and on Q&A portals more generally [5, 6]. The outcome of such 

modelling techniques could be useful for software developers 

focused on developing plugins that integrate with IDEs that 

display Stack Overflow Q&A pairs.  

The utility of such modelling techniques is influenced by the 

type of features (textual and non-textual) that are available. For 

instance, past studies have established that specific non-textual 

features affect Q&A portals’ answer quality [7]. Non-textual 

features here refer to those that are not textual in nature (e.g., 

answer score, answer count and response time). Other works 

have considered only textual features (e.g., text polarity and 

length of answer) when exploring the quality of content in Q&A 

platforms [8]. Textual and non-textual features have also been 

combined in other  studies to determine the quality of answers 

to questions in a Q&A forum. For instance, Blooma et al. [9] 

combined both textual and non-textual features in predicting 

answer quality and concluded that both types of features 

predicted answer quality. However, these authors noted that, in 

their study, the textual features had a greater influence on the 

quality of answers than the non-textual features.  

In our preliminary work, we found that specific Q&A 

features can aid in distinguishing answer acceptability (e.g., 

length of code in answers and reputation of users) [10]. 

However, this work did not evaluate features’ or models’ 

complexity. Considering the conduct and outcomes of this and 

earlier work, little is known about whether the specific features 

selected may have been the driver of the model outcomes when 

predicting answer acceptability, or if the complexity of the 

model could have been the driver in improving prediction 

outcomes. Beyond the provision of knowledge around the use 

of different modelling approaches and the prediction value of 



different features, such insights could have implications for the 

quality of software generally, as Stack Overflow is used 

extensively by developers [3]. It would be undesirable if poor-

quality answers are used to inform software development. 

Therein exists the opportunity to investigate the performance 

and quality of models' complexity when considering a range of 

feature complexity.  

We investigate the performance and quality of two models 

and a range of feature types using a Stack Overflow dataset. In 

this paper, we used the following terms: (1) Model Quality: 

which refers to the fit of the model and not its correctness (i.e., 

ability to perform false-negative and -positive classification); 

(2) Model Performance: which refers to the number of 

correctly classified data instances (i.e., accuracy); and (3) 

Model Complexity: refers to the computational complexity 

and the number of parameters in the predictive model. Beyond 

these measures, we validated our outcome via a questionnaire 

completed by a sample of software developers in New Zealand. 

We believe that our outcomes contribute to the body of 

knowledge aimed at understanding the performance and quality 

of models with varying degrees of complexity when used in 

Q&A settings.   
The rest of this paper is arranged as follows: Section II 

examines related work, and Section III presents our study 

design. Section IV provides our results and we discuss our 

outcomes and explore implications in Section V, before 

considering threats to the work in Section VI. Section VII 

concludes the paper and considers future research.  

II. RELATED WORK  

A. Evaluating Features and Models  

Most studies that have built models to predict acceptable 

answers in Q&A settings focus on the semantic relevance of 

features (e.g., [11, 12]). These features are usually grouped as 

textual or non-textual and are used as input to various models 

to predict answer acceptability. Here we regard the answer that 

is selected by the user who posed the question as the most 

acceptable from the list of answers provided by other users. 

Beyond consideration of textual features [13] and non-textual 

features [14], a small body of research has also considered 

combining textual and non-textual features [14, 15] for building 

predictive models to select the best answers on Q&A portals. 

The feature extraction methods used are often grouped into the 

hand-crafted [16] approach (extracting features manually) or a 

deep learning approach (without feature engineering or 

specialist linguistic data).  

Typically, modelling techniques are applied individually, 

rather than providing a comparative evaluation of approaches. 

A comparative study done by Calefato et al. [17] revealed that 

the choice of a model and its associated parameters affected the 

prediction accuracy when determining the best answers. The 

need to increase the range of features used for training models 

has led researchers to combine both textual and non-textual 

features. For instance, the work of Blooma et al. [9] combined 

textual and non-textual features to predict the best answer in a 

stack of answers by using a Bayesian model, concluding that 

best answers were most influenced by textual features. Jizhou 

et al. [13] combined structural information with textual and 

non-textual features to extract high-quality pairs in discussion 

threads from an online discussion forum using a support vector 

machine. Using the same method, Buse and Weimer [18] also 

combined textual and non-textual features to predict the best 

answers in a Yahoo Q&A dataset.  

Previous studies have found that by using the correct 

features the quality of models is improved [19], so it becomes 

important for a model to be able to determine the correlation 

between the different types of features found during Q&A data 

modelling (such as Stack Overflow). However, it is difficult at 

times for some models to determine the correlation between 

textual and non-textual features [20]. This has led some 

researchers to use deep neural networks as a technique to 

enhance model outcomes. The intent here is to construct new 

valuable features automatically, eliminating the task of 

manually selecting the important features to use for training. 

For instance, Wang et al. [21] applied a deep belief network in 

modelling the semantic relevance of Q&A pairs, while Lei et 

al. [15] used a convolutional network to learn a distributional 

sentence model for Q&A prediction using a bag-of-words 

approach and bigram-based word representations. Gao et al. 

[22] proposed a three-stage deep neural network–based 

approach to identify the most relevant answer among a set of 

answer candidates. Suggu et al. [14] examined deep features 

using convolutional networks and then combined these features 

with hand-crafted features (textual and non-textual) to 

determine the quality of answers. Their outcomes revealed 

enhanced performance over other works [23], which may be 

attributed to fusing deep learning and hand-crafted features.  

