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Abstract— Accessing reliable clinical knowledge quickly is 

an everyday challenge for clinicians. Large Language Models 

(LLMs) can assist healthcare professionals by providing this 

knowledge, but their responses often deviate from expert 

consensus or are not up to date necessitating reliable validation 

and possible correction. To address this, we introduce 

MedBlock-Bot, an interactive Streamlit-based system 

integrating a blockchain-enabled Retrieval-Augmented 

Generation (RAG) framework for expert-driven assessment and 

immutable feedback storage within a permissioned consortium 

network. Unlike traditional feedback mechanisms that may be 

altered or lost, MedBlock-Bot employs smart contracts to 

securely store and verify any feedback, ensuring transparency 

and auditability. We evaluated the system using three open-

source LLMs—BioMistral, HippoMistral, and LLaMa 3.1—on 

clinical guideline interpretation for neonates with hypoplastic 

left heart syndrome. Human experts assessed model responses 

based on accuracy and relevance, revealing variations in 

adherence to the guideline knowledge. Additionally, deploying 

the blockchain component in a local permissioned environment 

(Ganache) ensured efficient transaction processing and tamper-

proof feedback retrieval without gas cost concerns. Our results 

demonstrate the integration of blockchain for LLM feedback 

review enhancing trust, accountability, and structured 

knowledge retention. Clinicians can access past expert 

assessments for validation, while developers can leverage this 

feedback for potential model refinement. Taking the long-term 

impact into account this approach targets towards a reliable and 

dynamic representation of clinical knowledge and consensus. 

Open-Source Code: https://github.com/yaseen28/MedBlock-Bot 

Keywords— Medical language models, Blockchain, RAG, 

Pediatric cardiology, Clinical care. 

I. INTRODUCTION 

Large Language Models (LLMs) have demonstrated 
significant potential in assisting healthcare professionals by 
interpreting medical documents, answering clinical queries, 
and by that providing decision support [1], [2]. These models, 
trained on vast corpora of medical and general knowledge, can 
streamline information retrieval and improve workflow 
efficiency. However, a critical challenge remains—LLMs 
often generate responses that do not strictly adhere to the 
established clinical consensus for example provided by 
guidelines, posing risks to patient safety [3]. Ensuring that 
these models align with current medical knowledge is 
essential for their reliable deployment in clinical practice. 

Furthermore, current changes in clinical knowledge or 
experience-based knowledge can hardly be provided in a 
structured way at all.  

The integration of LLMs in healthcare has been widely 
explored, particularly in medical text summarization, and 
question-answering. Research has shown that models such as 
ChatGPT, BioBERT, and Med-PaLM can generate 
informative medical responses, but their accuracy and 
reliability remain a concern, especially in critical healthcare 
applications [3], [4], [5]. Several studies have highlighted the 
limitations of LLMs in following strict medical protocols, 
often producing hallucinated, incomplete, or misleading 
responses [3]. To mitigate these issues, Human-in-the-Loop 
systems, such as PubMedQA and MedQA [6], [7]  have been 
developed, incorporating expert feedback to refine model 
outputs. However, these approaches rely on static, pre-
annotated datasets, which limit adaptability to evolving 
medical guidelines. To address these limitations, Retrieval-
Augmented Generation (RAG) has emerged as a technique 
that enables LLMs to dynamically retrieve relevant 
information from external sources before generating 
responses [8]. Unlike standard LLMs that rely solely on pre-
trained knowledge, RAG improves contextual accuracy and 
reduces hallucinations by incorporating real-time domain-
specific documents. This approach has shown promise in 
clinical question-answering and medical document 
interpretation [9]. However, existing RAG-based systems lack 
mechanisms for tracking expert feedback, ensuring 
auditability, and maintaining accountability in clinical 
environments. Addressing these gaps is essential for 
deploying LLMs in real-world clinical applications. 

