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ABSTRACT

Causal discovery is essential across various scientific fields to uncover causal structures within data.
Traditional methods relying on observational data have limitations due to confounding variables. This
paper presents an optimization-based approach using integer programming (IP) to design minimal
intervention sets that ensure causal structure identifiability. Our method provides exact and modular
solutions that can be adjusted to different experimental settings and constraints. We demonstrate its
effectiveness through comparative analysis across different settings, demonstrating its applicability
and robustness.

1 Introduction

Causal discovery is a crucial endeavor in many scientific fields. Specifically, it focuses on revealing the causal structures
within the data. Generally, causal discovery can be carried out through one of two data collection approaches —
observational data-based discovery and interventional or experimental data-based discovery. Most of past research
employs observational methods, such as those using conditional independence tests, to provide valuable insights into
causal structure. However, these methods have significant limitations, as they often face challenges from confounding
variables and their inability to determine causality conclusively [1}[2]. Observation-based causal discovery can most
reveal a Directed Acyclic Graph (DAG) up to its Markov Equivalence Class (MEC) level, which means that there could
be multiple different causal structures equivalent to fitting to the conditional independence revealed by the observational
data alone [3].

The experimental approach, in contrast, provides a robust framework for discovering causal relationships by sys-
tematically manipulating variables and observing the effects [4]. The randomized controlled trial (RCT) is often
considered the gold standard in this context, providing clear evidence of causality by isolating the effects of specific
interventions [S]. However, traditional experimental designs presume a bipartite separation of variables into treatment
and outcome categories (with possible covariates), which requires prior knowledge of which variables are potential
causes (treatments) and which are potential effects (outcomes). They cannot adequately address the causal structure
scenarios that do not fit this framework. For example, for a complex causal network, the conventional Design of
Experiments (DOE) principles often do not provide useful guidance to the design of network interventions [6].

The primary goal of traditional DOE is to determine whether the treatment variable influences the outcome variable and,
if so, to what extent. However, it does not offer advice on how to select treatment variables. Although bipartite separation
is assumed in many studies given the condition of time-ordered information or limited intervention possibilities, there
are numerous other situations where such restrictions are unwarranted (e.g., when multiple causal pathways exist
between treatment and outcome variables).

A more comprehensive framework for discovering causal structures — causal Bayes nets — has been developed in the
fields of computer science and philosophy [[7, [2]. Unlike the bipartite structure assumed in DOE, causal Bayes nets
accommodate general graphical networks (though this discussion is limited to acyclic networks). They represent causal
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relationships among variables by a DAG and a probability distribution on the variables in the DAG [8]]. This framework
calls for new principles for intervention experimental designs and involves setting new design parameters such as
selecting intervention and outcome variables, determining the type of intervention (structural or parametric), and the
level of perturbation for each intervention variable. Moreover, the diversity of interventions should be planned to cover
different aspects or levels of the variables of interest, including combinatorial interventions to explore joint effects and
interactions while not exceeding cost limitations. Ensuring an adequate sample size is also a crucial design parameter
for achieving sufficient statistical power, improving generalizability, and counting variations in outcome measures. The
main focus in recent years has been on the number of intervention experiments required to reveal a causal structure
under certain assumptions, as well as on deciding on which variables are to be intervened on in each experiment. The
methodology by which many other design parameters remain open problems.

2 Related Work

In [9] the authors prove the bounds for the minimal number of experiments required for causal discovery for one-
intervened-variable or multiple-intervened-variable experiments. Frederick Eberhardt’s early work [10] has laid a
solid groundwork for the field of interventional causal discovery. Two main types of interventions are discussed in
his thesis: structural interventions and parametric interventions. Structural interventions break all incoming causal
influences to an intervened variable, making it independent of its causes, thus it is effective in determining direct causal
links from the intervened variable to other unintervened variables. Parametric interventions, on the other hand, modify
the conditional probability distribution of the intervened variable without breaking incoming influences, preserving
the original causal structure. This is necessary when structural intervention is impractical or unethical. His thesis
explores the efficacy of fixed and adaptive [[L1} [12] [13| [14] intervention strategies and discusses the efficiency of
multiple simultaneous variable interventions. Following Eberhardt’s seminal work, [15] specifies the minimal number
of experiments needed to uniquely determine a causal graph from its observational MEC. The authors show that the
number of required experiments is related to the largest clique in MEC. The OPTINTER algorithm proposed by the
authors focuses on breaking down cliques quickly by selecting vertices in the largest cliques, but this algorithm is an
NP-complete MAX-CUT problem.