B. Features’ and Models’ Behaviours  

Reviewing the studies above, it is not clear under which 

modelling circumstances complex model such as deep learning 

and/or approaches that promote the use of hand-crafted features 

will outperform a less complex model which uses only hand-

crafted features. The choice of the model and its associated 

parameters affects the model outcomes. On the premise that 

developers regularly use Stack Overflow to solve problems 

during software development [1, 2], in our preliminary work we 

studied the features that distinguish acceptable answers on this 

portal [10]. While we found specific Q&A features to predict 

answer acceptability (e.g., length of code in answers and 

reputation of users), questions remain around how the types of 

Q&A features affect the behaviour of various models that are 

used to predict acceptable answers in a Q&A setting.  

Zou et al. [24] noted that this is an area in need of additional 

research. These authors used Stack Overflow data in a 

preliminary study examining the impact of the feature 

weighting method and feature set on a classifier’s performance, 

where outcomes varied depending on those factors. However, 

this study only examined a single classifier (Bayesian logistic 

regression). The performance of a model should not be judged 

only on the availability of certain features, and evaluating a 

single classifier does not provide insights around variances in 

model performance [25]. It is therefore important to understand 

how varying features influence models’ performance, and how 

varying the complexity of models in relation to features affects 



prediction outcomes. This insight could lead to both informed 

model choice and feature selection. 

III. STUDY DESIGN 

A. Research Questions 

The purpose of this paper is to investigate the performance and 

quality of models' complexity when considering a range of 

features. We performed analysis using two different models of 

varying complexities, guided by the following research 

questions: 

 

RQ1: How does the degree of model and feature complexity 

affect the performance of a Stack Overflow Q&A accepted 

answer prediction model? 

Motivation: The benefit of accepted answer prediction is 

important for Q&A platforms as at times this platform lacks the 

features for marking an answer as accepted when there is no 

accepted answer. This feature could help to move an accepted 

answer to the top of the Q&A thread, thus potentially saving 

developers the time and effort of investigating and assessing a 

working solution. Accordingly, we investigate how the 

different levels of feature and model complexities can affect the 

performance of an accepted answer prediction model. Software 

developers developing Stack Overflow plugins can leverage the 

outcome of this RQ for marking an answer as accepted when 

there is no accepted answer in the Q&A thread retrieved from 

Stack Overflow. Stack Overflow is typically used by 

developers during software development [1], and there is a need 

to have reliable accepted answers. For this reason, we define 

our second research question as follows: 

 

RQ2: How does the degree of model and feature complexity 

affect the quality of a Stack Overflow Q&A accepted answer 

prediction model? 

Motivation: The Stack Overflow platform has a reputation 

system and the reputation ranking of members may enhance 

other users’ trust for their contributions on the website. This 

could be problematic for new software developers seeking 

solutions to their software problems. The benefit of having a 

quality accepted answer prediction is important for providing a 

reliable accepted answer. Thus, the need to minimise the false 

negative and false positive in the prediction model is important. 

Therefore, we investigate how the different levels of feature and 

model complexities can affect the quality of an accepted answer 

prediction model. The findings from this RQ could help 

improve the quality of accepted answers predicted in Stack 

Overflow plugins. 

B. Dataset Features 

To enable comparative analysis with earlier outcomes [10], 

we used the Stack Overflow dataset that was added on 

September 12, 2016. We extracted data for the top two tags 

(JavaScript and Java). We used the selection criteria from our 

previous study [10] to select the feature sets (see Sections 3 to 

4 in our previous study [10] for details). Our final dataset for 

 
1 Similarity between question and text 

2 Similarity between question and code 

experimentation consisted of 249,588 posts from 2014, 2015 

and 2016, which have at least two answers, one of which is an 

acceptable answer. We had an imbalanced dataset, where the 

number of accepted answers was 88,607, while answers 

provided but not labelled as accepted numbered 160,981. We 

randomly selected 70% (174,711) of the data for training, and 

the remaining 30% (74,877) was used for testing when 

performing our predictive modelling. To address the 

imbalanced dataset during training, we used the synthetic 

minority over-sampling “SMOTE” algorithm [27], and the 

adaptive synthetic sampling “ADASYN” algorithm [28]. The 

“SMOTE” and “ADASYN” algorithms were chosen because 

they are widely used when learning from imbalanced datasets. 

For the text preprocessing step, we follow the steps in Section 

4.3 from our previous study [10]. For replication purposes, our 

dataset is available here: https://tinyurl.com/y7m3k2mk.  

C. Feature Selection  

1) Hand-Crafted: We follow our previously published work 

[10] and so use the same set of features in this study. These 

features were grouped into four categories (code, textual, non-

textual and user features) as listed below: 
• Code Features: Number of code line, Code Length 

(number of identifiers).  

• Non-Textual Features: Number of comments, Answer 
count, Answer score (score), View count, Response 
Time (Timelag).  

• Textual Features: Question and Answer Similarity 
(TFAnswerText 1 , TFAnswerCode 2 ), Text Polarity 3 , 
Textual Similarity 4 , Number of Words, Number of 
sentences, and Url count.  

• User Features: Reputation, Sign up date-time lag.  

To avoid multi-collinearity, we follow the method in our 
previous work and discard the “NumberOfWords” and 
“SignupDateTimeLag” features as they were seen to be 
correlated with the Number of sentences and Reputation 
features, respectively. This method compared feature pairs with 
a Pearson’s correlation plot and discard feature pairs where the 
root mean square is <0.7. 

