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Abstract: Cardiovascular disease is one of the most challenging diseases in middle-aged and older 
people, which causes high mortality. Coronary artery disease (CAD) is known as a common 
cardiovascular disease. A standard clinical tool for diagnosing CAD is angiography. The main 
challenges are dangerous side effects and high angiography costs. Today, the development of artificial 
intelligence-based methods is a valuable achievement for diagnosing disease. Hence, in this paper, 
artificial intelligence methods such as neural network (NN), deep neural network (DNN), and fuzzy 
C-means clustering combined with deep neural network (FCM-DNN) are developed for diagnosing 
CAD on a cardiac magnetic resonance imaging (CMRI) dataset. The original dataset is used in two 
different approaches. First, the labeled dataset is applied to the NN and DNN to create the NN and 
DNN models. Second, the labels are removed, and the unlabeled dataset is clustered via the FCM 
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method, and then, the clustered dataset is fed to the DNN to create the FCM-DNN model. By utilizing 
the second clustering and modeling, the training process is improved, and consequently, the accuracy 
is increased. As a result, the proposed FCM-DNN model achieves the best performance with a 99.91% 
accuracy specifying 10 clusters, i.e., 5 clusters for healthy subjects and 5 clusters for sick subjects, 
through the 10-fold cross-validation technique compared to the NN and DNN models reaching the 
accuracies of 92.18% and 99.63%, respectively. To the best of our knowledge, no study has been 
conducted for CAD diagnosis on the CMRI dataset using artificial intelligence methods. The results 
confirm that the proposed FCM-DNN model can be helpful for scientific and research centers. 

Keywords: coronary artery disease; image analysis; artificial intelligence; deep neural network; fuzzy 
C-means clustering 
 

1. Introduction 

Heart disease is an umbrella term that encompasses various diseases, including congenital 
diseases, CAD, and heart rheumatism. Based on the World Health Organization (WHO) report, CAD 
is the most common disease in middle-aged and older people, giving rise to killing more than 360,000 
Americans in 2015 [16]. Moreover, according to the clinical centers for disease control and 
prevention statistics report, an American experiences a heart attack per 40 seconds ]7[ . Moreover, 
more than 75% of deaths have happened due to CAD in developing countries ]1[ . Regarding the 
mortality in men and women, more than 50% of the mortality has occurred caused by CAD in men, 
giving rise to 25% of deaths in the United States [8], and more than 630,000 Americans are dead per 
year [2], the cost of which has reached more than $ 200 billion [9]. In general, the costs of heart diseases 
for patients will double by 2030, according to the American Heart Association ]10[ . 

Angiography is the most common tool for CAD diagnosis that has side effects and high costs for 
patients ]7[ . In scientific centers, researchers use artificial intelligence methods to provide appropriate 
diagnostic models instead of angiography for CAD diagnosis [11,12]. The methods utilized by artificial 
intelligence researchers to diagnose CAD are machine learning and deep learning [11,13,14]. In recent 
years, deep learning (DL) methods have been used for the effective analysis of medical images [1520]. 

Accordingly, we propose methods such as neural network (NN), deep neural network (DNN), and 
fuzzy C-means clustering combined with DNN (FCM-DNN) for CAD diagnosis on cardiac magnetic 
resonance imaging (CMRI) dataset. The deep neural network (DNN) method is developed as an 
extended neural network (NN) method, which leads to higher detection accuracy, lower false rate, and 
lower deviation [21]. In this study, the image set contains labels with healthy and sick classes. To 
implement, both labeled and unlabeled data are considered for the training process. First, the labeled 
data is trained and tested using the NN and DNN methods so that the created NN and DNN models are 
evaluated under the criteria of accuracy, precision, sensitivity, specificity, F1-score, false positive rate, 
false negative rate, and area under the curve (AUC). Second, since the other model is a hybrid FCM-
DNN model, the input data must be unlabeled. For this purpose, the data labels are removed, and the 
fuzzy C-means clustering method is applied to specify 10 clusters, 5 clusters for healthy subjects, 
and 5 clusters for sick subjects. Then, the clustered data is fed to the DNN. The created FCM-DNN 
model is also evaluated under the criteria mentioned above. As a final result, the proposed hybrid FCM-
DNN method is a very accurate method with a maximum accuracy of 99.91% compared to the related 
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methods used for CAD diagnosis. 
In summary, the innovations of this paper are as follows: 
 Providing the CMRI dataset to diagnose CAD for the first time 
 According to the latest studies, using the developed FCM-DNN model to diagnose CAD by 

removing the labels of the data for the first time 
 Improving the DNN training and preventing the data over-fitting by performing operations 

such as selecting Maxout without the need for drop out, using the K-fold Cross-Validation 
(K-FCV) technique, and feeding the clustered data by the FCM to the DNN 

 Achieving a very high accuracy using the proposed hybrid model for diagnosing CAD on the 
CMRI dataset 

As the latest scientific achievement, the FCM-DNN model is performed for the first time using 
the CMRI analysis. 

Currently, tools such as exercise stress testing (EST), chest x-ray, computed tomography scan, 
CMRI, coronary angiography, and ECG are used to diagnose the severity of heart disease in patients [22,23]. 
In recent years, more studies have been carried out in the field of CAD diagnosis based on ECG signals 
and numerical datasets using artificial intelligence methods. 

In a study by Babaoglu et al. ]24[ , CAD diagnosis has been made using genetic algorithm (GA), 
binary particle swarm optimization (BPSO) algorithm, and support vector machine (SVM) algorithm 
on EST dataset. In addition, GA and BPSO algorithms have been applied as feature selection 
techniques. In their study, 408 patients have been tested through EST and coronary angiography. A 
total of 23 features have been extracted from the EST dataset. Using the BPSO algorithm, the diagnosis 
accuracy rate reaching 81.46% is the best compared to the GA and SVM algorithms achieving 79.17% 
and 76.67% accuracies, respectively. 