[16] formalize the causal identifiability problem as variable pair conditions as follows:

* Unordered Pair Condition (UPC): Ensures an experiment where one of any two variables is intervened upon
and the other is passively observed.

* Ordered Pair Condition (OPC): Ensures an experiment where the first variable in any ordered pair is intervened
upon and the second is passively observed.

* Covariance Condition (CC): Ensures an experiment where a pair of variables are passively observed.

The paper connects these conditions to combinatorial problems, using separating systems and cut-coverings in graph
theory following results in [[17,[18]]. This approach allows the construction of optimal experiment sets that satisfy the
necessary conditions for causal discovery in the worst case (when the true DAG is fully connected).

Later work, such as that by [19] developed algorithms based on the optimal coloring of chordal graphs, requiring up to
log, () interventions to learn any causal graph, where y is the chromatic number of the chordal skeleton of the DAG.

[20] focus on the problem of learning causal networks using interventions under Pearl’s Structural Equation Model
with independent errors (SEM-IE). They aim to minimize the number of experiments needed to discover the causal
directions of all edges in a causal graph. A key contribution is proving that any deterministic adaptive algorithm needs
to be a separating system to learn complete graphs in the worst case. They also present a novel separating system
construction that is close to optimal and simpler than previous work in combinatorics.

[21] address the same problem with a cost consideration. They formulate the cost-optimal causal graph learning
problem, aiming to design a set of interventions with a minimum total cost that can uniquely identify any causal graph
given its skeleton. Their approach leverages the connection between graph-separating systems and proper colorings,
although this connection is not widely known in the literature. The cost of an intervention is assumed to be a sum of
costs assigned to each variable that is subject to manipulation which can be a special cost structure and may not be
applicable in many real scenarios.

[22] also explore the minimum cost intervention design problem, where the objective is to identify a set of interventions
with a minimum total cost that can learn any causal graph given its essential graph representing its MEC. They
demonstrate that this problem is NP-hard and provide a (2 + ¢)-approximation algorithm using a greedy approach
(a modification of [21] proposed algorithm. This algorithm is further extended to handle weighted cases, making it
practical for real-world applications where intervention costs vary significantly.
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[23] tackles the budget-constrained causal discovery problem with non-adaptive experiments of size one. They formulate
the problem as an optimization task to maximize the average number of resolved edge directions.

3 Our Contribution

In this paper, we present a set of modular optimization models for interventional causal discovery, addressing the UPC,
OPC, and CC outlined in [16]. We provide detailed mathematical formulations and demonstrate their effectiveness
in identifying interventions that are minimally required to identify the causal structure involving a set of observable
variables. This approach can be used to incorporate a wide variety of cost and number-of-variable-per-experiment
constraints into the main formulation presented in this paper as will be demonstrated.

3.1 Optimization Approach

We formulate the interventional causal discovery problem into an Integer Programming (IP) formulation. The objective
is to design a minimal set of interventions that satisfies the UPC, OPC, and CC, ensuring the entire causal structure
among variables of interest is identifiable.

3.1.1 Benefits of Using IP Optimization Models
Using IP (and optimization models in general) offers several benefits:

» Exact Solutions: IP models can provide exact solutions to intervention design problems, ensuring that the
minimal set of interventions will be found.

* Modularity: The optimization models are modular, allowing for easy adjustments and extensions to incorporate
additional constraints or prior knowledge such as the cost of each intervention. They can also accommodate
various secondary objectives, such as minimizing the average number of variables manipulated per intervention
or minimizing the maximum (worst case) number of variables in a single intervention.