2) Neural Generated Features: To derive the complex 

feature which we called “neural-generated feature”; we used a 

model called Distributed Memory Model of Paragraph (PV-

DM) to generate a neural generated weight. This was chosen 

given the success of the work done by Suggu et al. [14] in 

predicting answer quality in a Q&A setting. We used the same 

approach as they did, by using the question and answer as input 

to a deep model. The model works by taking a question and 

answer pair as input to learn a good representation of the pair 

(i.e., it learns how questions and answers are related). The PV-

DM model works by remembering the missing context in a 

paragraph, or the topic of the paragraph and returns a score for 

3 Emotion content of answers 
4 Count of every word that occurred in the question and answer separately 

https://tinyurl.com/y7m3k2mk


each question and answer pair. This score indicates if the answer 

is related to the question. 

D. Modelling 

Calefato et al. [17] presented 26 models of varying 

complexity commonly used in best-answer prediction, where 

random forest and recurrent neural networks are established to 

have greater complexity. Given that random forest is seen to 

have significantly lower complexity than recurrent neural 

networks [29] and both methods use similar classifier-specific 

feature importance methods, we anticipate that these two 

modelling approaches would usefully identify differences in 

model complexity in this work. Also, these two approaches 

were seen to be among the best-performing simple (random 

forest) and complex (RNN) models in a Q&A setting when 

compared to other types of models in the work of Calefato et al. 

[17] and a previous study [30]. We use the four categories of 

features listed in the previous section and a neural network-

generated or derived feature. Our models and features are 

combined in various ways to predict acceptable answers, as 

described below.  

Random Forest Model with Hand-crafted Features: We 

started our modelling process by using a random forest model 

to build a classifier to classify answers as either accepted or not 

accepted (answer acceptability). As noted above, random forest 

was chosen as a model with lesser complexity as it takes many 

input variables without the need for replacement [31]. Also, 

random forest estimates the importance of each variable in the 

classifier, while using an out-of-bag estimator to estimate the 

classification error when sampled with replacement [32]. As 

noted in Section III.A, due to the imbalanced nature of our 

dataset, we applied the SMOTE and ADASYN algorithms. We 

used Bayesian optimization techniques [33] to find the best set 

of hyperparameters to minimise the log loss objective function. 

The final hyperparameters chosen were:            
n_estimators:240, max_features:16, max_depth:15, Boostrap: 
True, min_samples_split:5 and min_samples_leaf:4 

Random Forest Model with Hand-crafted and Neural-

generated Features:  We repeated the experiment above by 

adding the complex feature derived from the PV-DM model. 

The mathematical details of the PV-DM may be probed further 

by accessing [36].  

Recurrent Neural Network (RNN) Model with Hand-

crafted Features: In increasing the complexity of our model, 

we repeated our experiment with an RNN model to classify 

answers. This model was chosen because RNN is known to 

capture the compositional aspects of sentences or paragraphs 

when compared to models with less complexity [34]. Again, we 

used Bayesian optimization techniques to select the optimal 

parameters in our RNN, which had 15 hidden layers. We used 

a stochastic gradient descent (SGD) as our optimizer to train 

our RNN. SGD was used because it is fast, given that it requires 

one data point at a time or a mini-batch of data points, which 

also makes it less memory intensive. Also, SGD is less prone to 

bad local minima because it converges faster to the local 

minimum by taking smaller step sizes to refine the network 

[35]. We also applied the two sampling algorithms (SMOTE 

and ADASYN) when modelling our RNN (as is the case for the 

other modelling tasks below). We seeded the random split 

function to have the same split for each execution of our 

algorithms. The final hyperparameters chosen for our RNN 

were 20, 64 and 0.01 for our epoch, batch size and learning rate, 

respectively.   

Recurrent Neural Network (RNN) Model with Hand-

crafted and Neural-generated Features: We repeated the 

experiment above by including the neural-generated feature 

generated from our PV-DM model.  

We executed the above models 100 times in keeping with 

established recommendations for investigating models’ 

performance and quality (further considered next) [37].  

E. Performance and Quality Measures  

Performance: We computed the balanced accuracy of our 

models to evaluate their performance. Balanced accuracy 

measures model performance by taking into account class 

imbalances, and they also overcome bias in binary cases [38]. 

The balanced accuracy is computed as the average of the 

proportion of correct predictions for each class separately.  

Quality: To assess the impact of various features in our 

models we need models that classify accepted answers as 

accepted (few false negatives) and that also minimise 

classifying answers that are not accepted as accepted (few false 

positives). This ultimately determines model quality. The F1-

score and Matthews Correlation Coefficient (MCC) are used in 

this regard. The F1-score is designed to handle data imbalance, 

and maximizing the F1-score improves model quality [39]. In 

addition, the F1-score is the harmonic mean of precision and 

recall, making it relatively precise. The best possible F1-score 

is 1 (perfect precision and recall), with the worst being 0. The 

MCC was used as a second measure to evaluate the models’ 

quality because this measure is considered a good metric for 

assessing quality when using imbalanced datasets [40]. MCC 

values range from −1 to +1; with +1 indicating a perfect model, 

0 showing that a model is no better than a random prediction, 

and −1 signaling total disagreement between the prediction and 

observation. These two measures provide further augmentation 

for SMOTE and ADASYN in addressing any threats that may 

result due to our imbalanced dataset.  

F. Evaluation Via Developers Questionnaire  

As a countermeasure to using contributors’ acceptance to 

indicate answer acceptability, and to evaluate how the models 

perform in terms of performance and quality, a questionnaire 

was designed to gather experts’ opinions about the suitability 

of answers in our dataset. The questionnaire was anonymous 

and targeted Java and JavaScript software developers in New 

Zealand. See a sample of the questionnaire here: 

https://figshare.com/s/3d9e5a8d49f03a186afb. 