Kumar et al. ]25[  have used ECG signals including 40 healthy subjects and 7 sick subjects for 
CAD diagnosis. The ECG signals have been mapped into pulses, which were mainly decomposed by 
analytical wavelet transform. The least-squares support vector machine with the radial basis function 
(RBF) kernel has been used for classification. As a result, the Violet kernel or Morlet wavelet kernel 
with the accuracy of 99.60% has provided higher accuracy than the RBF kernel, reaching the accuracy 
of 99.56% using the 10-fold cross-validation (10-FCV) technique. 

Alizadehsani et al. have suggested sequential minimal optimization (SMO) and naïve bayes (NB) 
classification methods separately and in combination based on ECG symptoms and characteristics for 
CAD diagnosis on 303 samples ]26[ . The 10-FCV technique has been used to evaluate the algorithms. 
As a result, using the SMO-NB algorithm, they have achieved greater accuracy of 88.52% compared 
to the SMO and NB algorithms with the accuracies of 86.95% and 87.52%, respectively. 

In another study, Alizadehsani et al. ]27[  have proposed classification algorithms such as SMO, 
NB, bagging with SMO, and neural network for CAD diagnosis on 303 numerical data with 54 features. 
They have used information gain (IG) and confidence methods to determine the essential features. The 
SMO algorithm with IG has achieved the best performance with an accuracy rate of 94.08% via the 
10-FCV technique. 

Alizadehsani et al. have presented C4.5 decision tree and bagging algorithms on a numerical 
dataset of 303 samples to diagnose CAD disease ]28[ . They have used IG and gini index (GI) methods 
for feature selection. In the CAD diagnosis test, coronary artery stenosis has been examined, including 
left anterior descending (LAD), left circumflex (LCX) (LCX; for the left coronary artery), and Right 
coronary artery (RCA). In addition, the accuracy of the algorithms has been computed based on 
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the 10-FCV technique. As a result, the bagging algorithm with feature selection method and GI has 
better performance than the C4.5 decision tree. The accuracy of the bagging algorithm for diagnosing 
coronary artery stenosis, including LAD, LCX and RCA, has been 79.54%, 65.09% and 66.31%, 
respectively. However, the C4.5 decision tree has obtained the diagnosis accuracies of 76.56%, 63.10% 
and 63.38% for stenosis of LAD, LCX and RCA, respectively. 

Alizadehsani et al. have applied the SVM method on 303 patients with 54 features to diagnose 
CAD. The stenosis of the three large coronary arteries has been diagnosed separately based on 
demographic, symptom and examination, ECG, laboratory, and echo characteristics ]29[ . They have 
also used analytical methods to explore the significance of the vascular stenosis features. Using the 
SVM method with feature selection methods such as combined information gain and average 
information gain, the accuracy rates of 86.14%, 83.17% and 83.50% have been obtained to diagnose 
the stenosis of LAD, LCX and RCA, respectively. 

Dolatabadi et al. ]30[  have studied the combined method of principal component analysis (PCA) 
and optimized SVM to diagnose CAD on heart rate variability (HRV) signal extracted from the ECG. 
The PCA method has been used to reduce the dimensions of the features and computational complexity. 
Furthermore, the optimized SVM method refers to optimizing cost and sigma parameters. Therefore, 
the diagnostic accuracies obtained through the combined method and the standard SVM method have 
been 99.2% and 90.62%, respectively. 

Arabasadi et al. have examined neural network and genetic algorithms for CAD diagnosis on 303 
numerical samples ]31[ . Feature ranking methods such as weight by SVM, GI, IG and PCA have been 
applied for feature selection. As a result, using the neural network algorithm and the combined neural 
network-genetic algorithm, the accuracy rates of 84.62% and 93.85% have been obtained, respectively. 

Alizadehsani et al. ]32 [  have utilized  a  feature engineering method for improving CAD diagnosis 
on the 500 samples. This method has exploited the results related to the NB, C4.5, and SVM classifiers 
for the non-invasive diagnosis of CAD disease. They have also used the weight by SVM method as a 
feature selection method. Based on the NB, C4.5, and SVM classifiers, the accuracy rates of 86%, 89.8% 
and 96.40% have been achieved, respectively. 

In a study by Abdar et al. ]33[ , a hybrid two-level genetic algorithm and nuSVM, namely the 
N2Genetic-NuSVM method, has been proposed for CAD diagnosis on 303 samples. They have used 
a two-level genetic algorithm to optimize the SVM parameters and also have accomplished feature 
selection applying the GA algorithm. An accuracy of 93.08% has been achieved using the proposed method. 

In the study conducted by Miao and Miao [34], a DNN model has been presented for CAD 
diagnosis on the Cleveland Clinic Foundation dataset with 303 patients. The proposed DL model 
includes 28 input units, first and second hidden layers, and a binary output unit, in which 105 neurons 
in the first layer and 42 neurons in the second layer have been considered, and 50% dropout has been 
assigned. The output unit has been connected to a sigmoid activation function in the final stage. An 
accuracy of 83.67% has been obtained using the proposed method. 

Hamersvelt et al. have examined a convolutional neural network (CNN) to diagnose CAD on the 
coronary artery angiography CT images at rest with 126 patients ]35[ . As a result, by applying the 
proposed CNN method, an accuracy of 71.7% was achieved. 

Hassannataj et al. ]17 [  have extracted essential CAD features, which was diagnosed on 303 
samples with 55 features using the random trees (RTs). They have compared the RTs model with the 
SVM, the C5.0 decision tree, and the CHAID decision tree classification models. As a result, the RTs 
model has provided the best performance compared to the other models by extracting 40 features with 
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an accuracy of 91.47%. 
Acharya et al. ]36[  have implemented the CNN method for CAD diagnosis, applying different 

periods of ECG signal segments from the PhysioNet database ]37[ . In their study, an 11-layer CNN 
structure, including four convolutional layers, four max-pooling layers, and three fully-connected 
layers, has been developed. Moreover, an overall of 95,300 segmented ECG signals have been utilized 
for the first network (2 seconds), and a total of 38,120 segmented ECG signals have been used for the 
second network (5 seconds). The proposed CNN model has achieved the accuracies of 94.95% and 95.11% 
for the first and second networks, respectively. 

