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ABSTRACT 

Optimizing power consumption for electric arc furnace 
(EAF) has a critical impact for maximizing productivity. To 
achieve the goal, we propose an AI based algorithm that 
determines optimal timing for recharging scrap to EAF. More 
specifically, we predict power consumption and time 
duration required for melting scrap considering scrap types 
and amounts of each type of scrap. Furthermore, with the 
advance in explainable AI, we offer guidance for the optimal 
timing of recharging scrap. We evaluate the performance on 
a real site and successfully reduce scrap charging time of 3% 
and power consumption of 7.1%, 53,802 Japanese Yen. 

1. INTRODUCTION 

Steel is one of the most important material in many fields 
such as construction and manufacturing industries (Torquato, 
Martínez-Ayuso, Fahmy & Sienz, 2021). However, even 
both private steel making companies and governments try to 
achieve a net-zero carbon goal, steel making is responsible 
for almost 5% of greenhouse gas emissions of entire 
emissions of the world, making it one of the highest-carbon 
emitting industries (Coskun, Sarikaya, Buyukkaya & Kucuk, 
2023). In order to reduce the carbon emission, electric arc 
furnaces (EAF) have been gradually replacing the traditional 
fuel based furnaces (Bae, Nam & Moon, 2022, Zhang, Yi, Guo 
& Zhu, 2022). EAF is mainly used for melting scrap steel and 
others scrap metals in general for recycling. However, EAF-
based steel making is a highly energy-demanding procedures 
(Bisio, Rubatto & Martini, 2000). The production and 
recycling of steel require a great deal of electric energy and 
the significant energy losses have always been a bottleneck 
for minimizing the cost (Ameling, Strunck, Pottken, & 
Strohschein, 1983).  With the number of skilled engineers in 

the electric furnace steel making industry decreasing, it is 
necessary to introduce an automatic control system that can 
make important decisions automatically or can help 
operator's decision makings (Yi, Lee, Lee, & Kim, 2021). 
Furthermore, since the increasing cost of fuel makes 
temperature managements of EAF become more expensive, 
a growing interest is attracted to development of automation 
system (Andonovski & Tomažič, 2022).  

In usual melting processes of EAF, recharging additional 
scrap into EAF is one of main reasons that bring major heat 
loss. For the recharging, operators need to determine when 
open EAF and begin recharging the EAF (meltdown time). 
While meltdown time depends on the composition of the 
scrap, early beginning of the recharging brings an additional 
process for securing room in EAF for the additional scrap, in 
which major heat loss occurs. In contrast, a late beginning of 
the recharging makes the runtime of EAF even longer, a 
waste of electric power occurs.  Consequently, determining 
the meltdown time is one of the most important decision-
makings to optimize melting processes of EAF. Operators 
usually consider the total weight and composition of scrap 
metals to determine the meltdown time. However, the scrap 
metal composition is approximated by samples or the visual 
of the scrap so that the decision making is highly dependent 
on the operator's experience.  

The goal of this paper is to improve energy efficiency of EAF 
by correctly predicting the electric power requirements for 
melting all the scrap in EAF. By accurately predicting the 
power consumption, we guide the meltdown time so that the 
heat loss of EAF can be minimized. 

This paper is organized as follows. Section 2 briefly reviews 
the existing work for optimizing EAF. In section 3,  we 
explain scrap melting processes and the data collection 
system for an EAF of the real steel-making company, 
Hangook Jaegang. Section 4 gives problem descriptions of 
the real steel-making site. In Section 5, we show prediction 
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results while section 6 explains our strategy for saving 
electric energy utilizing the predictions. Then, we conclude 
in section 7. 

2. RELATED WORK 

In this section, we briefly review existing works for EAF 
optimization. Early works focus on building mathematical 
models for the dynamics inside EAF considering domain 
knowledge while recently more interests have been attracted 
to data driven based dynamics analysis and EAF modeling 
for optimizations. 