The questionnaire was presented as a simple online form asking 

developers to rank answers based on how likely an answer was 

to be suitable for a given question. The experts ranked the 

answers by assigning a value of 1 to 3 in line with the degree to 

which they believed an answer was suitable for a given 

question. Here an answer scoring 3 was assessed as highly 

acceptable, while one given a 2 was assessed as reasonably 

https://figshare.com/s/3d9e5a8d49f03a186afb


acceptable, and an answer assigned 1 was assessed as weakly 

acceptable. Aware that if the questionnaire took too long to 

complete, we would not be able to recruit developers, we 

selected questions from our test sample which had three 

answers, and each of the answers’ length was <750 characters. 

In populating the questionnaire, 236 questions were randomly 

selected (of those that had three answers), comprising 150 Java 

and 86 JavaScript questions.  

The questionnaire was sent to known Java and JavaScript 

developers with industry experience in New Zealand 

(accessible via software engineering mailing lists). A total of 10 

developers participated in our questionnaire. They answered an 

average of 11.5 questions each, where the highest number of 

questions answered by a single participant was 15, and the 

lowest number of questions answered was 9. Over 95% of the 

questions answered were Java questions, and the average Java 

experience level for all participants was 4 (on a scale of 1 to 5, 

where 1 = novice and 5 = expert). Some Java questions were 

answered by more than one developer, and so we took the 

average score for these answers. We ended up with a total of 

110 Java responses, and 5 JavaScript responses, in response to 

90 unique questions.  

IV. RESULTS  

A. Model Performance  

As noted above, we evaluated model performance through 

the use of the balanced accuracy measure. Here we consider the 

outcomes of the models in turn.  

Random Forest Model with Hand-crafted Features: 

Outcomes of our modelling revealed balanced accuracy 

outcomes of 69.89% when sampling was done with ADASYN 

and 71.74% when sampling was done with SMOTE. We further 

examined the features to derive their  contributed coefficient 

(Column A in TABLE I). Measurement of this coefficient is 

based on the extent to which model accuracy decreases when a 

variable is excluded. The outcome is only provided for SMOTE 

in TABLE I, given that we recorded better performance 

(+1.85% gain) when sampling with this algorithm. In Column 

A it is observed that the time it takes to post an answer 

(Timelag) and the reputation of the answerer (Reputation) had 

the largest coefficients in the random forest (Timelag = 0.179 

and Reputation = 0.164). It is also shown that the code length 

(Codelength) and textual similarity between question and 

answer pairs (TFAnswerText) were noteworthy features in 

predicting Stack Overflow acceptable answers, with 

coefficients of 0.143 and 0.153 respectively.  

RNN Model with Hand-crafted Features: Using a more 

complex model (RNN), a balanced accuracy outcome of 

62.87% was observed when sampling was done with 

ADASYN, and an outcome of 65.89% when sampling was 

done with SMOTE (+3.02% gain). Similar to the random forest 

outcomes above, we also computed the coefficient for each 

feature as shown in TABLE I COLUMN B. Again, it is seen 

that the time lag and reputation of the answerer are the largest 

coefficients in predicting nswers’ acceptance (Timelag = 0.181 

and Reputation = 0.172). Overall, there is a reduction in 

balanced accuracy (performance) of the RNN model when 

compared to the random forest model (71.74% versus 65.89%). 

That said, the coefficients of nine features were of higher 

magnitude in the RNN model (refer to TABLE I). This outcome 

is plausible, since an answerer with a good reputation is likely 

to post a reasonable answer. The answerer’s attempt to address 

the question may also result in a substantial amount of code 

(Codelength) and an answer with context from the question 

(TFAnswerText), to properly address the question.  

TABLE I  
COEFFICIENTS AND BALANCED ACCURACY OF RANDOM FOREST AND RNN 

MODELS FOR HAND-CRAFTED FEATURES  

Feature  

A  B  

Random   
Forest  

Neural   
Network  

Timelag  0.179 0.181 

URLCount  0.032 0.031 

CommentCount  0.012 0.021 

Reputation  0.164 0.172 

TextPolarity  0.054 0.001 

AnswerCount  0.012 0.054 

ViewCount  0.089 0.043 

Score  0.032 0.076 

NumberOfcodeLine  0.065 0.054 

NumberOfSentence  0.078 0.044 

TextualSimilarity  0.031 0.057 

Codelength  0.143 0.167 

TFAnswerCode  0.024 0.029 

TFAnswerText  0.153 0.157 

Balanced Accuracy  71.74 65.89 

   

Random Forest Model with Hand-crafted and Neural-

generated Features: To increase the complexity of the features 

sets, we combined the hand-crafted features and that generated 

via the PV-DM to train another random forest model. Outcomes 

of our modelling reveal balanced accuracy outcomes of 58.49% 

when sampling was done with ADASYN and 60.30% when 

sampling was done with SMOTE (+1.81% gain). As above, we 

focus on SMOTE outcomes given the higher performance 

observed when sampling with this algorithm. Interestingly, the 

60.30% accuracy observed here reflects a decrease in 

performance when compared to the random forest and RNN 

models that were trained with only hand-crafted features (i.e., 

balanced accuracy of 71.74% and 65.89% respectively). 

Examining the coefficients of the random forest model in 

TABLE II (Column A), we observed that four features were 

dominant: the neural-generated feature (Weight = 0.172), and 

hand-crafted features Timelag = 0.189, Reputation = 0.176, 

and Codelength = 0.162. Of note is that a similar pattern of 

outcomes for the prominent hand-crafted features was observed 

in our models above (refer to TABLE I). We observe in TABLE 

II that most of the coefficients in Column A were of a higher 

order of magnitude than those in TABLE I Column A, in 

divergence with the better overall performance of the model 

with lesser complexity as noted above (i.e., 71.74% versus 

60.30%).  