Tan et al.  ]38[  have introduced a long short-term memory (LSTM) neural network model 
combined with a CNN model for CAD diagnosis based on ECG signals on the PhysioNet database. 
Accordingly, an 8-layer stacked convolutional LSTM network has been designed, in which layers 1 to 4 
consist of two convolutional layers and two layers of max pooling for the CNN structure, layers 5 to 7 
relate to the LSTM layers, and the last layer is a fully connected layer as the classification layer. The 
proposed method has achieved an accuracy of 99.85%. 

Acharya et al. ]39[  have investigated the K-nearest neighbor (KNN) classifier to classify and 
diagnose CAD on ECG signals. To extract features, they have used methods such as discrete cosine 
transform, discrete wavelet transform, and empirical signal decomposition into intrinsic state 
components. Besides, these methods have been compared in the disease diagnosis process. The ECG 
signals have also been applied to the appropriate transformation methods to obtain coefficients. Then, 
the features have been reduced using the locality preserving projection method, and the reduced 
features have been ranked applying the analysis of variance technique. In the following, high-ranking 
features have been fed to the KNN classifier. As a result, the proposed model provided the best 
performance reaching the accuracy of 98.5% via the discrete cosine transform method using only 
seven features. 

Acharya et al. [40] have presented a CNN method to diagnose CAD on ECG signals. The dataset 
includes 30,000 patients and 110,000 healthy persons. As a result, the proposed method leads to an 
accuracy of 98.97% using the 10-FCV technique. 

In a study by Ghiasi et al. ]41[ , a regression and classification tree model under the CART model 
has been investigated on the Z-Alizadeh Sani dataset ]27 [  with 303 patients and 55 features to 
diagnose CAD. They have compared their model with classification models such as SMO, bagging, 
bagging with SMO, NB, artificial neural network, and J48 and C4.5 decision trees. The accuracy rate 
of 100% has been gained using the CART model for CAD diagnosis. 

To identify the risk factors for CAD, Verma et al. ]42[  have implemented a combined model of 
correlation-based feature subset (CFS) selection with particle swarm optimization (PSO) and K-Means 
clustering algorithms on 335 samples with 26 features. After applying CFS and PSO, five features have 
been identified as risk factors. In addition, multi-layer perceptron (MLP), multinomial logistic 
regression (MLR), fuzzy unordered rule induction algorithm, and C4.5 decision tree have been 
implemented for CAD diagnosis. As a result, the highest accuracy of 88.4% has been obtained using 
the MLR algorithm. 

Idris et al. [43] have developed data mining models, including NN, logistic regression (LR), KNN, 
NB, SVM, deep learning, and Vote (an ensemble method with NB and LR) on the Malaysian National 
Cardiovascular Disease-Acute Coronary Syndrome datasets from the University of Malaya medical 
centre (UMMC) and Sultanah Aminah hospital (SAH) to predict the CAD. Feature selection methods 
such as the Chi-squared test, recursive feature elimination, and embedded decision tree have been 
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applied. The prediction accuracy rates of 94.5% and 89.7% have been obtained through the NN method 
combined with the embedded decision tree method on the UMMC and SAH datasets, respectively.  

Velusamy and Ramasamy ]44[  have examined three classification methods, including SVM, 
random forest, and KNN, for CAD diagnosis on the Z-Alizadeh Sani dataset. The results of the 
classifiers have been combined based on the weighted-average voting, majority-voting, and average-
voting methods. The weighted-average voting method and five selected features lead to better 
performance with an accuracy rate of 98.97% compared to other classifiers on the original Z-Alizadeh 
Sani dataset. In addition, the proposed algorithm reaches the accuracy of 100% on the Z-Alizadeh Sani 
balanced dataset. 

According to the previous works, researchers have investigated three types of datasets, including 
numerical, CT scan, and ECG signal datasets for CAD diagnosis. In this paper, we have utilized the 
MRI dataset to diagnose CAD for the first time. The strength of this research is the use of the CMRI 
dataset in two labeled and unlabeled forms, with the NN and DNN methods applied to the labeled data 
and the FCM-DNN method applied to the unlabeled data. Moreover, in the previous works, the 
important accuracy evaluation criterion has been calculated on labeled data, while in our paper, a great 
accuracy rate of 99.91% has been obtained based on the FCM method in combination with the DNN 
classifier on the unlabeled data. 

The rest of the paper is structured as follows: The proposed methodology is introduced in Section 2. 
The evaluation of models, experimental results, and research findings are expressed in Section 3. 
Comparison with the previous researches and discussion are presented in Section 4. Finally, the 
conclusion and future work are given in Section 5. 

2. Methodology 

 

Figure 1. The proposed methodology. 

In this paper, NN, DNN and fuzzy C-means clustering combined with deep neural network (FCM-
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DNN) methods are used on the CMRI dataset to classify the images and diagnose the CAD. The 
proposed methodology is implemented in 6 phases, including collecting clinical image sets related to 
CMRI dataset for healthy and sick subjects, data preprocessing, CMRI dataset partitioning, 
classification models, evaluation criteria of the models, experimental results, and their interpretation 
for classification of the CMRI images and diagnosis of the CAD. The proposed methodology is shown 
in Figure 1. 

2.1. Phase 1: collecting clinical CMRI dataset  

The first phase is the extraction of CAD clinical image sets related to CMRI. This dataset is 
provided from Milad hospital in Tehran, Iran, by Z. Alizadeh Sani. The dataset utilized in this paper 
includes 4965 images so that 2569 images of which are related to 16 healthy subjects, and the 
remaining 2396 images are associated with 14 sick subjects. All the images are grayscale, and their 
dimensions vary for healthy and sick subjects. For example, four images of healthy and sick subjects 
are illustrated in Figures 2 and 3, respectively. 