 Blockchain technology has recently emerged as a reliable 
solution for ensuring data integrity in healthcare applications, 
including medical records, clinical trials, and secure data 
sharing [10], [11]. Traditional feedback mechanisms, such as 
centralized databases or manual submission via email, lack 
transparency, are prone to tampering, and do not provide an 
auditable record of expert assessments [12], [13]. In a 
permissioned blockchain environment [14], access is limited 
to authorized participants, such as clinicians and researchers, 
ensuring secure submission, review, and validation of expert 
feedback while maintaining confidentiality, transparency, and 
auditability. Public blockchains allow open participation, 
whereas permissioned blockchains enforce access control 
through identity verification and role-based permissions [13]. 



Additionally, smart contracts [15], [16] autonomously execute 
predefined rules, regulating data access and submission 
processes while ensuring that expert feedback on LLM 
outputs remains verifiable, tamper-proof, and immutable. 
Despite these advantages, the integration of blockchain for 
managing expert feedback on LLM-generated clinical 
responses remains underexplored. To bridge this gap, we 
formulate the following research question:  

“How can we design a system that securely manages expert 
feedback on LLM-generated responses to clinical guidelines, 
ensuring transparency within a healthcare consortium and 
providing an auditable feedback loop for future model 
refinement?” 

 In response, we propose MedBlock-Bot, an interactive, 
blockchain-enabled RAG system designed to evaluate the 
performance of LLMs in interpreting medical documents, 
particularly clinical guideline. As a case study, we evaluate 
our system using European clinical guidelines for hypoplastic 
left heart syndrome (HLHS), where LLM-generated responses 
are assessed by human experts for adherence to clinical 
guidelines [17]. This evaluation ensures the system’s 
effectiveness in real-world applicability. The key 
contributions of this research are as follows:  

1. We designed and implemented a RAG-driven clinical 

query processing system that enhances contextual accuracy 

in LLM-generated responses by retrieving relevant 

information from clinical guidelines before generating 

outputs. 

2. We evaluated the performance of open-source LLMs—

BioMistral, HippoMistral, and LLaMa 3.1—by assessing 

their adherence to clinical guidelines using expert validation. 

3. We developed a blockchain-based feedback storage 

framework that utilizes a permissioned blockchain to 

securely store, audit, and ensure the tamper-proof integrity of 

clinician feedback. 

4. We simulated clinician feedback by submitting corrected 

responses with ratings and identifiers while analyzing gas 

usage, transaction efficiency, and smart contract execution in 

a local Ethereum test environment. 

5. We implemented an interactive dual-mode dashboard 

using Streamlit, enabling clinicians to review generated 

responses and developers to leverage structured feedback for 

potential model refinement. 

   This research demonstrates the integration of blockchain 

into the expert feedback loop of LLMs potentially enhancing 

trust, accountability, and the auditability of LLM-generated 

responses. This approach lays the foundation for the 

continuous improvement of AI-driven clinical decision 

support systems. Ultimately, it contributes to the long-term 

goal of developing a reliable, evolving clinical guideline-

based LLM for medical applications. 

II. MATERIALS AND METHODS 

A. Ethereum Blockhain Testnet 

The healthcare industry demands secure, transparent, and 
tamper-proof systems for managing sensitive data [18]. 

Traditional data storage methods often face challenges such as 
security breaches, lack of transparency, and difficulties in 
ensuring data integrity. Blockchain technology addresses 
these issues by maintaining a distributed, immutable ledger 
where recorded transactions cannot be altered or deleted 
without consensus from network participants [12]. This makes 
blockchain a promising solution for securely managing expert 
feedback on AI-generated medical responses, ensuring 
accountability and auditability. 

For our implementation, we selected the Ethereum 
blockchain [19], [20] due to its strong developer ecosystem, 
well-established security mechanisms, and support for smart 
contracts—self-executing agreements with conditions written 
directly into code. Smart contracts autonomously enforce 
predefined rules, ensuring that expert feedback is securely 
collected, stored, and auditable at any time [15]. In our case, 
we deployed and tested these contracts using Remix IDE, a 
widely used tool for Ethereum-based smart contract 
development [21]. This ensures that all feedback transactions 
are recorded accurately and can be audited at any time.  