RNN Model with Hand-crafted and Neural-generated 

Features: To evaluate the effect of increasing features in a 

more complex model, we re-trained a RNN by using the hand-

crafted and neural-generated features. Outcomes of our 

modelling reveal balanced accuracy outcomes of 81.52% when 



sampling was done with ADASYN and 82.73% when sampling 

was done with SMOTE (+1.21% gain). These outcomes are the 

most accurate of all the modelling done in the study. TABLE II 

Column B shows that the coefficients for the features were of a 

higher magnitude in the RNN model, with both hand-crafted 

and neural-generated features affected. Of note here also is that 

the same features retained their prominence in this model 

(Weight, Timelag, Reputation, and Codelength).  

 

TABLE II  
COEFFICIENTS OF RANDOM FOREST AND RNN MODELS FOR HAND-CRAFTED 

AND NEURAL-GENERATED FEATURES  

Feature  

A  B  

Random   

Forest  

Neural   

Network  

Timelag  0.189 0.311 

URLCount  0.012 0.029 

CommentCount  0.043 0.062 

Reputation  0.176 0.298 

TextPolarity  0.054 0.014 

AnswerCount  0.043 0.075 

ViewCount  0.024 0.019 

Score  0.087 0.043 

NumberOfcodeLine  0.076 0.089 

NumberOfSentence  0.054 0.132 

TextualSimilarity  0.021 0.043 

Codelength  0.162 0.252 

TFAnswerCode  0.123 0.134 

TFAnswerText  0.032 0.176 

Weight  0.172 0.276 

Balanced Accuracy  60.30 82.73 

   

In striving to rigorously evaluate model performances we 

executed the models 100 times, as noted above. Summary 

statistics (mean, median (Md), and standard deviation (SD)) for 

balanced accuracy are provided in Column A of TABLE III. 

Here it is shown that the mean and median are similar to those 

recorded in TABLES II and III, with our measurements 

indicating an absence of outliers. This is validated with the low 

standard deviation values in TABLE III, confirming that the 

outcomes of our repeated runs were similar. Formal statistical 

testing was done on the balanced accuracy outcomes from our 

100 executions of the models. The Kruskal-Wall test was used 

to check for statistical differences in outcomes for the four 

models, given that our data violated the normality assumption. 

Outcomes revealed statistically significant differences between 

the model outcomes, X2(3) = 374.07, p < 0.01, with a mean rank 

score of 250.5 for the random forest model with hand-crafted 

features, 150.5 for the RNN model with hand-crafted features, 

50.5 for the random forest model with hand-crafted and neural-

generated features, and 350.5 for the RNN model with hand-

crafted and neural-generated features.  

We next performed post hoc pair-wise Wilcoxon testing 

with appropriate Bonferroni adjustments. Our outcomes reveal 

that there were statistically significant differences in the model 

outcomes for all comparisons (p < 0.01). We observed that the 

balanced accuracy model outcome was significantly higher for 

the RNN with hand-crafted and neural-generated (PV-DM) 

features (model 4 in TABLE IV) when compared to the other 

models. Also, the random forest with hand-crafted features 

model (model 1 in TABLE IV) performed significantly better 

than the RNN with hand-crafted features (model 2 in TABLE 

IV) and the random forest with hand-crafted and neural-

generated (PV-DM) features (model 3 in TABLE IV). Model 

2’s balanced accuracy was also significantly higher than that of 

model 3 (refer to TABLE IV for details).  

B. Model Quality  

To understand if there are differences in the quality of 

outcomes of Q&A prediction models with varying degrees of 

complexity that are derived using hand-crafted and neural-

generated features, we computed a confusion matrix for all four 

models when sampling with the SMOTE technique. TABLE V 

shows that all models have acceptable F1-scores, confirming 

that they are all better than random guesses. The RNN models 

with both hand-crafted and hand crafted and neural-generated 

features has the highest F1-scores (0.783 and 0.779 

respectively), confirming that the more complex models were 

of a higher quality. Even so, the random forest model with 

hand-crafted features has higher quality than the random forest 

model with hand-crafted and neural-generated (PV-DM) 

features (0.708 versus 0.573). Results for MCC in TABLE V 

show that all models have positive MCC values. That said, the 

random forest model with hand-crafted features and the RNN 

model with hand-crafted and neural-generated features record 

the highest MCC values (0.722 and 0.711 respectively). The 

MCC value for the RNN model with hand-crafted features was 

only marginally lower than the aforementioned models (0.681). 

However, as with the F1-score measures, the random forest 

model with hand-crafted and neural-generated features 

recorded the poorest quality (MCC = 0.564).  

Performing rigorous statistical testing to evaluate the quality 

of our models, we executed the models 100 times. Summary 

statistics (mean, median (Md), and standard deviation (SD)) for 

the F1-score and MCC values are provided in Columns B and 

C of TABLE III. Here it is shown that the mean and median are 

similar in each of the two measurements (for F1-Score and 

MCC), indicating that there were few outliers. This is validated 

by low standard deviation values in TABLE III. Maintaining a 

similar pattern to the outcomes in TABLE V, our outcomes in 

TABLE III show that the F1-Score was highest for the RNN 

model with hand-crafted features (0.781), followed by the RNN 

model with the hand-crafted and neural-generated (PV-DM) 

features (0.779), and the random forest model with hand-crafted 

features (0.706). The random forest model with hand-crafted 

and neural-generated (PV-DM) features performed the poorest 

(0.574). MCC values in TABLE III are slightly variable, where 

the best performance was noticed for the random forest model 

with hand-crafted features (0.718). However, again, outcomes 

were very similar for three of the models, with the random 

forest model with hand-crafted and neural-generated (PV-DM) 

features performing the poorest (0.568).  