 
 
 
 
 
 
 
 
 

 

Figure 2. The images of healthy subjects. 

   

Figure 3. The images of sick subjects. 

In addition, the statistical characteristics of our dataset for healthy and sick subjects are stated in 
Tables 1 and 2, respectively. 
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Table 1. Statistical characteristics of the CMRI dataset for healthy subjects. 

Statistics  Age Weight Height 

Mean 34.75 65.13 165.75 

Std. Error of Mean 4.955 4.531 3.322 

Median 34.50 69.50 170.00 

Std. Deviation 19.821 18.125 13.289 

Variance 392.867 328.517 176.600 

Table 2. Statistical characteristics of the CMRI dataset for sick subjects. 

Statistics Age Weight Height 

Mean 59.86 70.79 170.71 

Std. Error of Mean 3.797 2.881 2.286 

Median 64.50 72.00 169.50 

Std. Deviation 14.206 10.779 8.552 

Variance 201.824 116.181 73.143 

2.2. Phase 2: data preprocessing 

In the samples analysis process, preprocessing the samples is required. The images of healthy and 
sick subjects in the dataset differ in size, thus their size is changed into a 100  100 dimension. 
Furthermore, one of the available approaches for preprocessing image samples is data normalization 
between 0 and 1. Normalization increases the accuracy of clustering and classification models and also 
reduces the false rate of clustering. The type of normalization method is determined as interval 
transformation, i.e., the sample set is normalized between 0 and 1. Indeed, by normalizing the images, 
the light intensity of the images is in the interval of 0 and 1.  

2.3. Phase 3: image set partitioning  

In this paper, the K-FCV technique is applied for the partitioning phase of the CMRI dataset, i.e., 
the data is divided based on the 10-FCV, 7-FCV, and 5-FCV techniques. Utilizing the K-FCV 
technique, the images are divided into K parts so that K-1 parts are used for training and 1 part for 
testing. By rotating the test image set, the K-FCV process is repeated K times. The advantages of the 
K-FCV technique are that this technique prevents data over-fitting, improves training, and reduces 
loss. Moreover, applying the K-FCV technique leads to more training data points to develop the 
expected model.  

Therefore, the dataset is partitioned based on the 10-FCV, 7-FCV, and 5-FCV techniques. The 
partitioning process for training, testing, and validating the CMRI dataset through the 10-FCV, 7-FCV, 
and 5-FCV techniques is shown in Figures 4, 5 and 6, respectively. 
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Figure 4. The partitioning process using the 10-FCV technique. 

 

Figure 5. The partitioning process using the 7-FCV technique. 

 

Figure 6. The partitioning process using the 5-FCV technique. 
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According to Figures 46, the 10-FCV, 7-FCV and 5-FCV techniques are utilized for training the 
models, respectively. 0.9 of the data is used for training, and the remaining 0.2 is utilized for testing 
via the 10-FCV technique. Six-seventh of the data is applied for training, and the remaining one-
seventh is used for testing through the 7-FVC technique. Four-fifth of the data is utilized for training, 
and the remaining one-fifth is applied for testing by the 5-FCV technique. In the next step, considering 0.8 
of the training data for training and 0.2 of the training data for validation, the partitioning process is 
accomplished 10, 7 and 5 times for 10-FVC, 7-FCV and 5-FCV techniques, respectively. 

2.4. Phase 4: classification models 

The most common system for diagnosing CAD is angiography. This system has many side effects 
and high costs for patients. On the other hand, CAD can lead to myocardial infarction if the patient's 
condition is not correctly diagnosed during testing and also is not treated on time. Therefore, it is 
essential to use intelligent automated decision-making systems and technologies for CAD diagnosis. 
In recent years, researchers have tried to use artificial intelligence techniques as an alternative to 
angiography for the early diagnosis of CAD. Hence, in this paper, NN, DNN, and FCM-DNN 
classification methods are proposed to be applied to the CMRI dataset. The creation of the NN, DNN 
and FCM-DNN models is described in detail below. 

2.4.1. Creating NN model 

The structure of the NN is derived from the structure of the human neural network in the biological 
brain. In the human neural network, there are a series of functional units called cells and neurons. In 
neurons, the data is in the form of pulses that enter and exit the cell so that as the pulse passes through 
the cell, a series of processes take place in the cell nucleus. This process is learned all over human life, 
and the so-called neural network structure is trained throughout human life. 

Table 3. Parameters settings for the NN model. 

Parameters Settings 

Training cycles 20 

Momentum 0.2 

Number of hidden layers 2 

Hidden layer size 50  50 

Shuffle   

Normalize   

Epsilon 0.001 

Shrinking   

In general, the standard NN is one of the classification methods in which the created model is 
identified as a set of interconnected nodes with their weighted connections. This created model 
includes the input layer, hidden layer, and output layer. The process of generating output is such that 
each of the input dimensions is multiplied by a weight factor. Then, the sum of the multiplications of 
these weights passes through a nonlinear function, which eventually produces a new output. In other 
words, in this neural network, there is a layer called the feature layer or hidden layer, the output of 
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which is the feature space, and the input to the last layer, i.e., the classifier layer, which determines the 
class of the input data. 

Hence, in this paper, the created NN model is a 4-layer model. The first layer is related to the 
input images. The second and third layers are specified as the hidden layers with three neurons, and 
the last layer is determined as output class (sick/healthy). The parameters settings for the NN model 
are described in Table 3, and the NN model is presented in Figure 7. 

 

Figure 7. The NN model. 

The pseudo-code of the NN model is presented below. 