* Anytime Algorithm: The Branch and Bound (B&B) algorithm commonly used to solve IP problems can
be viewed as an anytime algorithm; that is, it provides progressively better solutions the longer it runs. This
allows for flexibility in computational time and resources, making it possible to obtain good solutions even
under computational budget constraints. With a sufficient run time, it can provide all solutions (intervention
sets) that attain the minimum number of interventions necassary, which can be leveraged for various soft
constraints in decision-making.

4 Problem Formulation

Given a set of variables V = {X1, Xa,..., Xn}, one of the goals of causal discovery is to determine the causal
structure that describes how these variables influence each other. This structure is typically represented by a DAG, G,
which is a tuple of a set of nodes and a set of directed edges connecting them. The nodes correspond to variables and
directed edges represent direct causal relationships.

4.1 Assumptions

To ensure the identifiability of the causal structure, several assumptions need to be made about the underlying causal
model:

* Acyclicity: The graph G is acyclic. This ensures that for any X;, X; € V, if X; causes X, then X; cannot
reciprocally cause X;. Formally, G is a Directed Acyclic Graph (DAG).

¢ Causal Sufficiency: There are no unobserved common causes of two or more observed variables. Mathemati-
cally, for any pair of observed variables X;, X; € V), there does not exist an unobserved variable U such that
U causally influences both X; and X;.

* Faithfulness: The observed conditional independencies in the data correspond exactly to those implied by
the causal graph. Formally, if d-separation in G implies that X; | X; | Z (where L denotes conditional
independence), then X; 1 X | Z must hold in the observed data as well.

» Causal Markov Property: Each variable is independent of its non-effects given its direct causes (parents) in the
causal graph. Formally, for any X; € V, X; L NonDescendants(X;) | PA(X;), where NonDescendants(X;)
are all variables in V that are not descendants of X; in G.
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* Parametric Form: The causal relationships follow a specific parametric form, often assumed to be linear. For
instance, a linear structural equation model (SEM) can be expressed as:

Xi= Z BjiX; + €,

X EPA(X)
where PA(X;) denotes the set of parents of X, Bj; are the linear coefficients, and ¢; are independent noise

terms.

* Independence Oracle: An independence oracle is assumed to be available, which can correctly identify
conditional independence relationships among the variables. Mathematically, the oracle can determine whether
X; L X; | Zforany X;, X; € Vandany subset Z C V\ {X;, X;}.

4.1.1 Achieving Structure Identifiability

To achieve identifiability of the causal structure, certain combinations of UPC, OPC, and CC must be satisfied:

* Assuming causal sufficiency, acyclicity, and faithfulness, the causal structure is identifiable if for any two
variables X;, X; € V, two interventional experiments have been conducted where, either:

— the OPC holds for the pairs (X;, X;) and (X, X;), or
- both the UPC and the CC hold for the pair {X;, X }.

» Without assuming causal sufficiency, acyclicity, or faithfulness, but assuming a linear data-generating model,
the causal structure among observed variables is identifiable if the OPC holds for all ordered pairs of variables
[24] 251 126].

The focus of this work will be on the first case where no parametric form of the data model is assumed and when
acyclicity, sufficiency, and faithfulness are met. Access to an independence oracle is also assumed.

In a multi-variable intervention experiment, any subset of variables in V' can be manipulated while the remaining
variables are observed. In such cases, [27]] shows that at most half of all variables need to be intervened on to reveal all
causal links. Interventions where more than half of the variables are intervened on are not optimal. Therefore, unless
a limit on the number of variables that can be intervened on is imposed, only the interventions where up to ||V|/2]
variables are manipulated are considered.

4.2 Notation

‘We use the following notations in the optimization models:

* 7: The set of all possible interventions.

* IC: The index set of all possible interventions.

* Si: The subset of variables subject to an intervention, S, € Z, where k indicates the k" intervention.

* Ii: A binary decision variable indicating whether an intervention S, is chosen (I, = 1) or not (I, = 0).