Nikolaev, Kornilov, Anufriev, Pekhterev & Povelitsa (2014) 
presents a detailed control mechanism used to optimize EAF. 
In the work, the authors develop a mathematical model to 
analyze electrical characteristics of EAF and the dynamic 
behavior of the automatic control system. With the model, the 
authors develop a system for identifying the phases of 
smelting according to the harmonics of the arc currents and 
have increased 5% of mean productivity by decreasing the 
highest operating cost of an EAF, the power consumption. In 
MacRosty & Swartz (2005), melting processes and chemical 
reactions are analyzed. As in Nikolaev et al. (2014), the 
authors explore mathematical modelling techniques to 
analyze steel-making processes of EAF and develop a 
dynamic model for the processes. Data driven analysis has 
been conducted for parameter estimation with real site data 
such as off-gas composition, but it seems like the volume of 
collected data is rather limited. In addition, the authors carry 
out a sensitivity analysis in order to identify the effect of each 
parameters in the model.  

An EAF simulation based on computational fluid dynamics 
is presented in Yigit, Coskun, Buyukkaya, Durmaz & Güven 
(2015). In this work, the thermal effect of the coal particle 
combustion is analyzed. With the computational fluid 
dynamics approach, this work analyses the flow field inside 
EAF which severely affects both temperature distribution and 
performance of EAF. Then, CO and CO2 emissions are 
estimated according to the distribution of temperature inside 
EAF. The work presented in Sandberg (2005) optimizes 
energy consumption and proposes scrap selection for EAF 
using multivariate data analysis. In this work, authors learn 
models from real site data to predict chemical composition of 
the steel, electrical energy consumption and metallic yield. 
The prediction for certain chemical elements shows the most 
accurate results while carbon was found to be one of the most 
difficult elements to predict. In addition, the authors suggest 
the optimization of scrap recipes. In Sandberg, Lennox & 
Undvall (2007), the authors continue their study, but focus 
more on estimating scrap properties based on the evaluation 
of historical process data. 

In Wang (2012), a linear model is created in order to optimize 
the scrap recipe with a focus on cost reduction and scrap 
transportation and loading operations to increase the 
production rate. According to the experimental evaluations of 

the work, the authors have achieved both a reduction of the 
scrap feedstock cost by between 2% and 6% and the charging 
time by between 2 and 10 minutes. The research presented in 
Bai (2014) also uses linear modeling to optimize key 
performance variables such as the electric power 
consumption, electrode consumption, percentage of scrap 
melted, average arc current, oxygen input, gas input and 
carbon input. The ultimate goal is to optimize the production 
cost while maintaining quality and efficiency. Reductions 
between 7% and 22% were achieved in terms of production 
cost. A study presented in Gajic, Savic-Gajic, Savic, 
Georgieva & Di Gennaro (2016) uses deep neural networks 
to learn the effect of fluctuations in the chemical composition 
on electrical energy consumption. In this study, the authors 
learn a mapping function between the input variables (such 
as the content of carbon, chromium, nickel, silicon and iron) 
and target variable (electrical power consumption). The 
authors also show that the chemical composition, especially, 
carbon content is the most relevant parameter for electric 
power consumption. Recently, a novel study that optimizes 
EAF processes by predicting the tab temperature and by 
minimizing the deviation of the tab temperature in Choi, Seo 
& Lee (2023). In the work, the authors develop a tap 
temperature prediction model with a machine learning-based 
support vector regression algorithm and have achieved the 
tap temperature deviation decreased by 17% and the average 
power consumption decreased by 282 kWh. 

The optimization techniques mentioned in this section, 
exploit mathematics and deep neural networks to model the 
melting processes of EAF. However, these studies usually 
assume no variance of EAF processes and data limitation, 
thus may become less effective when applied to real steel-
making sites. Meanwhile, we analyze the EAF process and 
limitations on data collection system of real steel-making 
company, and propose power consumption prediction based 
EAF process optimization strategy that is applicable to a 
variety of real steel-making companies. 

3. SYSTEM DESCRIPTION 

In this section, we will briefly describe the actual processes 
of EAF and the data collection system of real steel-making 
company, Hangook Jaegang. The focus in this section is to 
point out the processes that make the procedures become less 
energy-efficient in order to find proper approach to optimize 
the melting processes of EAF.  

3.1. Scrap melting  procedures and issues 

The melting procedure of EAF consists of the following 4 
phases. 