Given the sensitive nature of medical data, we opted for a 
permissioned blockchain rather than a public network. This 
ensures that only authorized participants, such as medical 
experts and hospital personnel, can access and submit 
feedback, enhancing security and compliance with healthcare 
regulations. For development and testing, we used Ganache 
[21], a personal Ethereum blockchain that simulates the 
Ethereum network in a controlled environment. Ganache 
enables rapid deployment and testing of smart contracts 
without incurring transaction fees.  

In the public Ethereum network, gas refers to the 
computational cost required to execute operations, such as 
transactions or executing smart contracts. Each operation has 
a specific gas cost, and users must pay for gas using Ether 
(ETH), Ethereum's native cryptocurrency [19], [20]. In our 
permissioned blockchain setup, there is no real ETH cost— 
gas usage is simulated to analyze system efficiency. This 
approach allows us to optimize performance and evaluate 
transaction costs without financial constraints, making 
blockchain a viable solution for secure and scalable hospital-
based implementations. 

B. Open-Source Large Language Models 

In our study, we evaluated three open-source LLMs—
BioMistral, HippoMistral, and LLaMa 3.1—for their ability to 
interpret medical guidelines stored in PDF format [22], [23], 
[24] . This selection was informed by our previous work with 
MedDoc-Bot, which enabled clinicians to upload medical 
guidelines and choose from various LLMs, including 
Meditron, MedAlpaca, Mistral, and LLaMA-2 [9]. Our 
findings indicated that LLaMA-2 and Mistral exhibited 
reasonable fidelity and relevance in processing clinical 
queries, establishing it as a promising candidate for healthcare 
applications. Building on these results, we selected BioMistral 
and HippoMistral, which are specifically designed for medical 
interpretation, and included LLaMA 3.1, an updated model in 
the LLaMA series—known for its enhanced language 
capabilities. 



 BioMistral [22] and HippoMistral [23] are fine-tuned 
models derived from Mistral LLM [25], optimized using 
domain-specific datasets that include various medical texts. 
BioMistral is fine-tuned specifically to generate coherent and 
contextually relevant responses to complex medical inquiries, 
while HippoMistral is tailored to handle diverse clinical 
scenarios, leveraging a wide range of healthcare datasets. Both 
models are built upon the Mistral architecture, maintaining 
strong performance while being specialized for medical 
applications. The LLaMA series model [24], LLaMA 3.1, 
builds on the strengths of its predecessors, integrating 
advanced techniques for improved language understanding. 
With a focus on handling large contexts and generating high-
quality text, LLaMA 3.1 is a robust candidate for clinical 
interpretation tasks. For our experiments, we utilized the 7B-
parameter versions of BioMistral and HippoMistral, as well as 
the 8B-parameter Instruct version of LLaMA 3.1, ensuring the 
models could process complex queries while maintaining 
efficiency in resource-constrained environments. 

The three models are pre-quantized in GGUF (GPT-
Generated Unified Format) using the llama.cpp Python library 
with 4-bit (Q4) quantization. This pre-quantization enables 
efficient processing across different computing environments, 
accommodating CPU or GPU limitations while ensuring high-
performance analysis [26]. 

C. Dataset and Clinical Use Case 

To evaluate our blockchain system, we curated 20 

clinically relevant questions from the Guidelines for the 

Management of Neonates and Infants with HLHS [17]. These 

guidelines offer standardized recommendations for 

diagnosing, treating, and managing HLHS, a critical and 

complex congenital heart defect [27]. For model performance 

evaluation, we selected 20 questions from a specific chapter 

on imaging modalities, allowing a feasible, in-depth review 

by a pediatric specialist with more than four years of 

experience in pediatric cardiology. 

D. Methodology 

As depicted in Figure 1, the MedBlock-Bot system 
integrates two primary components: a RAG system and a 
blockchain-enabled feedback system, both designed to 
optimize the generation and validation of clinical responses.  

1) RAG System: The RAG system begins when a user 

uploads clinical guideline documents in PDF format. These 

documents are processed through LangChain, which creates 

embeddings that capture their semantic meaning [28]. These 

embeddings are stored in a FAISS (Facebook AI Similarity 

Search) vector database, enabling efficient retrieval [29]. 