 Algorithm 1. NN model for CAD diagnosis 

 Input: The Z-Alizadeh Sani image set including 4965 images 

 Output: The diagnosed Sick/Healthy class for each test image and obtained evaluation criteria for the created 

model 

1. Begin 

2. Image set preprocessing: Change the image size to 100  100 and normalize the data 
3. Divide the data using 10-FCV, 7-FCV, and 5-FCV techniques 

4. While (The termination condition is not fulfilled by 10-FCV, 7-FCV, and 5-FCV techniques or considering 

the number of training cycles) do 

5. Apply NN training for each image 

6. Create NN model 

7. Apply NN validation for each image 

8. Apply NN model for testing input images 

9. End while 

10. Return Obtain the evaluation criteria and diagnose the Sick/Healthy classes for input images 

11. End 
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2.4.2. Creating DNN model 

The standard NN model is such that it tends to have a high error deviation, which can lead to 
adverse effects on the classification performance. To address this problem, the DNN model, as an 
extended NN model, improves the classification performance by increasing the number of hidden 
layers from 3 to 100 and more. Another strength of the DNN model is that in this model, the data is 
transferred from one hidden layer to another so that simpler features are recombined and recomposed 
into complex features to generate the desired output. The advantages of the deep learning model are 
expressed below: 

1) Automated feature learning: The DNN model automatically extracts appropriate features from 
the data and is so-called trained. 

2) Multi-layer feature learning: Based on the DNN model, there is the ability to 
simultaneously access features at different levels in a hierarchical manner, from low-level features 
to complex level features. 

3) High accuracy of deep neural network diagnosis: The accuracy of the DNN model in the output 
is higher than the accuracy of the NN model. 

4) High generalization power of the network: High generalization power means that in addition 
to the data trained by the DNN if new data similar to the training data is fed to the network, the highly 
developed DNN model can diagnose the new data as well. 

In the DNN model, similar to the NN model, the images are applied to the input layer, and the 
class of the input images is specified in the output layer. 

Table 4. Parameters settings for the DNN model. 

Activation function Maxout 

Epochs 50 

Number of hidden layers 6 

Hidden layer size 50  40  30  20  15  10 

Training samples per iteration 2 (auto-tuning) 

Adaptive rate   

Epsilon 1.0E8 

Rho (similar to momentum and relevant to the memory to former 

weight updates) 

0.99 

Standardize   

L1- regularization 1.0E5 

L2- regularization 0.0 

Loss function Cross-Entropy 

Distribution function Bernoulli 

Activation function in the last layer  Sigmoid function 

Therefore, in this paper, the created DNN model is an 8-layer model including one input layer for 
the images, six hidden layers, and one output layer. The Maxout [45,46] is selected as a nonlinear 
activation function, which assigns the activity of the neurons to the hidden layers of the network. 
Indeed, the Maxout determines the utmost coordinate of the network input vector, which is effective 
for over-fitting of the input data, reducing the complexity, and improving the deep network training. 
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The Maxout function is defined as follows for two classes: ݃௜(ݔ) = (ݔ)ଵ݃)ݔܽܯ = ଴ݓ + .ଵଵݓ ଵݔ + .ଵଶݓ ,ଶݔ 	݃ଶ(ݔ) = ଴ݓ + .ଶଵݓ ଵݔ + .ଶଶݓ  ଶ)          (1)ݔ

According to Eq (1), ݓ଴, ݓ௜௝, and ݔ௜ represent the random initial weight, the elements entries 
of the weights, and the feature vector of the input images for the sick and healthy classes, respectively. 

The parameters settings for the DNN model are described in Table 4, and the DNN model is 
presented in Figure 8. 

 

Figure 8. The DNN model. 

To classify the healthy and sick subjects by determining the value of 1 for the healthy subject and 
the value of 0 for the sick subject, a sigmoid function [47,48] is assigned to the last layer. Moreover, a 
cross-entropy (CE) function ]49[  is defined as the loss function. The formulas of these functions are 
defined as follows: 

1
( ) ,  ( , )

1
F S S F wxii sie

                                       (2) 

    . log1
cCE S y Fy Siii                                       (3) 

In Eq (2), the output value of the decision boundary (Si) or the probability value of the predicted 
class is 0 or 1, xi is the input image, and w is the weight. In Eq (3), C represents the number of classes, 
and yi indicates the predicted value of the desired class. Since, in this paper, the number of classes is 
two, the CE function is calculated as below: 

     ( . ) log log (1 )log(1 ( )1 11 11
c yCE S y F F Fy yS S Siii                          (4)

 

According to Eq (4), F(S2) is equal to 1-F(S1). 
Also, The pseudo-code of the DNN model is presented below. 
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 Algorithm 2. DNN model for CAD diagnosis 

 Input: The Z-Alizadeh Sani image set including 4965 images  

 Output: The diagnosed Sick/Healthy class for each test image and obtained evaluation criteria for the 

created model 

1. Begin 

2. Image set preprocessing: Change the image size to 100  100 and normalize the data 
3. Divide the data using 10-FCV, 7-FCV, and 5-FCV techniques 

4. While (The termination condition is not fulfilled by 10-FCV, 7-FCV, and 5-FCV techniques or 

considering the number of epochs) do 

5. Train samples per iteration based on Table 4 

6. Apply DNN training for each image 

7. Create DNN model 

8. Apply DNN validation for each image 

9. Apply DNN model for testing input images 

10. Assign sigmoid function (Eq (2)) for classifying Sick/Healthy subjects in the output layer 

11. Calculate loss function through Eq (4) 

12. End while 

13. Return Obtain the evaluation criteria and diagnose the Sick/Healthy classes for input images 

14. End 
 

2.4.3. Creating FCM-DNN model 

Clustering is a standard descriptive method identifying a finite set of categories/clusters for 
describing similar data. In other words, clustering is the grouping of samples with similar 
characteristics. The samples of one group have the most similarity to each other and the most difference 
from the samples of other groups. Each cluster has a center that the degree of the similarity of the data 
to the center of the cluster is generally determined by a parameter called the similarity 
criterion/distance criterion ]50[ . Indeed, in clustering, the similarity criterion is determined based on 
maximizing the separation between clusters.  