* fij: A binary decision variable indicating if there is a forward experiment constraint (see the identifiability
section) for the pair (X;, X).

* b;;: A binary decision variable indicating if there is a backward experiment constraint (see the identifiability
section) for the pair (X, X;).

* u;;: A binary decision variable indicating if there is a null experiment for the pair (X;, X;).

4.3 Objective Function

The objective function for all base models is to minimize the number of chosen interventions:

Minimize » I, (1)
ke
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4.4 Binary Constraint

The binary constraint for all models is:

I €{0,1}, Vkek 2)

4.5 CC,UPC, and OPC Models

We first present the formulation for satisfying the CC, UPC, and OPC individually.

4.5.1 Covariance Condition

The covariance condition ensures that for any pair of variables, there exists at least one intervention where neither of the
variables is manipulated. This can be represented as:

E Iy >1, V{X;,X;}CV 3)
kek
ngsk/\Xjésk

Note that the null experiment, where no variables are manipulated (i.e. a passive observation of the system) is a trivial
solution to this IP.

4.5.2 Unordered Pair Condition

The unordered pair condition requires that for any pair of variables, there exists at least one intervention where one
variable is affected, but the other is not. This is modeled as:

> I, >1, V{X;,X;}CV “4)

kel
(X €SkNX;¢Sk)
\/(Xi ¢Sk/\XJ ESk)

This ensures that for each pair {X;, X}, there is an intervention where one is affected while the other remains
unaffected.

4.5.3 Ordered Pair Condition

The ordered pair condition ensures that for each ordered pair of variables, there exist interventions where one variable is
affected but not the other, and vice versa. This is formulated as two separate constraints:

Y =1, V{X,X;}CV )
kel

X,LES;CAXNES;C
Y. kzl V{XiX;pCv ©)
ke

XiQSkAXJESk

These constraints ensure that for any ordered pair (X;, X), there is an intervention where X; is affected and X is not,
and another intervention where X is affected and X; is not.

4.5.4 Identifiability

Our DAG is a connected graph and any cyclic pattern is prohibited. Therefore, for a pair of variables (X;, X;), when
both variables do not simultaneously appear in an intervention set, they should satisfy the following constraints to
ensure their cause-effect direction is uniquely identifiable.
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> L= fy, XL XPCV @)
keK

XIESk/\ngsk
> Lezby, VX, X;pCV ®)
keK

XiQSkAXjeSk
Z I > u;, Y{X;, X;}CV )]
keK

Xiisk/\ngsk

fij +Fbij +ui; >2, WX, X5 CV (10)

In the inequalities above:

* Constraints (7) and (8) ensure that for each pair {X;, X}, interventions are satisfying the forward and
backward conditions respectively.

* Constraint (9) ensures there is at least one null experiment where both variables are unaffected.

* Constraint (10) confirms that for each pair, at least two out of the three conditions (forward, backward, and
null) are satisfied, ensuring identifiability.

These inequalities transform the UPC, OPC, and CC conditions into forward, backward, and null constraints. We define
binary decision variables f;;, b;;, and u;; as follows:

* f;; indicates whether there is a forward experiment constraint for the pair (X, X;). This corresponds to an
intervention where X; is affected and X is not.

* b;; indicates whether there is a backward experiment constraint for the pair (X;, X;). This corresponds to an
intervention where X is affected and X is not.

¢ u;; indicates whether there is a null experiment for the pair (X;, X ;). This corresponds to an intervention
4 indicat hether th 1l exp t for the p Xi, X;). Th ponds t t t
where neither X; nor X is affected.

By requiring constraint (10), the IP model correctly integrates the identifiability condition. It ensures that either the
OPC is satisfied, or the UPC and CC are satisfied (or both).

4.5.5 The Set-Covering Problem

The UPC, OPC, CC formulations in our interventional causal discovery framework can be viewed as instances of the
Set Covering Problem (SCP), a well-known NP-hard problem in combinatorial optimization. The SCP aims to cover
a universe of elements with the minimum number of subsets, which parallels our objective of identifying minimal
intervention sets to ensure causal structure identifiability. The SCP is NP-hard, meaning that finding an optimal
solution is computationally infeasible for large instances [28]]. This complexity extends to our models, necessitating the
exploration of efficient approximation techniques.