1. Charging phase: loads scrap into EAF.  
2. Melting phase: melt the scrap inside EAF. 
3. Recharging phase: loads additional scrap into EAF. 
4. Tapping phase: tapping the liquid steel. 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

3 

In charging phase, various kinds of scraps are loaded into 
EAF and the quantity of each kind of scrap is approximated. 
Only total weight are accurately measured. In melting phase, 
operators run EAF to melt the scrap. Before all of the scrap 
in EAF melt, operators load additional scrap (Recharging 
phase). For recharging phase, operators need to decide 
meltdown time and the decision making depends on the 
experiences of operators.  

 
Figure 1. Electric Arc Furnace of Hangook Jaekang 

As mentioned earlier, the amount of heat loss depends on the 
decision making for the timely recharging phase. If the scrap 
is melt well so that enough room for the additional scrap is 
already secured, the heat loss is minimal. Otherwise, an 
additional unnecessary procedure for securing the room by 
rearranging and pressing scrap in EAF occurs, which in turn 
indicates massive heat loss in recharging phase. 

 

3.2. Data collection  

Since the steel-making company is in the middle of 
introducing a data collection system, only limited number of 
sensors are available as shown in Table 1. The steel-making 
company measures total weight of scrap, electric power 
usages and so on. For the data collection, the company 

employs InTouch MES system. Although the steel-making 
company is not systematic, the company collects and 
analyzes various data to make important decisions such as the 
meltdown time. 

 
Figure 2. Total power consumption as a function of total 
weight of scrap. Near zero correlation is observed between 
the two variables. This indicates that EAF operators decide 
the required power regardless of the weight of the scrap. 

4. PROBLEM DESCRIPTION  

We found from interviews that EAF operators of the steel 
making company usually consider “Scrap types”, "Total 
weight" and "Time" to estimate the power requirements 
(=”Power” * “Time”) for melting the current batch of scrap. 
Especially, the operators consider total weight as the most 
important variable, which makes us expect strong linearity 
with the power requirements. Figure 2 shows the total power 
consumption as a function of the total weight of scrap. As 
shown in the figure, however, even though the total power 
consumption is dependent on the composition of scrap as well, 
almost zero linearity is observed between the total weight and 
the power consumption while on average, 30,000 KW is used 
to melt 75 tons of scrap. This further indicates that the 
decision making on “Power” is severely dependent on 
experiences of EAF operators and thus, the decision making 
may vary even for the same conditions. Considering that the 
number of skilled operators is decreasing, it may result in 
severe waste of electrical power.  

Another problem is that the decision making for meltdown 
time severely depends on the operators experiences as well. 
With the decreases of skilled operators, this may result in 
massive heat loss since early beginning of the recharging may 
bring the unnecessary process, securing enough room for the 
additional scrap. In contrast, late beginning indicates waste 
of electrical power in melting phase. In the steel making 
company, the operators begin the recharging phase after 80% 
of scrap have been melt, then additional scrap, which is 80% 
of the scrap loaded at the charging phase, is loaded. Thus, 
energy efficiency of the EAF severely depends on correct 

Table 1. Data description 
No. Data Data type 

1 Voltage TAP 
2 Current Norch, KA 
3 Power MVA 
4 Sensitivity BIG/MIDDLE/SMALL 
5 Scrap types Ratio of Fe, Cu, ... 

6 Total 
weight Ton 

7 Temperatur
e 

°C, Cooling water temperature 

8 Time minutes, melt-down time 
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prediction of the meltdown time, the beginning of recharging 
phase. In order to address these problems, we develop an AI 
based prediction model for total power requirements and an 
guidance model to suggest the timely meltdown time so that 
occurrences of the unnecessary processes are minimized. 

 

 

 
Figure 3. Prediction of Electric power requirement shows that 
the prediction model successfully learns the long-term 
dependencies while local vibrations are ignored.  

5. AI BASED PREDICTION OF POWER REQUIREMENTS  

We develop a software module, AI Guidance Predict, that, 
automatically learns the best prediction model for time series 
forecasting problems. The aim of AI Guidance Predict is to 
accurately predict important factors for manufacturing 
processes so that the process controls can be optimized. To 
achieve the goal, AI Guidance Predict automatically finds the 
best prediction model by exploring the given bellows. 

1. Linear model (Geladi & Kowalski, 1986): It learns linear 
prediction model and offers online predictions. 

2. Decision tree: It learns tree-structured prediction model 
and offers online predictions. The resulting prediction 
models could vary according to the training dataset. 

