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ABSTRACT

With increasing use of deep learning models, understanding and diagnosing their predictions is
becoming increasingly important. A common approach for understanding predictions of deep nets
is Concept Explanations. Concept explanations are a form of global model that aim to interpet a deep
networks output using human-understandable concepts. However, prevailing concept explanations
methods are not robust to concepts or datasets chosen for explanation computation. We show that
this sensitivity is partly due to ignoring the effect of input noise and epistemic uncertainty in the
estimation process. To address this challenge, we propose an uncertainty-aware estimation method.
Through a mix of theoretical analysis and empirical evaluation, we demonstrate the stability, label
efficiency, and faithfulness of the explanations computed by our approach.

1 Introduction

In the era of ever-larger and more powerful deep neural networks, the need for interpretability and customizability of
complex deep nets has never been higher. One compelling solution to this demand is the emergence of interpretable
models known as concept-based explanations. These systems attempt to explain a model’s predictions by employ-
ing high-level and human-understandable concepts, a methodology championed in notable works like [14]. What
makes concept-based explanations particularly appealing is their alignment with semantically relevant patterns [31].
Research [14, 16] substantiates the preference for concept explanations over explanations derived from salient in-
put features [25, 27] or prominent training examples [17]. The significance of concept explanations extends beyond
interpretability alone. They also hold the potential to encode domain-specific prior knowledge effectively [32].

This paper centers on a category of interpretable methods known as concept bottleneck models (CBM)[18]. Con-
cept explanations explain a pretrained prediction model by estimating the importance of concepts using two human-
provided resources: (1) a list of potentially relevant concepts for the task, (2) a dataset of examples usually referred
to as the probe-dataset. CBMs first compute a score for each concept per example, reflecting the likelihood that a
given example embodies a specific concept. These instance-specific concept scores are then collectively aggregated in
the second step by constructing a linear model that predicts labels based on concept activations. The resulting linear
model weights obtained in this second step constitute a global explanation, shedding light on which concepts bear
relevance to the model predictions at hand. One remarkable feature of CBMs is their malleability. These models
can be customized and tailored to achieve specific behaviors by manipulating the weights of the interpretable linear
model [32, 21, 31, 9, 7, 28]. This adaptability not only enhances model interpretability but also empowers users to
fine-tune the model’s decision-making process in alignment with their specific needs and preferences.
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A notable drawback of traditional CBMs lies in their sensitivity to the choice of concept set and dataset [23, 2]. An-
other major limitation is the need for datasets meticulously annotated with concepts. This process proves prohibitively
expensive, particularly when the number of concepts runs into the thousands. However, recent advancements have
significantly bolstered the data efficiency of CBMs [21, 32, 20] by harnessing pretrained multimodal models like
CLIP [22] in the initial step to compute activations. While these models have been shown to be useful for com-
mon image applications, such multimodal models are not yet thoroughly evaluated for generating post-hoc concept
explanations.

Our objective is to generate reliable concept explanations without requiring concept annotations. We observed that per-
example concept scores, which are aggregated into a global explanation, can be noisy for irrelevant or hard-to-predict
concepts. Since estimation methods do not model noise in concept scores, it cascades into the estimated concept
explanation. As a further motivation for modeling uncertainty, imagine the following two scenarios, Section 4.1
presents more concrete scenarios leading to unreliable explanations. (1) When a concept is missing from the dataset,
we cannot estimate its importance with confidence. Reporting uncertainty over estimated importance of a concept can
thus help the user make a more informed interpretation. (2) The concept activations cannot be accurately estimated
for irrelevant or hard concepts, which must be modeled using error intervals on the concept activations. Appreciating
the need to model uncertainty, we present an estimator called Robust Average Concept Explanations (R-ACE), which
we show is instrumental in improving reliability of explanations.