Given the generic formulation of intervention experimental design, our models can be extended to accommodate various
practical considerations:

* Weighted Set Cover: Incorporating intervention costs to minimize the total cost [29].
* k-Set Cover: Limiting the number of interventions to a fixed number £ [30]].
 Partial Set Cover: Allowing for partial identifiability by covering a subset of causal relationships [31]].

For a large system, the following approximation algorithms can be employed to find near-optimal solutions:

* Greedy Algorithm: Selects interventions iteratively, each time choosing the one that covers the most yet-
uncovered pairs, achieving an O(log n)-approximation [32].

* Linear Programming (LP) Relaxation and Rounding: If each element occurs in at most f sets, a solution
can be found in polynomial time that approximates the optimum to within a factor of f using LP relaxation
[33].
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By framing the UPC, OPC, and CC models within the context of SCP, well-established optimization techniques can
be leveraged to enhance the efficiency and effectiveness of causal discovery through interventions. Exact solutions to
these optimization problems can guarantee optimality; conversely, approximation methods can provide flexibility and
scalability, which is crucial for real-world applications.

5 Extensions

5.1 Minimizing Cost of Interventions

These IP models can be made to minimize the total cost of interventions instead of the number of interventions. This is
achieved by changing the objective function to

Minimize Z Ci I (12)
ke

where CY, is the cost of intervention ;. Since each C}; can be set independently, the cost structure can be general and
need not be limited to a linear function of the cost of intervening on individual variables. These modifications offer a
substantial practical significance as minimizing the cost of interventions is a more realistic objective than the actual
number of interventions.

For example, consider the case of V = { X, X5, X3, X4}. Therefore, there are 11 viable variable sets of up to size
[|V]/2] = 2 to be considered for an intervention, Z:

%]

o 81 {X1}

° Sy {Xo}

* S5 { X3}

o Sy { Xy}

¢ S5 {X1, X0}
* S 1 {X1, X3}
o Sy { Xy, X4}
* Ss: {X2, X3}
* So: { X2, X4}

* Sio: { X3, X4}

The theoretical lower bound for the necessary number of interventions required to identify a graph of 4 variables is
[log2(4)| + 1 = 3 [27]. There are (131) = 165 possible 3-intervention solutions, but only 92 of them can satisfy the
identifiability conditions. Without cost considerations, the 92 intervention experimental designs are equal solutions
for this 4-variable causal discovery problem. However, if we consider the empty variable set (i.e. the null experiment,
where all variables are passively observed) to have a zero cost and any other intervention experiment to have a one-unit
cost, i.e., setting the IP objective function with Cy = 0 and Cj, = 1,Vk € {1,...,10}, yields only 12 solutions that
will attain the minimum cost. These solutions are:

W XN AW

,_
e
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True DAG Observational Data (S0: @)

DAG after Intervention S5: {X1, X2} DAG after Intervention S6: {X1, X3}

N7ZE

Figure 1: True DAG inference through interventions from solution 1

N

N

11. (So,Ss,S10)
12. (8o, S9,S10)

Figure [T]illustrates the evolution of inference of applying the intervention sets of solution 1. The True DAG outlines the
actual causal relationships among four variables (1, 2, 3, and 4), where node 1 directly influences nodes 2, 3, and 4,
node 2 influences nodes 3 and 4, and node 3 directly influences node 4. The Observational Data DAG, inferred from
purely observational data without interventions, shows undirected edges between all nodes due to dependencies, but
lacks clear causal directions. After intervention S5, where nodes 1 and 2 are intervened in simultaneously, the DAG
reveals that both node 1 and node 2 directly affect nodes 3 and 4, but the direct relationship between nodes 1 and 2
cannot be determined as they are manipulated simultaneously. Likewise, the directionality between nodes 3 and 4
cannot be inferred. After intervention Sg, where interventions are applied to nodes 1 and 3, the DAG is further clarified
that node 1 directly affects node 2 and node 3 affects node 4. A similar inference can be made by choosing any of the
other 11 solutions.