Therefore, in clustering, the categories are not predefined, and the data grouping operation is done 
without supervising or labeling, i.e., the training data do not have a label. The suitable performance of 
a clustering method is such that the samples of different clusters have the least similarity. 

A standard clustering model is shown in Figure 9. 

 

Figure 9. The concept of clustering. 
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In general, in all the clustering methods, the goal is to minimize the intera-cluster distance and 
maximize the inter-cluster distance  ]51[ . 

Standard clustering algorithms in vector quantification are K-Means [52,53], K-Medoids [54], 
and FCM. In this paper, the aim is to create the model in two ways. First, the labeled dataset is fed to 
the NN and DNN to create the NN and DNN models of the data. Second, the labels are removed from 
the initial dataset, and the unlabeled data is clustered using the FCM method, and then, the clustered 
data is fed to the DNN to create the hybrid FCM-DNN model. Here, the utilized FCM clustering 
method is explained in detail. 

The FCM method was first proposed in 1973 by Duda and Hart ]55[ , which performs a more 
accurate clustering than classic clustering methods, such as K-Means and K-Medoids, under uncertain 
conditions. Unlike classical clustering methods, fuzzy clustering methods are appropriate for allocating 
data to more than one cluster. 

A fuzzy version of the C-Means clustering method has been proposed by Don to solve the problem 
of allocating images to more than one cluster  ]56 [ . Later, the FCM method was developed by Bezdek  ]57 [ , 
in which a fuzzy factor of m has been defined as a fuzzifier. 

The main idea of the FCM clustering is that a sample can belong to more than one cluster with a 
membership degree between 0 and 1 based on the membership function/objective function [5861]. 

In the FCM method, the membership function is as follows: 

  22min . 1 11 1
c cn nm mj u v du u x vikik ik k im i ik k                           (5) 

where the variable m is a real number larger than 1, which is assigned to be 2 in most cases. In the 
given formula, if the variable m is set equal to 1, the objective function of C-Means clustering will be 
obtained. Moreover, in the stated formula, the variable Xk is the sample K, Vi is the cluster center, the 
number of clusters “C” is predetermined, and n represents the number of samples. Uik indicates the 
degree of belonging the sample i to the cluster k.  

The distance between the sample Xk from the cluster center Vi is computed as follows:  

d x vik k i 
                                            (6) 

The most crucial similarity criterion for solving clustering problems is the distance criterion “d”, 
which must be minimized. In other words, the FCM method determines the data for each cluster based 
on the distance between the cluster center and the data points by assigning membership to each data 
based on the membership function. 

In summary, the FCM method includes the following steps: 
 C cluster centers are randomly assigned. 
 The distance of each sample from the center of the cluster is obtained as: 

1

1 1
d miU mi

d dmi mj

ii

i i




                               (7) 

where d represents the distance between each sample from the cluster centers mi and mj, and Uimi 
indicates the degree of belonging to each sample. 
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 New centers of the clusters are obtained using fuzzy means. If we have two clusters, the new 
centers of the clusters are achieved as follows: 

1 21 1,1 2
1 21 1

N NU Ui iX Xi ii im mN NU Ui ii i

   
  

                     (8) 

where Xi represents the sample i, and m1 and m2 are the cluster centers. 
 Finally, the fuzzy intra-cluster-based sum of the distances is calculated under the following 

membership function “J”, which must be optimized: 

1 1
C NJ dU iji jj i                                     (9) 

Based on Eq (8), J is the sum of the distances, “C” is the number of clusters, “Uij” is the degree 
of belonging the sample i to the cluster j, and “dij” is the distance of sample i from the center j. For two 
consecutive iterations, if the sum of the distances is less than the threshold value, the FCM method 
will terminate. In this situation, new cluster centers will be determined.  

The parameters settings for the FCM method are presented in Table 5. 

Table 5. Parameters settings for the FCM method. 

Parameters Settings 

Add cluster attribute   

Add partition matrix   

Iterations 50 

Fuzzynes 2.0 

MinGain 1.0E4 

Measure type MixedMeasures 

Mixed measure MixedEuclideanDistance 

Therefore, the advantage of the proposed FCM method is that this method is always convergent 
and always has a rapid convergence rate in reaching the final solution, i.e., the FCM method converges 
to a local optimum. 

Despite the advantages of the FCM method, the disadvantage of this method compared to the 
classic clustering methods is its more computational time due to additional calculations for allocating 
each data to all the clusters. However, the crucial advantage of data clustering using the FCM method 
is achieving higher accuracy. 

In this paper, the FCM-DNN method is examined on the CMRI dataset. Firstly, the dataset is 
clustered for identifying the clusters by the FCM method. The number of the clusters is assigned as 10. 
It should be noted that the images were initially labeled as healthy and sick subjects. The labels have 
been removed for clustering. Then, 10 clusters are determined for clustering operations; 5 clusters for 
healthy subjects and 5 clusters for sick subjects. 