When a user submits a query, it is also converted into a 

numerical representation, allowing the system to conduct a 

semantic search within the FAISS database. The most 

relevant information retrieved is then fed into the selected 

LLM, such as Llama 3.1, BioMistral or HippoMistral, 

ensuring that the generated response is contextually aligned 

with the query and supported by authoritative clinical 

sources. This RAG approach minimizes the risk of 

hallucinations and enhances the precision of the AI-generated 

responses. 

 

2) Blockchain Feedback System: In parallel, the 

blockchain-enabled feedback system is essential for 

maintaining the accuracy and integrity of the responses 

generated by the LLM. Medical professionals review 

responses, provide feedback, and assign scores ranging from 

0 (poor accuracy and relevance) to 6 (high accuracy and 

strong clinical alignment), with intermediate scores reflecting 

varying degrees of correctness and coherence. These 

evaluations are recorded on a local test blockchain (Ganache) 

as tamper-proof transactions, guaranteeing accountability 

and transparency in AI-driven medical assessments. Users 

(developers or AI engineers) can query the blockchain to 

retrieve expert evaluations, enabling them to analyze 

feedback trends and refine future model iterations. 
To facilitate this mechanism, a Solidity-based smart 

contract (Refer Sub-Section E) securely stores structured 
feedback, including the original query, LLM-generated 
response, clinician corrections, reviewer names, scores, and 
timestamps for auditing purposes. Key functions within the 
contract allow for feedback submission, retrieval, counting, 
and management. By integrating the RAG system with 
blockchain, MedBlock-Bot ensures responses are accurate, 
reliable, and used by clinicians to review past feedback and by 
developers for potential future model fine-tuning, assuming 
expert feedback as the foundation.  

Our local blockchain setup prioritizes computational 
efficiency. When medical experts review and score LLM-
generated responses, their feedback is stored as immutable 
transactions. We analyze simulated gas consumption to assess 
its impact on system scalability and processing speed, 
ensuring optimal performance and resource allocation for 
potential large-scale deployment. 

 
Fig. 1: Overview of a proposed Streamlit- powered Medblock-Bot system 
combining RAG and Blockchain-based feedback storage. 

 

3) Medblock-Bot User Interface: The MedBlock-Bot 

dashboard provides an interactive interface with two distinct 

operational modes. The clinician mode enables healthcare 

professionals to select LLM models, configure parameters, 

upload relevant clinical documents, submit queries, and 

provide feedback on generated responses. The developer 

mode allows access to stored feedback, predefined prompt 



templates, and insights from clinician evaluations, supporting 

model fine-tuning and performance improvements. The 

dashboard is built using Streamlit [30], offering an intuitive 

and user-friendly web-based interface. Web3.py [21] is used 

to establish secure interactions with the blockchain, allowing 

clinicians to submit feedback and developers to retrieve it for 

further analysis. This integration ensures seamless 

communication between the front-end interface and the 

blockchain network, enhancing system efficiency and 

usability. 

E. Smart Contract Functions 

The smart contract, written in Solidity, was developed 

using Remix IDE and deployed via MetaMask [31] on a local 

Ethereum test network (Ganache). MetaMask, a browser-

based Ethereum wallet, was configured to connect with 

Ganache, which provided test Ether for executing and 

simulating transactions. This setup ensured a secure and cost-

free environment for testing smart contract functionalities 

before real-world deployment. The key functions of the smart 

contract include: 

• submitFeedback() – This function stores the query, LLM 

response, clinician’s corrected response, clinician’s name, 

score, and timestamp on-chain. 

•getFeedbackCount() – This function returns the total number 

of submitted feedback records. 

•getFeedback(index) – This functions retrieves individual 

feedback records based on their index in the blockchain. 

To optimize transaction processing, gas costs are 

minimized during feedback submission, with each 

transaction generating a unique Ethereum transaction hash 

for verification. The contract ensures data integrity by 

leveraging Ethereum’s Proof-of-Authority (PoA) consensus 

mechanism [14] within the local Ganache environment. 
 