5.2 Limited number of variables that can be subject to an intervention simultaneously

When there is a limit on the maximum number of variables that can be intervened simultaneously in an interventional
experiment, k4., the IP model can incorporate this requirement by defining Z to only include the sets of |Si| < kmaz-
The branch-and-bound algorithm will only seek to minimize the number of interventions necessary (or the total cost of
interventions) over the reduced space of possible interventions which ensures that the limit is satisfied. Table [I] shows
the change in the number of interventions necessary to achieve identifier of the graph as a function of N and k,,4,. As
one can see, for example, where there are 9 variables in the system, if only one variable can be intervened on at a time
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then at least 8 interventional experiments are needed to identify the system; but this number can be reduced to 6 when
two variables can be simultaneously intervened on, and it can be further reduced to 4 when three or four variables can
be simultaneously intervened on. Similar results for the CC, UPC, and OPC can be found in the Appendix.

kmaw

N

<0.1)
< 0.1)
<0.1)
)
)

<01 - -
<01 . 1(0.4) 1(0.9)
<0.1) (0.8) 1(0.2) 1(1.9)
15 (< 0.1) | 10 (> 600.0) | 8 (> 600.0) | 6 (> 600.0)
16 (< 0.1) | 11 (> 600.0) | 8 (> 600.0) | 7 (> 600.0)

Table 1: Model solution to satisfying the Identifiability conditions for N variables and a k,;,4, limit on the number
of variables that can be manipulated simultaneously. The number in parenthesis is solution time in Seconds. Model
minimizes objective function (1) subject to constraints: (2) and (7)-(11). The solution time was capped at 10 minutes.
Scenarios, where the solution exceeded this time, may not be optimal.

NN\

2
2
3
4
7
8

—_— | —
\]O.\@OOUIAUJ[\)

5.3 Secondary objectives

[16] provide algorithms that not only yield a set of interventions that meet the theoretical bounds of minimum necessary
interventions to meet the UPC or OPC respectively but also construct these interventions while minimizing either
the average or the maximum intervention size. The IP approach can likewise be used to find the minimum number
of interventions and additionally optimize another practically significant objective. As discussed before, there often
exist many optimal solutions to the main objective function, choosing a solution that can also optimize a secondary
objective is thereof desirable. [[10] presents such a case when the number of variables, |V/|, is 8 for which the theoretical
lower bound of number of interventions required (assuming multi-variable interventions are permissible) is 4. Multiple
configurations of intervention sizes can attain this bound, such as 4 experiments with intervention sizes of (4,4, 4,0),
or of (3,3,3,1). The identifiability [P model can be solved to obtain all configurations for any N and k... Examples
are shown in Table 2

On the other hand, setting the minimization of the average intervention size as a secondary objective will yield the
configurations in Table 3| The size of an intervened variable set is often of practical importance in implementation, as a
larger size can greatly increase the complexity of an experiment. Therefore, a smaller average size of interventional
experiments is more desirable.

By utilizing our IP framework, it is easy to optimize secondary objectives such as the minimal size of intervened
variable sets. Our final solutions can be refined to adhere to some soft decision-making requirements.

6 Conclusion

In this paper, we introduce an optimization-based approach to causal discovery through interventions, leveraging integer
programming to design the minimal number of intervention sets that ensure the identifiability of causal structures. Our
method addresses the limitations of traditional observational methods, offering exact and modular solutions adaptable
to various experimental settings and constraints.