As above, formal statistical testing was conducted on the F1-

Score and MCC outcomes from our 100 executions of the 

models. We first executed the Kruskal-Wallis test for F1-

Scores, where outcomes revealed statistically significant 

differences between the model outcomes, X2(3) = 374.06, 

p < 0.01, with a mean rank score of 150.5 for the random forest 



model with hand-crafted features, 350.5 for the RNN model 

with hand-crafted features, 50.5 for the random forest model 

with hand-crafted and neural-generated features, and 250.5 for 

the RNN model with hand-crafted and neural-generated 

features.  

TABLE III  
MODELS’ SUMMARY STATISTIC FOR BALANCED ACCURACY, F1-SCORE AND 

MCC VALUES  

Model  

A  B  C  

Balanced   

accuracy  

F1-Score  MCC  

Random 
forest with 

hand-crafted 

features  

Mean: 71.185 
Md:    71.187 

   SD:     0.109 

Mean: 0.706 
Md:    0.706 

SD:    0.228 

Mean: 0.718 
Md:    0.717 

SD:    0.004 

Neural 
network 

with hand-

crafted 
features  

Mean:    65.887 
Md:       65.942 

  SD:        0.109 

Mean: 0.781 
Md:    0.783 

SD:    2.075 

Mean:    0.686 
Md:        0.686 

SD:        0.012 

Random 

forest with 
hand-crafted 

and neural-

generated 
(PV-DM) 

features  

Mean: 60.670 

Md:    60.659 
   SD:    0.199 

Mean: 0.574 

Md:    0.574 
SD:    0.065 

Mean:   0.568 

Md:      0.567 
SD:      0.001 

Neural 

network 
with hand-

crafted and 

neural-
generated 

(PV-DM) 

features  

Mean: 82.870 

Md:     82.873 
SD:     0.067 

Mean:   0.779 

Md:       0.770 
SD:       0.003 

Mean: 0.715 

Md:    0.716 
SD:    0.002 

 

TABLE IV  
PAIRWISE COMPARISONS RESULTS FOR BALANCED ACCURACY, F1-SCORE 

AND MMC VALUES FOR MODELS  

Model  
Balanced Accuracy, F1-Score, MCC  

1  2  3  

1. Random forest with 

hand-crafted features  

         

2. Neural network with 

hand-crafted features   

< 0.01 
  

3. Random forest with 
hand-crafted and neural-

generated (PV-DM) 

features  

< 0.01 < 0.01 
 

4. Neural network with 
hand-crafted and neural-

generated (PV-DM) 
features  

< 0.01 < 0.01 < 0.01 

Note: Pairwise results were significant at < 0.01 for Balanced accuracy, F1-

Score and MCC values (all outcomes)  

 
MCC outcomes also showed statistically significant 

differences between model outcomes, X2(3) = 342.53, p < 0.01, 
with a mean rank score of 318.9 for the random forest model 
with hand-crafted features, 150.5 for the RNN model with 
hand-crafted features, 50.5 for the random forest model with 
hand-crafted and neural-generated features, and 282.0 for the 
RNN model with hand-crafted and neural-generated features.  

We next performed post hoc pair-wise Wilcoxon testing with 

appropriate Bonferroni adjustments. TABLE IV provides our 

F1-score and MCC outcomes (in addition to those for balanced 

accuracy, where the pattern of significance was repeated). Here 

it is revealed that there were statistically significant differences 

in the model outcomes for all comparisons (p < 0.01). We 

observed that for the F1-Score, the quality of the RNN model 

with hand-crafted features was significantly better than all the 

others (p < 0.01). In TABLE IV it is confirmed that the RNN 

model with hand-crafted and neural-generated (PV-DM) 

features was of higher quality than both the random forest 

model with hand-crafted features (p < 0.01) and the random 

forest model with hand-crafted and neural-generated (PV-DM) 

features (p < 0.01). Finally, the random forest model with hand-

crafted features produced higher quality outcomes than the 

random forest model with hand-crafted and neural-generated 

(PV-DM) features (p < 0.01). A slightly different pattern of 

outcomes was observed for the MCC outcomes, albeit the three 

better performing models above recorded superior scores than 

the random forest model with hand-crafted and neural-

generated (PV-DM) features. This outcome suggests that our 

predictions are superior to random guesses.  

 

                TABLE V        F1-SCORE AND MCC VALUES FOR MODELS  

Model  F1-Score  MCC  

Random forest with hand-
crafted features  

0.708 0.722 

Neural network with hand-

crafted features  

0.783 0.681 

Random forest with hand-

crafted and neural-generated 
(PV-DM) features  

0.573 0.564 

Neural network with hand-

crafted and neural-generated 
(PV-DM) features  

0.779 0.711 

 

                    TABLE VI         MODEL BALANCE ACCURACY SUMMARY  

Model  
Model accuracy for the 90 unique 

questions taken from the test 

sample  
Random forest with hand-crafted 

features  
  69.37% 

Neural network with hand-crafted 

features  
60.0% 

Random forest with hand-crafted 
and neural-generated (PV-DM) 

features  

  68.42% 

Neural network with hand-crated 

and neural-generated (PV-DM) 
features  

  72.92% 

 

C. Evaluation Via Developers’ Questionnaire 

A total of 90 unique question and answer pairs were 

completed and ranked manually by software developers with 

vary degree of professional experience. These developers 

ranked answers according to how acceptable they were for a 

given question. This ranking provides a countermeasure and 

triangulation for the accepted answer tag that was used as our 

model outcome measure, and so enables further evaluation of 

our models. We compare the outcomes of our four approaches 



with the results gathered from the questionnaire, and the results 

are shown in TABLE VI.  