F. Blockchain Deployement and Workflow 

The MedBlock-Bot system was deployed, and 

simulations were performed on a local machine with the 

following hardware configuration: a 12th Gen Intel i9 

processor, 64 GB DDR4 RAM, and an NVIDIA GeForce 

RTX 3090 GPU. The blockchain component is tested using 

Ganache, which simulates blockchain interactions without 

real Ether, ensuring cost-free testing and development. As 

illustrated in Figure 1, the blockchain feedback workflow 

follows these steps: 

1. A clinician submits feedback via the MedBlock-Bot 

Web3-enabled interface after interacting with the 

LLM. 

2. The smart contract records the feedback on-chain 

and generates a transaction hash as proof of 

submission. 

3. Stored feedback can be retrieved using the 

getFeedback() function for validation and auditing. 

4. The immutable nature of blockchain prevents 

unauthorized modifications, maintaining data 

integrity and accountability. 

   The combination of Streamlit for interface design and 

Web3.py for blockchain integration ensures an efficient and 

secure feedback management system. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents the analysis of the proposed system 
along with the evaluation of LLMs in a clinical setting: 
LLaMa 3.1, BioMistral, and HippoMistral. Each model was 
tested using 20 predefined clinical queries, generating 60 
responses. One human expert assessed these responses for 
accuracy and relevance, providing structured evaluations. To 
evaluate the blockchain evaluation process, we simulated a 
feedback submission by adding exemplary corrected 
responses, ratings, and anonymized clinician identifiers 
(example: clinician A, B, C) for 60 model-generated outputs. 
These feedback entries were securely stored on a local 
Ethereum blockchain, ensuring the system's ability to reliably 
process, retrieve, and verify expert feedback while 
maintaining data integrity. 

1) LLM Evaluation and Human Assessment 
The models are accessed using the Llama.Cpp library for 

efficient inference, with hyperparameters adjusted as follows: 
Temperature: Temperature = 0.35, Max Tokens = 200, and 
Top-P = 0.75.  

Each model-generated response was evaluated by human 
experts based on accuracy (alignment with clinical guidelines) 
and relevance (contextual appropriateness and completeness). 
Experts assigned scores from 0 to 6, which were then 
normalized to a 0–100% scale for consistent comparison and 
visualization (Figure 2).  

 

Fig. 2. Average relevance and accuracy scores for Llama 3.1, BioMistral, and 
HippoMistral, Models, highlighting their performance in relevance and 
accuracy. 

The figure 2 results indicate that LLaMa 3.1 outperformed 
the other models, achieving higher accuracy and relevance 
scores across 20 queries. However, BioMistral and 
HippoMistral performed competitively in many cases. 
BioMistral was rated as good as Llama 3.1 or better regarding 
relevance in 9/20 questions and regarding accuracy in 8/20 
questions. HippoMistral was rated as good as Llama 3.1 or 
better regarding relevance in 10/20 questions and regarding 
accuracy in 10/20 questions. Overall performance remained 
limited, particularly in cases requiring specialized medical 
knowledge, precise numerical reasoning, or nuanced 
interpretations of complex details from the guideline. These 



findings highlight a key challenge in applying LLMs to 
specialized medical domains—while they can capture broad 
medical knowledge, they struggle with fine-grained, high-
stakes decision-making. Future improvements could include 
fine-tuning models on more pediatric guideline datasets and 
incorporating clinician-in-the-loop validation to iteratively 
refine responses. 

2) Blockchain-Based Feedback Storage and Retrieval 

a) Transaction Processing Time: Figure 3 compares 

the average submission and confirmation times across the 

three models. Submission time, representing the duration to 

send feedback to the blockchain, remained consistent across 

all models (0.075–0.078 seconds) due to the controlled, low-

latency environment. However, confirmation time, which 

measures transaction validation and finalization, varied. 

Llama 3.1 confirmed transactions faster (~0.0236 seconds), 

while BioMistral and HippoMistral took slightly longer 

(~0.045–0.048 seconds), likely due to differences in feedback 

size and processing complexity.  

   These variations may stem from differences in block 

generation intervals, computational overhead, and storage 

demands, where larger feedback entries require additional 

processing. While minor in a permissioned blockchain 

setting, these differences could become more significant as 

the dataset scales, highlighting the need for efficient 

transaction handling and storage optimization. 