We have demonstrated the effectiveness of our approach through detailed mathematical formulations and comparative
analyses, highlighting its robustness and applicability across different scenarios. The flexibility of our IP models allows
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0,1)
(L,1)
3 (1) i i
0,2.2)
(1,1,1)
4 (1,1,1) (1,1,2) i
(1,2,2)
(2,2,2)
(1,2.2)
5 (1,1,1,1) 222 i
(1,1.22) | (2.23)
6 (LLLLD | (1222 | 23.3)
22.22) | 3.3.3)

Table 2: Possible solution configurations to attain identifiability without secondary objectives.

for easy integration of additional constraints, such as intervention costs, and supports the optimization of secondary
objectives, including minimizing the average or maximum number of variables to be manipulated per interventional
experiment. Our approach can be extended to various practical considerations, incorporating weighted set cover,
k-set cover, and partial set cover formulations, to handle real-world problem complexities. Its ability to provide exact
solutions and/or to progressively improve approximated solutions via the branch-and-bound algorithm enhances its
utility under computational and budget constraints.

The proposed IP-based intervention design framework advances the field of causal discovery by offering a compre-
hensive and flexible solution for designing interventional experiments. Future research directions include enhancing
computational efficiency, integrating prior structural knowledge, and broadening the framework’s applicability to more
complex and realistic scenarios.
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The appendix includes tabulated results on the minimum number of interventions necessary to satisfy the CC, UPC, and

OPC respectively.

kmax
1 2 3 4
N

2 I(<01) [I(<01)[I(<01) |[1I(<01)
3 1(<0.1) | 1(<0.1) | 1(<0.1) | 1(<0.1)
4 1(<01)]1(<0.1)]1(<0.1) | 1(<0.1)
5 1(<0.1) | 1(<0.1) | 1(<0.1) | 1(<0.1)
8 1(<0.1) | 1(<0.1) | 1(<0.1) | 1(<0.1)
9 I(<01) [ 1(<01) [1(<01)[1I(<01)
16 1(<0.1) | 1(<0.1)|1(<0.1) | 1(<0.1)
17 I(<01) [I(<01) | 1(0.1) 1(0.2)

Table 4: Model solution to satisfying the CC for N variables and a k4, limit on the number of variables that can be
manipulated simultaneously. The number in parenthesis is solution time in Seconds. The model minimizes objective

function (1) subject to constraints: (2) and (3).

Nm“x 1 2 3 4

2 1(<0.1) | 1(<0.1) | 1(<0.1) | 1(<0.1)
3 2(<0.1) | 2(<0.1)]2(<0.1) ] 2(<0.1)
4 3(<0.1) [2(<0.1)]2(<0.1)]2(<0.1)
5 1(<01) [3(<01)[3(<01) [3(<01)
8 7(<0.1) [ 5(<0.1)| 4(0.1) |3(<0.1)
9 8(<0.1) | 6(0.2) 4(0.5) 4(1.7)

16 | 15(<01) | 10(1.3) | 8(81) | 6(24.6)
17 [16(<0.0) | 11(24) | 8(84) | 7(50.0)

Table 5: Model solution to satisfying the UPC for N variables and a k,;,4, limit on the number of variables that can be
manipulated simultaneously. The number in parenthesis is solution time in Seconds. The model minimizes objective

function (1) subject to constraints: (2) and (4).

13



A PREPRINT - DECEMBER 10, 2024

kmaa:
1 2 3 4
N

2 2(<0.1) | 2(<0.1)|2(<0.1) ] 2(<0.1)
3 3(<0.1) [3(<0.1)|3(<0.1)]3(<0.1)
4 4(<0.1) [4(<0.1)][4(<0.1) | 4(<0.1)
5 5(<0.1) | 5(<0.1) | 5(<0.1) | 5(<0.1)
8 8(<0.1) | 8(<0.1)| 6(0.1) 5(0.1)

9 9(<0.1) | 9(<0.1) | 6(0.1) 5(0.1)

16 16 (< 0.1) | 16 (0.2) | 11(1.6) | 8(5.1)

17 I7(<0.1) | 17(03) | 12(2.3) | 9(14.3)

Table 6: Model solution to satisfying the OPC for N variables and a k,,,,, limit on the number of variables that can
be manipulated simultaneously. The number in parenthesis is solution time in Seconds. Model minimizes objective

function (1) subject to constraints: (2) and (5)-(6).
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