The accuracy for each model was determined by finding 

those answers that were predicted to be the accepted answer and 

also ranked “3” (highly acceptable) by developers. The total 

number of answers satisfying both conditions was divided by 

the total number of questions and answers that were evaluated 

by the questionnaire (90 pairs). Comparing the result of our 

questionnaire with the four models described in Section III.C, 

we found that when using the random forest model with hand-

crafted features our model was able to accurately predict the 

acceptable answers as ranked by developers 69.37% of the 

time. There was, however, less convergence for the RNN model 

with hand-crafted features (60.00%). Adding the neural-

generated (PV-DM) with the hand-crafted features when using 

random forest modelling recorded a slightly lower accuracy 

than the random forest model with hand-crafted features 

(68.42%). However, when we combined the feature generated 

from the PV-DM model with the hand-crafted features, the 

RNN model resulted in the highest accuracy (72.92%). While 

we acknowledge that the number of responses obtained from 

our questionnaire was small, the pattern of outcomes here 

largely mirrors that observed above. Further, developers’ 

ranking of highly acceptable answers (i.e., assigning a “3”) 

converged with Stack Overflow users’ accepted answer label 

84% of the time, suggesting that our respondents had a similar 

judgement to contributors on Stack Overflow. We further 

discuss our outcomes in the next section.  

V. DISCUSSION 

RQ1. How does the degree of model and feature complexity 

affect the performance of a Stack Overflow Q&A accepted 

answer prediction model? Reflecting on our outcomes, the 

model with lesser complexity (random forest) tended to 

outperform our model with more complexity (RNN) when only 

simple features were used. This finding suggests that the type 

of features (or sampling techniques) used may affect the 

performance outcomes of models with varying degrees of 

complexity when studying prediction models.  

In further exploring how the prediction performance varies 

when changing the model complexity, given the availability of 

hand-crafted features, we explored the features and their 

contributed weight in our random forest and RNN models. Our 

outcomes show that the time it takes to post an answer 

(Timelag), the textual similarity of a question and answer pair 

and the code length and reputation of the answerer were the 

most influential predictors of acceptable Stack Overflow 

answers in both models. This pattern of outcomes was 

confirmed in preliminary work [10], indicating that the 

similarity in the text provided in questions and answers 

enhanced Stack Overflow answers’ acceptability. Even so, the 

reputation of the user was the second most dominating feature 

that distinguished a chosen Stack Overflow answer. The current 

finding was also supported by previous work, which linked 

users’ reputation to post quality in other contexts [41].  

While code length [11] or features of code readability, such 

as the number of lines of code and the average number of 

identifiers per line [18], could be linked to an answer’s quality, 

this might not always be true, as evidence shows that such 

predictors can be due to chance [42]. The time lag was seen to 

be the feature with the highest coefficient. Those posting 

questions reflected on the answers available on the community 

portal before choosing an acceptable answer. However, on 

combining the two features sets (hand-crafted features and 

neural-generated features), the dominating coefficients were 

the time it takes to post an answer (Timelag), reputation, neural 

feature (weight) and code length. Of note here is that the neural-

generated feature had the third-highest magnitude of all 

influential features. Also, time lag, reputation and code length 

were consistent in their prominence among the four top features 

for both models with varying complexity.  

While the (less complex) random forest model outperformed 

the (more complex) RNN model when hand-crafted features 

were used, the opposite was observed when neural-generated 

features were added. In fact, the coefficients of features 

returned for the RNN model with hand-crafted and neural-

generated features were of a much larger magnitude. We also 

observed that the code length feature (among others) gained 

prominence when we combined both hand-crafted and neural-

generated features for both models. Overall, when considering 

both types of features, the RNN model had a higher balanced 

accuracy (i.e., 82.73%) compared to the same model when only 

hand-crafted features were used (i.e., 65.89%). This outcome 

aligns with the work of Suggu et al. [14], where the authors 

proposed that combining features from convolutional networks 

with hand-crafted features improves model performance. This 

performance gain may be linked to the ability to learn some 

features automatically.  

These findings are in contrast to those seen for the random 

forest models, where there was a decline in performance when 

both hand-crafted and neural-generated features were modelled 

(performance being 71.74% versus 60.30%). This decline in 

performance could be attributed to the model not being able to 

learn the features automatically since previous studies have 

indicated that it is difficult at times for some models to 

determine the correlation between textual features and non-

textual features [20], which may be responsible for the decline 

in performance observed. Previous studies have also indicated 

that using the best features tends to increase the quality of the 

model, although “best” may be hard to decipher given the 

difficulty with models in determining the correlation between 

textual features and non-textual features. This assessment 

aligns with our outcome where our RNN model outperformed 

the other models used in this study when we used a combination 

of complex and hand-crafted features. That said, the challenge 

of determining which features are “best” remains. A reasonable 

approach would be to consider the complexity of both the 

models and features when choosing a model.  