2 Preliminaries

Let the pretrained model-to-be-explained be f : RP — R, f output L scores for each possible category. Further,
we use f¥](x) to denote k' hidden layer of the network. Given a dataset of examples: D = {x(?}¥, and a list of
concepts C = {c1, ¢, ..., ck }, CBE models aim to provide an “explanation” for the predictions of f using elements of
C. This is done via a two-stage procedure. In the first stage, concept activations are learnt from /*" layer representation
of an example. Specifically, a vector vy, for k** concept by is obtained as arg max E (2.9~ D [0(vT f1(x), )] where ¢

is the loss function (usually cross-entropy). The second stage obtains “explanations” by trying to emulate the prediction
of f using concept scores obtained from the first stage. For this prcedure a variety of methos have been proposed
[14, 26, 31]. Kim et al. [14] computes sensitivity of logits to interventions on concept activations to compute what is
known as TCAV score per example per concept and reports fraction of examples in the probe-dataset with a positive
TCAV score. Zhou et al. [35] proposed to decompose the classification layer weights with [v1,vg,. .., vg] and use
coefficients as the importance score. Oikarinen et al. [21] (O-CBM) estimates the learns to linearly project from
the embedding space of CLIP [22] using its text description to the embedding space of the model-to-be-explained.
Yuksekgonul et al. [32], we can also generate explanations by training a linear model to match the predictions of
model-to-be-explained using the concept activations of CLIP. f.

Limitation: Unreliable Explanations. Major concerns regarding reliability of CBEs have been raised Ramaswamy
et al. [23]. These issues have also been recently pointed by Anonymous [2]. A key issue is that explanations of the
samr model can vary significantly with the choice of probe-dataset and the concept set bringing [2, 23]. Anonymous
[2] provide a method called U-ACE focused on using uncertainty for improving CBE models.

3 Robust Average Concept Explanations

As outlined earlier, CBE models (CBMs) rely heavily on concept scores (concept scores) to generate explanations.
The accuracy of concept scores is a key factor influencing the output of CBE models. Errors and uncertainty in concept
scores can affect the subsequent stages and lead to poor explanations downstream if not accounted for. Additionally,
assessing the significance of a concept is intractable if the concept is absent from the dataset.

Our approach has the following steps. (1) Estimate concept scores along with their error interval, (2) Compute and
return a linear predictor model that is robust to input noise.

Estimation of concept scores and their error given an instance x denoted as 17(x), §(x) respectively. Once concept
scores are computed, we proceed with the linear estimator as follows.

Our objective is to learn linear model weights W, of size L x K (recall that K is number of concepts and L the number
of labels) that map the concept scores to their logit scores, i.e. f(x) = W,.nmi(x). Since the concept scores contain
noise, we require that W, is such that predictions do not change under noise, i.e. W.§(x) ~ 0.

We also add a sparsity constraint to W, by using L; norm regularization. To further sparsify the model, the final
wights are obtained by setting the values below a threshold to zero. The threshold is picked by hyper-parameter
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tuning; essentially we choose the highest threshold such that the cross-validation scores between the dense and sparse
models remain close.

4 Experiments

We evaluate R-ACE on two synthetic and two real-world datasets. For evaluation of the method we follow the same
procedure and datasets as Anonymous [2]. We analyse the reliability of our method against other baselines in Sec-
tion 4.1. In Section 4.2, we assess the output of our method against known ground truth. Finally, we evaluate on
real-world datasets. We experiment with the following models mentioned earlier: TCAV [14], O-CBM [21], Y-CBM
based on [32] and U-ACE [2].

Standardized comparison between importance scores. The interpretation of the importance score varies between
different estimation methods. For instance, the importance scores in TCAV correspond to fraction of examples that
meet certain criteria while other methods the importance scores are the weights from linear model that predicts logits.
Further, Simple operates on binary attributes and O-CBM operates on cosine-similarities as the input. For this reason,
we cannot directly compare importance scores or their normalized variants. We instead use negative scores to obtain
a ranked list of concepts and assign to each concept an importance score given by its rank in the list normalized by
number of concepts. Our sorting algorithm ranks any two concepts with same score by alphabetical order of their text
description. In all our comparisons we use the rank score if not mentioned otherwise.

4.1 Synthetic Data

Following Anonymous [2], we first experiment with a synthetic task where the model is trained to classify colours i.e.
each input is a block image of a single colour. To add variability in the input, the random pixel noise is added to the
inputs. The colours red and green are considered as the first label (L = 1) and the rest colours are considered label 2.
The model is trained on a dataset with equal proportions of all colours. The concepts are defined by the colours with
their literal name: red, green, blue, white. All the methods attribute positive importance for red, green and negative or
zero importance for blue, white when explaining the first category. However, if the probe-dataset is not perfect i.e. has
extraneous concepts, or a distribution shift then CBEs show considerably poor behaviour.