After applying fuzzy clustering, the generated dataset is fed to the DNN model for classifying the 
CMRI dataset. The developed FCM-DNN model diagnoses the input image between 10 clusters, 
including healthy and sick classes. The pseudo-code of the FCM-DNN model is presented below. 
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 Algorithm 3. Hybrid FCM-DNN model for CAD diagnosis
 Input: The Z-Alizadeh Sani image set including 4965 images
 Output: The diagnosed Sick/Healthy class for each test image and obtained evaluation criteria for the 

created model 
1. Begin 
2. Image set preprocessing: Change the image size to 100  100 and normalize the data 
3. Divide the data using 10-FCV, 7-FCV, and 5-FCV techniques 
4. While (The termination condition is not fulfilled by 10-FCV, 7-FCV, and 5-FCV techniques or the 

iterations are less than 50 based on Table 5) do
5. Choose C cluster centers randomly (C = 10)
6. Compute the distance of each sample to C cluster centers and determine the degree of belonging 

to each sample based on Eqs (5) to (7)
7. Obtain new centers for the clusters using fuzzy means based on Eq (8)
8. Calculate the fuzzy intra-cluster-based sum of the distances based on Eq (9) 
9. Generate the dataset based on 10 clusters (5 clusters for healthy subjects and 5 clusters for sick 

subjects) 
10 Apply DNN training for each image according to the generated dataset 
11 Create FCM-DNN model 
12 Apply FCM-DNN validation for each image 
13 Apply FCM-DNN model classification for testing input images 
14 Assign sigmoid function (Eq (2)) for classifying Sick/Healthy subjects in the output layer 
15 Compute loss function 
16 End while 
17 Return Obtain the evaluation criteria and diagnose the Sick/Healthy classes for input images 
18 End 

3. Evaluation and experimental results 

In this section, we have evaluated the models based on the fifth phase of the proposed 
methodology. The evaluation criteria of the models, including accuracy (ACC), precision or positive 
predicted value (PPV), sensitivity (SEN), specificity (SPC), F1-score, false positive rate (FPR), false 
negative rate (FNR), and area under the curve (AUC), are measured using a confusion matrix 
(CM) [62]. The CM includes true positive (TP), false positive (FP), true negative (TN), and false 
negative (FN) elements. The CM utilized in this paper is described in Table 6. 

Table 6. The CM for this paper. 

The predicted class Actual class 

Healthy (Negative) Sick (Positive) 

FP TP Positive 

TN FN Negative 

According to Table 6, the elements of the CM are defined as follows: 
TP: The number of positive samples correctly diagnosed as patients by testing. 
FP: The number of positive samples wrongly diagnosed as healthy by testing. 
TN: The number of negative samples correctly diagnosed as healthy by testing. 
FN: The number of negative samples wrongly diagnosed as patients by testing. 
Indeed, the CM is a valuable tool for analyzing how the classification models diagnose the data 

in different categories. If the data is in the M category, a classification matrix will be a table with a 
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minimum size of M  M. Ideally, the TP and TN elements on the main diagonal of the matrix have the 
highest values, and the rest of the matrix elements have values equal to zero or close to zero ]63 [ . 

The formulas of the evaluation criteria for the models are given below: 

TP TNACC FP FN TP TN
     

(10) 

TPPPV TP FP   
(11) 

TNSPC TN FP   
(12) 

TPSEN TP FN   
(13) 

21 2
TPF Score TP FP FN     

(14) 

1FPR SPC   
(15) 

1FPR SEN   
(16) 

Table 7. Results of the models’ evaluation criteria on the CMRI dataset. 
 

Models Number of 

Folds 

ACC 

(%) 

PPV 

(%) 

SEN  

(%) 

SPC 

(%) 

F1-Score 

(%) 

FPR FNR AUC 

(%) 

NN 

 

5 92.11 89.66 95.57 88.55 92.5 11.45 4.43 93.4 

7 91.79 89.89 94.57 88.93 92.07 11.07 5.43 93.6 

10 92.18 89.28 96.44 87.79 92.66 12.21 3.56 93.3 

DNN 5 99.35 99.19 99.54 99.15 99.36 0.85 0.46 99.9 

7 99.44 99.72 99.18 99.72 99.45 0.28 0.82 100 

10 99.63 99.59 99.68 99.58 99.64 0.42 0.32 99.9 

FCM-

DNN 

5 99.66 100 99.31 100 99.65 0 0.69 100 

7 99.70 99.86 99.54 99.86 99.7 0.14 0.46 100 

10 99.91 100 99.82 100 99.91 0 0.18 100 

It should be noted that the FPR criterion is more important than the FNR criterion for clinical 
centers in identifying more risks in sick subjects ]64,63[ .  

According to the sixth phase of the proposed methodology, the experimental results of the models 
are illustrated in Table 7 in terms of the evaluation criteria and the number of folds. The experimental 
environment includes Intel(R) Core(TM) i5-4200U CPU @ 1.60 GHz to 2.30 GHz, 6 GB of RAM, 
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Windows 10 operating system, x64-based processor, and NVIDIA GeForce840M, and the methods 
are implemented using the RapidMiner software version 9.5.01 [46]. 

According to Table 7, the ACC, PPV, SEN, SPC, F1-score, FPR, FNR and AUC rates are 
obtained using the NN, DNN and FCM-DNN methods on the CMRI dataset. 

The most crucial criterion for diseases diagnosis is ACC. The ACC rate for CAD diagnosis using 
the proposed FCM-DNN method is more than the NN and DNN methods. 

The ACC of the FCM-DNN method is obtained as 99.91% on 4965 images using the 10-FCV 
technique, while the accuracy of the DNN and NN methods is achieved as 99.63% and 92.18%, respectively. 

 

Figure 10. (a). The AUC diagram for the NN method through the 5-FCV technique. (b). 
The AUC diagram for the NN method through the 7-FCV technique. (c). The AUC 
diagram for the NN method through the 10-FCV technique. 

In addition, the FPR and FNR criteria are essential for determining the false rate of diagnosing 
the disease for clinical centers so that the FPR is more valuable than the FNR for identifying more 
risks. The FPR value is achieved as zero, while the FNR value is gained as 0.18 using the proposed 

 
1https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/neural_nets/deep_learning.html 
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FCM-DNN method. Furthermore, utilizing the DNN method, the value of the FPR is gained as 0.42, 
and the FNR value is obtained as 0.32. Moreover, applying the NN method, the FPR value is calculated 
as 12.21, while the FNR value is obtained as 3.56. As a result, the FCM-DNN method has a lower 
false rate than the NN and DNN classification methods. 