3. XGBoost (Chen et. al. 2015): By sequentially applying 
Decision tree and learning the formers prediction error, 
it offers more accurate predictions. 

4. Deep temporal neural network: Artificial neural network 
based time series forecasting models are developed. The 
models include Vaswani, Shazeer, Parmar, Uszkoreit, 
Jones, Gomez,... & Polosukhin (2017) and Yoo, Lee, Ju, 
Chung, Kim, & Choi, J. (2021).  

5. Adaptation learning: It analyzes differences between 
already seen training dataset and unseen online dataset 
to keep the prediction model up-to-date. 

For the prediction of power requirements for melting scrap, 
we use AI Guidance Predict and collect dataset for 3 months 
since the real site has recently introduced the automated data 
collection system. More specifically, we collected 6,642,700 

samples and each sample consists of 8 features representing 
the status of furnace and scrap from 2021-02-23 to 2021-05-
23. Since the real site has 10 operators who has their own 
strategies, we split our dataset into train set of the first 2 
months and test set of the last month. This guarantees that the 
both datasets have similar distributions and thus we can 
expect decent online real site predictions.  

Figure 3 shows the prediction results. While the average 
power requirement is 12,500KWh, we achieve prediction 
error of 391.86KHh in terms of mean absolute error (MAE), 
which is 3% of mean absolute percent error (MAPE). More 
specifically, the predictions (blue line) are successful for 
global patterns while local vibrations are ignored. This is 
partially because sampling scrap composition may fail to 
represent the true scrap compositions. 

 
(a) EAF control of the real steel-making company 

 
(b) AI based EAF control 

Figure 4. Prediction of electric power requirement and 
offering guidance for meltdown time reduces 3% of runtime 
and 7.1% of electric power consumption. 

6. ENERGY EFFICIENT EAF CONTROL 

While AI Guidance Predict provides predictions for decision 
making of control units, AI Guidance Explain offers 
explanations on predictions and thus, on the decision 
makings. AI Guidance Explain quantifies the effects of the 
changes of input variables to the target variables so that 
control units can decide optimal control of EAF. In addition, 
the explanations helps operators to understand reasons for the 
optimal controls and to determine that the optimal control is 
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proper or not. To offer such explanations, AI Guidance 
Explain explores the given bellows. 

1. Analyzing the resulting decision tree structure to offer 
explanations of predictions of the decision tree. 

2. Estimating each feature's effect on predictions of deep 
neural network models to offer explanations.  

With AI Guidance Explain, we guide meltdown time, the 
begging of the recharging phase as shown in Figure 4. In 
Figure 4(a), 12,000kWh of electric power is consumed before 
the beginning of the recharging phase and another 9,100kWh 
is required for finishing the melting process. In contrast, only 
10,600kWh and 8,400kWh are required for melting 1st and 
2nd scrap in Figure 4(b) and thus 2,100kWh of electric power 
is saved. Furthermore, the overall run time is reduced from 
28minutes to 25minutes. This is because accurate prediction 
of power requirement and timely beginning of recharging 
phase minimize overheating and occurrences of unnecessary 
process for securing room for 2nd scrap. One another concern 
of the proposed prediction is the uncertainty of the estimation 
of the scrap composition since inappropriate estimations may 
bring severe deterioration of prediction accuracy. For this, we 
further investigate the feature importance using AI Guidance 
Explain. As shown in Figure 5, the prediction model 
considers the weight of the scrap much more than the scrap 
composition. This indicates that the predictions may become 
even more robust for the real applications. 

 
Figure 5. Feature importance: scrap weight and composition. 

7. CONCLUSION 

In this paper, we propose a novel approach that employs 
artificial intelligence for predicting the total electric power 
required for melting scrap in electric arc furnace and for 
offering the timely beginning of recharging phase. Unlikely 
to the existing work that may become less effective on real 
world problems, we successfully predict the total amount of 
electric power requirements and offer the timely beginning of 
recharging phase so that the occurrences of the unnecessary 

processes of securing room inside EAF is minimized. With 
the predictions and guidance, we have proved that the 
proposed approach successfully achieve energy saving of 7.1% 
of total electric power usage and reduce the run time by 3%, 
which saves 53,802 Japanese Yen.  
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