Unreliability due to misspecified concept set. Robustness to irrelevant and
nuisance concepts is paramount for two key reasons. To evaluate such robustness
of different methods, we experiment with different CBE methods on the syn-
thetic data while varying the concepts made available in the probe-set. Specifi-
cally, following Anonymous [2] we expanded the concept set to include common
fruit names as concepts along with the four initial colour concepts while using
an in-distribution probe-dataset. Since CLIP embeddings of fruits also contain
colour information, addition ofr fruits into the probe-set adds nuisance concepts.
In Figure 1, we plots the score of the most salient fruit concept with increasing Figure 1: Score of most salient fruit
number of fruit (nuisance) concepts and note that R-ACE is far more robust to against addition of concepts. We
the presence of nuisance concepts. can see that R-ACE outperforms all
other methods

15 = Uace
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Figure 2: Left and middle plots show the importance of red and green concepts while the rightmost plot shows their
importance score difference. R-ACE estimated large uncertainty in importance score when red or green concept is
missing from the dataset as seen in the left of the left and middle plots.
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Unreliability due to dataset shift. We varied the probe-dataset to include varying population of different colours.
We observed that importance of a concept estimated with standard CBEs varied with the choice of probe-dataset for
the same underlying model-to-be-explained as shown in left and middle plots of Figure 2. In Figure 2, we plot the
importance of a concept as assessed by the methods against their prevalence in the probe dataset. Most methods
attributed incorrect importance to the red concept when it is missing (left extreme of left plot), and similarly for the
green concept (left extreme of middle plot). If one relied on these scores, then one might assume that one colour is
more important than another depending on the probe-dataset used. Both R-ACE and U-ACE provide a confidence
band which can be used to understand the statistical significance of the predicted importances.

4.2 Assessment with known ground-truth

09

Importance of Tag
Rank of True Concept

0.0 02 08 10 0 10 30 40 50

Prook;lability ofa'sl'ag No. omeuisance Concepts
Figure 3: Left: Importance of a tag concept for three model-to-be-explained. X-axis shows the probability of tag in
the training dataset of model-to-be-explained. Right: Average rank of true concepts with irrelevant concepts (lower is

better).

Our objective in this section is to establish that R-ACE generates faithful and reliable concept explanations. Sub-
scribing to the common evaluation practice [14], we generate explanations for a model that is trained on a dataset
with controlled correlation of a spurious pattern. Following Anonymous [2] we make a dataset using two labels from
STL-10 dataset [10]: car, plane and paste a tag: A or B in the image. The probability that the examples of car are
added the A tag is p and 1-p for the B tag. Similarly for the examples of plane, the probability of A is p and B is
1-p. We generate three training datasets with p=0, p=0.5 and p=1, and train three classification models using 2-layer
convolutional network. Therefore, the three models are expected to have a varying and known correlation with the tag,
which we hope to recover from its concept explanation.

To compare against reported results of Anonymous [2], we generate concept explanations using the concept set re-
ported by them. These include seven car-related concepts and three plane-related concepts along with the two tags:
A, B. We obtain the importance score of the concept A with car class using a probe-dataset that is held-out from the
corresponding training dataset (i.e. probe-dataset has the same input distribution as the training dataset). The results
are shown in the middle plot of Figure 3. Since the co-occurrence probability of A with car class goes from 1, 0.5 to 0,
we expect the importance score of A should change from positive to negative as we move right. We note that R-ACE,
along with others, show the expected decreasing importance of the tag concept. The result corroborates that R-ACE
estimates a faithful explanation of model-to-be-explained while also being more reliable as elaborated below.

Unreliability due to misspecified concept set. In the same spirit as the previous section, we repeat the over-
complete experiment of Section 4.1 and generated explanations as animal (irrelevent) concepts are added. Right
panel of Figure 3 shows the average rank of true concepts (lower the better). We note that R-ACE generates expected
explanations even with 50 nuisance concepts.

We expect that our reliable estimator to also generate higher quality concept explanations in practice. To verify
the same, we generated explanations for a scene classification model with ResNet-18 architecture pretrained on
Places365 [33]. Following the experimental setting of Ramaswamy et al. [23], we generate explanations using PAS-
CAL [8] or ADE20K [34] that are part of the Broden dataset collection [5]. The dataset contains images with dense an-
notations with more than 1000 attributes. We removed the attributes describing the scene since model-to-be-explained
is itself a scene classifier. For the remaining 730 attributes, we defined a concept per attribute using literal name of the
attribute.