As a significant result, there is a crucial criterion for evaluating the classification models, namely 
AUC, which indicates the accuracy of the level below the receiver operating characteristic (ROC) 
curve. Based on the 5-FCV, 7-FCV and 10-FCV techniques, the ROC diagram for the NN, DNN and 
FCM-DNN models are shown in Figures 10(a)(c), 11(a),(b) and 12, respectively. 

 

Figure 11. (a). The AUC diagram for the DNN method through the 5-FCV and 10-FCV 
techniques. (b). The AUC diagram for the DNN method through the 7-FCV technique. 

 
 
 

 

 

 

 

 

 

 

Figure 12. The AUC diagram for the FCM-DNN method through the 10-FCV, 7-FCV, 
and 5-FCV techniques. 

According to Figure 10(a), the AUC value for the NN method through the 5-FCV technique is 
obtained as 93.4%. Moreover, the AUC values of the NN method are achieved as 93.6% and 93.3% 
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through the 7-FCV and 10-FCV techniques, as shown in Figures 10(b),(c), respectively. The AUC 
value for the DNN method based on the 10-FCV and 5-FCV techniques is gained as 99.9%, as 
illustrated in Figure 11. The AUC value for the DNN method based on the 7-FCV technique is 
computed as 100%, as shown in Figure 11(b). Ultimately, according Figure 12, the AUC value for the 
FCM-DNN method through the 10-FCV, 7-FCV and 5-FCV techniques is obtained as 100%. 

As a result, the FCM-DNN model has the best AUC value compared to the NN and DNN models 
using the 10-FCV, 7-FCV and 5-FCV techniques. 

4. Discussion 

Recent advances in artificial intelligence methods using image processing for CAD diagnosis 
have attracted more researchers to the subject. Automatic diagnosis of CAD among sick and healthy 
images can be a crucial step for medical exegesis utilizing artificial intelligence methods. Deep 
learning method is the most common method for image processing. In this paper, the 8-layer deep 
learning model combined with fuzzy C-means clustering has been used for CAD diagnosis. Meanwhile, 
neural network and deep neural network methods have been implemented and evaluated. In fact, three 
methods were employed on the CMRI dataset for the first time. Moreover, 10-fold cross-validation, 7-
fold cross-validation, and 5-fold cross-validation techniques have been utilized to evaluate the models. 
The experimental results have demonstrated that the proposed deep learning model improves the 
automatic diagnosis of CAD in terms of accuracy, precision, sensitivity, specificity, F1-score, false 
positive rate, false negative rate, and AUC value. 

The performance of the proposed models is compared based on various criteria in Figure 13. 
According to Figure 13, the FCM-DNN method has the best performance compared to the NN 

and DNN methods in terms of the evaluation criteria. Therefore, diagnosis of CAD is guaranteed using 
the FCM-DNN method. 

 

Figure 13. A comparison between the NN, DNN, and FCM-DNN methods in terms of the 
evaluation criteria. 

Previous researches as well as the present study are compared in Table 8 regarding the accuracy 
of CAD diagnosis, methods, and datasets. 
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Table 8. CAD diagnosis using artificial intelligence methods. 

Dataset Methods ACC (%) Authors 

335 samples MLR 88.4 Verma et al.  ]42 [  

303 samples NN-GA (10-FCV) 93.85 Arabasadi et al. ]31[  

500 samples SVM (10-FCV) 96.4 Alizadehsani et al. ]32 [  

303 samples DNN 83.67 Miaoa and Miaoa. ]34 [  

303 samples N2Genetic-NuSVM (10-

FCV) 

93.08 Abdar et al.  ]33 [  

303 samples RTs(10-FCV) 91.47 Hassannataj et al.  ]17 [  

303 samples CART 100 Ghiasi et al.  ]41 [  

5100 samples NN with embedded 

decision tree features 

94.5 Idris et al. [43] 

303 samples weighted-average voting 98.97 Velusamy and Ramasamy,  ]44 [  

S52091  ECG signals KNN (10-FCV) 98.5 Acharia et al. ]39 [  

38120  ECG signals LSTM-CNN 99.85 Tan et al.  ]38[  

Angiography CT 

images with 126 

patients 

CNN 71.7 Hamersvelt et al. ]35 [  

140000   ECG signals CNN (10-FCV) 98.97 Acharya et al. [40] 

4965 CMRI FCM-DNN 99.91 In this paper 

According to Table 8, previous studies have been carried out on three types of datasets, including 
numerical data, ECG signal data, and CT angiographic data to diagnose CAD. For the first time, we 
have applied the AI methods on the CMRI image set, and among the NN, DNN, and FCM-DNN 
methods, we have achieved the highest accuracy of 99.91% for CAD diagnosis on 4965 images using 
the hybrid FCM-DNN method. 

5. Conclusions and future work 

Coronary artery disease, also known as coronary artery stenosis, is the most common disease in 
middle-aged and older people. Heart disease [65] is occurred by the accumulation of platelets in the 
arteries. Following this event, blood flow is clogged, leading to heart failure. The most popular tool 
for diagnosing CAD disease is angiography, which has side effects and high costs [66]. 

In recent years, many studies have been conducted to develop artificial intelligence-based 
methods and replace them with angiography. Hence, in this paper, the NN, DNN, and FCM-DNN 
methods were applied for CAD diagnosis on the CMRI dataset. The main purpose was to analyze the 
CMRI dataset in two different approaches using the standard NN, DNN, and FCM-DNN methods. In 
the first approach, the labeled dataset was applied for the NN and DNN modeling, while in the second 
approach, the unlabeled dataset was clustered and used for the FCM-DNN modeling. 

The results demonstrated that the proposed FCM-DNN method has the best accuracy rate of 99.91% 
and the least false rate compared to the NN and DNN methods. As a significant achievement, no studies 
have been carried out for CAD diagnosis on the CMRI dataset so far. As future work, we will study 
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convolutional neural network and auto-encoder neural network algorithms on the CMRI dataset to 
diagnose CAD. 
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