 

RQ2. How does the degree of model and feature complexity 

affect the quality of a Stack Overflow Q&A accepted answer 

prediction model? Our findings show that all of our models 

were of good quality, and better than random guesses when F1 

scores were considered. The RNN models (with hand-crafted 



features only, and with hand-crafted and neural-generated 

features) recorded the highest F1 scores (0.783 and 0.779 

respectively), confirming that the models with a high degree of 

complexity were of a higher quality. Despite this, the random 

forest model with hand-crafted features performed much better 

than the random forest model with hand-crafted and neural-

generated (PV-DM) features (0.708 versus 0.573). Burel et al. 

[43] reported outcomes with an F1 score of 0.659 when 

predicting the best answers using the Multi-Class Alternating 

Decision Tree classifier (MADT) with only hand-crafted 

features from the Stack Exchange dataset. The MADT is a 

classifier that is more advanced than the random forest, as it 

combines decision trees with the predictive accuracy of 

boosting into a set of interpretable classification rules. 

Accordingly, this algorithm can be considered more complex 

than the random forest alternative. When the aforementioned 

authors increased the feature set by adding other features such 

as the “relative position of an answer within a post”, the F1 

score of their MADT increased to 0.769. Their result is similar 

to those for our RNN classifier, which increases the quality of 

the model by increasing feature set complexity. Considering 

that the MCC score is also used to measure the quality of a 

binary classifier, we examined the MCC score for all our 

models. Our outcomes show a strong positive MCC score, with 

the random forest model with hand-crafted features and the 

RNN model with hand-crafted and neural-generated features 

recording almost identical MCC values (0.722 and 0.711 

respectively). An MCC score of 1 indicates a perfect prediction, 

and both models had very strong positive MCC values.  There 

was an increase in the RNN MCC score from 0.681 to 0.711 

when we increased the complexity of the features by adding the 

neural-generated feature. In contrast, there was a decrease in 

quality when observing the random forest MCC score, which 

reduced from 0.722 to 0.564, as was the case for the F1 score 

from 0.708 to 0.573, when the complexity of the features 

increased. This indicates that, overall, our random forest 

models decreased in quality when neural-generated 

features were added. Here we see a correlation between the 

quality of models and feature complexity. When we increased 

the complexity of our features without increasing the 

complexity of the model, there was a decline in the quality 

of the model outcomes. The opposite pattern is observed when 

we increase feature complexity and model complexity, where 

the model quality outcomes increased. These findings converge 

with those we observed for model performance, where the same 

pattern of outcomes was recorded, pointing to the need to 

match the complexity of the features to that of the modelling 

techniques.  

Our evaluation done via a questionnaire triangulated our 

findings, where the same pattern of outcomes was reported, 

albeit with our models’ performance and quality outcomes 

being slightly lower. Our findings are noteworthy, as a random 

sample of software developers labelled our Stack Overflow 

answers independently of the contributors on the platform, 

where the same pattern of outcomes was observed. Software 

engineering researchers should thus be cautious in aligning 

specific modelling approaches with specific feature sets.  

VI. THREATS TO VALIDITY 

Construct Validity: We have used two modelling approaches 

in this work, and thus, we cannot definitively say that our 

outcomes will hold for other modelling methods (e.g., Bayesian 

logistic regression or support vector machines (SVM)). It 

should be noted, however, that our approaches were established 

to vary widely in complexity based on both their operations and 

the evidence returned by Calefato et al. [17]. Also, given the 

limited feature set used (only one complex feature), we cannot 

guarantee that our outcomes will hold when more complex 

features are added. 

Internal Validity: Also, our conceptualization of acceptable 

answers is based on the answer that was selected by the user 

who posted the question. We acknowledge that such answers 

may not necessarily be the “best” answer in all cases. 

Nevertheless, our evaluation involved software developers who 

completed a questionnaire where findings confirmed that 84% 

of the answers that were accepted by Stack Overflow users were 

also judged as the most acceptable answer by these practioners. 

External Validity: Our dataset consisted of 249,588 records 

that were posted on Stack Overflow over three years (2014–

2016). This dataset does not represent all the types of questions 

and answers that are provided for posts tagged with the Java or 

JavaScript label on the Stack Overflow platform. Thus, we do 

not claim generalisability of our findings, although recent 

findings suggest that there is consistency in trends across 

languages for some aspects of Stack Overflow posts [26]. In 

addition, we acknowledge that the Stack Overflow dataset is not 

representative of all similar portals. However, those portals that 

are devoted to addressing technology-related challenges may 

possess comparable content (e.g., Yahoo!Answers for 

programming). In this way, the features that distinguish 

accepted or acceptable answers for such portals are likely to 

demonstrate similarities.  

VII. CONCLUSION AND FUTURE WORK 

By understanding the performance and quality of different 

modelling methods with respect to the different features found 

in a Q&A forum such as Stack Overflow, the prediction of an 

acceptable answer could easily be achieved when there is none 

available. Having such answers available early could make it 

easier for end-users of such a forum to find suitable solutions to 

their problems. However, from prior work, it was not clear 

when and/or how features and models with varying degrees of 

complexity affect prediction outcomes. We have thus bridged 

this gap. In this paper, we were able to determine that the 

performance of a model is related to the inputted features’ 

complexity. We observed that models with higher complexity 

performed better when both hand-crafted and neural-generated 

features were used. On the other hand, models with lesser 

complexity work best when only simple hand-crafted features 

were used. The time it takes to post an answer, the textual 

similarity of a question and answer pair, code length and 

reputation of the answerer were the most influential predictors 

of acceptable Stack Overflow answers, with contributors’ 

reputation standing out as one of the most influential predictors 

of answer acceptability. We believe this could represent a threat 



to the Stack Overflow community if contributors employ tactics 

to game their reputations. Accordingly, our future work will 

investigate how using different types of complex features will 

affect the performance and quality of answer prediction models. 
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