We evaluate quality of explanations by their closeness to the explanations generated using the baseline of [24, 23].
The baseline estimates explanation using concept annotations and hence regarded as close to the ground-truth. For the
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top-20 concepts identified this way, we compute the average absolute difference in importance scores estimated using
any estimation method. Table 1 presents the deviation in explanations averaged over all the 50 scene labels.

Dataset shift.

Ramaswamy et al. [23], Anonymous [2] provide concrete evidence of the significant variability in concept explana-
tions when using ADE20K or PASCAL as the probe dataset for the same model. The explanations change due to a
couple of factors: firstly, the population of concepts can differ between datasets, impacting their perceived importance
when employing standard methods, and secondly, the variance in explanations. As shown in earlier section, R-ACE
estimated scores have better variance . Furthermore, R-ACE attributes high uncertainty, and consequently near-zero
importance, to concepts that are rare or absent in the probe dataset. Given these factors, we anticipate that R-ACE can
address the data-shift problem effectively. We confirm the same by estimating the average difference in importance
scores estimated using ADE20K and PASCAL for different estimation techniques (where the average is only over
salient concepts with non-zero importance). The results are shown in Table 2.

| Dataset], | TCAV | O-CBM | Y-CBM | U-ACE | R-ACE | | TCAV | O-CBM | Y-CBM | U-ACE | R-ACE |
ADE2OK 0.13] 0.19] 0.16] 0.9 0.09 7041|032 033 0.19] 0.2
PASCAL|| 041| 020 0.8 011 0.8

Table 2: Effect of data shift. Average absolute differ-
Table 1: Evaluation of explanation quality. Each cell ence between concept importance scores estimated using
shows the average absolute difference of importance ADE20K and PASCAL datasets for the same model-to-
scores for top-20 concepts estimated using Simple. be-explained using different estimation methods.

5 Related Work

Concept Bottleneck Models CBMs use predefined human-interpretable concepts as intermediate features for predic-
tions [18, 4, 14, 35]. These additionaly provide the ability for human intervention in terms of weighing the concepts
[3]. However, traditional CBMs rely on large labeled data with concept annotations but recent research have sug-
gested incorporated large pretrained multimodal models like CLIP [22] to handle the task of producing the concept
annotations [21, 32]. Despite these advancements, ensuring the reliability of CBMs remains a challenge, especially
concerning the information leakage problem [13, 19]. Concept Embedding Models (CEM) [11] attempt to tackle the
trade-off between accuracy and interpretability. Close to this work, Kim et al. [15] proposed the Probabilistic Concept
Bottleneck Models (ProbCBM) emphasizing the need to model uncertainty in concept prediction. Anonymous [2]
have also studies the idea of using uncertainty to make explanations more reliable. Our proposed method and presen-
tation is inspired heavily from Anonymous [2]. The key difference lies in how we incorporate the uncertainity during
training.

Concept based explanations CBEs entails learning concepts and subsequently decomposing individual predictions
or overall label features of model-to-be-explained using a probe dataset of concept annotations. for explanation. Our
proposed method is a form of concept based explanations (CBE) [14, 4, 35, 12]. Existing CBE methods, as pointed
out by Ramaswamy et al. [23], have major drawbacks: a) the concepts can sometimes be more intricate to learn than
the labels themselves, potentially rendering explanations non-causal; and b) concepts learned are sensitive to the probe
dataset and hence are not reliable. Additionally, these methods often employ a number of concepts that far exceed
what an average human can easily comprehend. Achtibat et al. [1] advocate for an approach that emphasizes important
features, addressing the "where” aspect, and identifies the concepts used for prediction. Further uses of CBEs include
explanations for out-of-distribution detector models [9], and explanations for NLP models using counterfactual texts
[30]. Similar to us Moayeri et al. [20] explored use of CLIP to interpret representations of a different model trained
on uni-modal data.

6 Conclusion

We delved into incorporation of uncertainity into concept explanation methods, with while using data-efficient training.
We highlight the the reliability issues encountered by current concept explanation estimators, arguing for a need to
incorporate uncertainity during learning eplanations. Consequently, we introduced a novel uncertainty-aware and data-
efficient estimator and rigorously tested it using controlled experiments and challenging real-world evaluations. The
outcomes of these assessments unequivocally demonstrated the superiority of concept explanations generated by our
method, R-ACE, showcasing their heightened reliability and robustness.
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