 

Fig. 3. Average submission and confirmation times for different models, 
highlighting the efficiency of feedback transaction processing within the 
blockchain system. 

b) Gas Consumption and Storage Costs: Figure 4 

compares gas consumption across different models, 

representing the computational effort required to store 

feedback on the blockchain. Llama 3.1 exhibited the highest 

gas usage (~1.14M units per transaction), while BioMistral 

and HippoMistral consumed approximately 900K units each. 

Although LLaMa 3.1 generally produced more accurate 

responses, its model-generated outputs may have been longer 

or required additional metadata storage, leading to higher gas 

costs. Furthermore, the simulated feedback process have 

introduced variations in correction length, affecting 

transaction sizes. In a private blockchain environment, gas 

costs are not a limiting factor as they are on Ethereum’s 

public mainnet. However, efficient resource management 

remains crucial for scalability, particularly as feedback data 

grows over time.  

Fig. 4. Average gas consumption per feedback transaction across different 
models, providing insights into the computational efficiency and cost-
effectiveness of the smart contract execution. 

c) Feedback Retrieval Efficiency: Figure 5 illustrates 

the relationship between blockchain retrieval time and the 

number of stored feedback transactions. The retrieval time 

remained below 3 seconds for small datasets (≤ 5 

transactions) but increased linearly as the number of stored 

entries grew. For instance, retrieval took 5.6 seconds for 25 

transactions and 9.9 seconds for 50 transactions, eventually 

peaking at 11.3 seconds for 60 queries. While these times 

remain acceptable for real-time clinical applications, larger 

datasets may introduce performance bottlenecks. To mitigate 

this, implementing optimized indexing mechanisms (e.g., 

Merkle Trees), off-chain caching, and parallel processing 

could enhance efficiency, ensuring smooth data access for 

model evaluation and refinement [10]. 

 

Fig. 5. The retrieval times for stored feedback transactions, demonstrating the 
system’s ability to quickly access expert assessments while maintaining data 
integrity and immutability. 

3) Limitations and Future Work 

    Our permissioned blockchain eliminates common issues of 

public blockchains, such as congestion and gas fee volatility, 

by operating in a closed consortium. Unlike Ethereum’s 

Proof-of-Work (PoW), we use an efficient consensus 

mechanism (PoA) to improve transaction speed and 

scalability. However, our Ganache-based simulation does not 

fully account for real-world deployment challenges like 

regulatory compliance and integration with hospital 

networks. Additionally, expert engagement remains crucial 

for maintaining response accuracy, and optimizing smart 

contract execution is necessary for reducing computational 

overhead. A limitation of our system is the manual feedback 

integration, where the developer able to retrieves and formats 

feedback for fine-tuning. Future iterations will incorporate 



Reinforcement Learning from Human Feedback (RLHF) [3] 

for automated feedback processing, allowing continuous 

model improvement. Expanding the expert pool and 

integrating with electronic health records (EHRs) will 

enhance clinical applicability. Future work will also focus on 

improving data privacy through federated learning and 

addressing regulatory compliance. 

IV. CONCLUSION 

   This study introduced MedBlock-Bot, a blockchain-
enabled RAG system designed to enhance AI-driven clinical 
assessments. Using European HLHS guidelines as a case 
study, we evaluated LLaMa 3.1, BioMistral, and 
HippoMistral, assessing their adherence to clinical protocols 
through expert validation. While LLaMa 3.1 demonstrated 
moderate interpretation accuracy, fine-tuning on complex 
cases might further improve performance. To ensure 
transparent and auditable expert assessments, we developed a 
permissioned blockchain framework that securely stores 
clinician feedback, reinforcing trust, accountability, and data 
integrity. Blockchain performance simulations confirmed 
efficient transaction processing without financial constraints. 
Additionally, an interactive dashboard allows clinicians to 
review responses and developers to refine models using 
structured feedback. This work establishes a foundation for 
enhancing guideline-based LLMs in clinical decision support. 
Future research should focus on EHR integration, retrieval 
optimization, and automated model refinement. Real-world 
deployment in hospital networks will further evaluate 
scalability, regulatory compliance, and clinician adoption. 
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