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Abstract
Introduction: Medical image captioning is an important AI task in healthcare, automating the generation of text
descriptions to support the management and interpretation of medical images. Our team participated in the
second task of the ImageCLEFmedical-Caption 2024 challenge using the ROCOv2 dataset with the BLIP approach.
Methods: Our approach leveraged the BLIP architecture for multimodal medical image captioning. This architec-
ture employs a ViT (Vision Transformer) as the image encoder and a BERT (Bidirectional Encoder Representations
from Transformers) as the text model.
Results: We ranked 5th according to BERTscore and placed 3rd with ROUGE, BLEURT, and RefCLIP scores. Addi-
tionally, we achieved 2nd place for BLEU-1, METEOR, and CIDEr scores. Notably, we obtained the top position
with a CLIP score of 0.827074, demonstrating the effectiveness of our approach in medical image captioning.
Conclusion: Our participation in the ImageCLEFmedical-Caption 2024 challenge demonstrated the effectiveness
of the BLIP architecture for medical image captioning, achieving a high CLIP score of 0.82707. This result demon-
strates the model’s potential to generate accurate and informative textual descriptions from medical images,
thereby aiding diagnosis and assisting non-experts in understanding medical images.
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1. Introduction

Image captioning, a well-established field in artificial intelligence (AI), finds applications across diverse
domains. In healthcare, the increasing availability of medical imaging equipment and the efficiency of
diagnosis based on visual data have fueled the popularity of image-based patient diagnosis. Medical
image captioning models address this need by automatically analyzing and describing medical images.
These models generate textual descriptions that assist doctors in diagnosing diseases, understanding
physiological processes, and enabling non-experts to interpret medical imagery.

This field integrates computer vision and natural language processing, demanding an understanding
of image components and their relationships [1]. Various models, such as the Show-Attend-Tell, GPT-3,
and BioLinkBERT-Large, have been utilized to generate comprehensive and descriptive captions for
medical images, including radiological scans and histopathological specimens [2] [3]. Transformer-based
approaches, like the Global-Local Visual Extractor (GLVE) and Cross Encoder-Decoder Transformer
(CEDT), have shown promise in capturing both global and local features of images, enhancing the
accuracy of generated captions [4]. These advancements in medical image captioning not only facilitate
clinical workflows and decision-making but also contribute significantly to medical education by
providing quantitative indicators and assessments for learning outcomes [5].

To successfully deploy image captioning in healthcare, it is essential to integrate effective algorithms
and use a sufficiently large and diverse training dataset. Our team participated in ImageCLEF 2024 for
the ImageCLEFmedical 2024 Caption [6] task which consists of 2 subtask: Concept Detection, Caption
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Prediction. We mainly focus on the latter. Here, participants are required to automatically generate
captions for given medical images, which could be of various modalities, such as ultrasound, X-Ray,
Computer Tomography (CT), Magnetic Resonance Imaging (MRI), etc.

Our approach for the caption prediction subtask is based on BLIP architecture with a Vision
Transformer (ViT) image Encoder. We employed BLIP (base/large) [7] with pretrained weights from
"Salesforce/blip-image-captioning-(base/large)".

2. Task and Dataset Descriptions

2.1. Task Description

ImageCLEFmedical-Caption is one of imageCLEF-medical’s tasks to create descriptive captions for
visual content. The tasks in ImageCLEFmedical-Caption include two sub-tasks:

1. Concept detection: Based on the visual image content, this subtask provides the foundation for
the scene understanding step by identifying the individual elements from which the annotation
is generated.

2. Captions prediction: The core task is to create descriptive captions for given images. Leveraging
identified concepts and contextual understanding, the models are tasked with generating concise
and informative textual descriptions that accurately reflect the visual content depicted in the
image.

In this study, we focus on the second sub-task based on the provided dataset ROCOv2 [8].

2.2. Dataset Descriptions

The dataset for this task is ROCOv2 [8]- an extended version of ROCO[9]. It is a multimodal dataset
consisting of radiological images and associated medical concepts and captions extracted from the
PubMed Open Access subset. All images in the dataset were accompanied by a caption, which form
the labels for the caption prediction task. Each caption was pre-processed by removing links from the
captions. The splits for the dataset are as follows:

• Training Set: Consists of 70,108 radiology images
• Validation Set: Consists of 9972 radiology images
• Test Set: Consists of 17,237 radiology images

As shown in Figure 1, the majority of captions in the dataset range from 50 to 150 words in length.
Similarly, Figure 2 illustrates that among the six imaging modalities represented in the dataset, CT scans
and X-rays are predominant, accounting for 24,227 and 19,363 samples in the training set, respectively.

Figure 1: Distribution of caption lengths in the training set (left) and validation set (right)



Figure 2: Distribution of image modalities in Train and Validation Sets.

3. Methods

3.1. Models

Bootstrapping Language-Image Pretraining (BLIP) [7] is a Vision-Language Pre-training (VLP) frame-
work which transfers flexibly to both vision-language understanding and generation tasks. BLIP
effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates
synthetic captions and a filter removes the noisy ones.

The model uses Vision Transformer (ViT)[10] which divides the input image into patches and encodes
them as a sequence of embedding with the addition of [CLS] token to represent the globe image feature.
As the authors mentioned ViT uses less computation cost and is a straightforward method, and is being
adopted by recent methods.

To be able to train or pretrain the model for understanding and generation tasks, a multimodal mixture
of an encoder and decoder is used, integrating three functionalities and three objectives, as illustrated
in Figure 3. The functionalities include a Unimodal Encoder, an Image-grounded Text Encoder, and
an Image-grounded Text Decoder. The objectives are Image-Text Contrastive Loss (ITC), Image-Text
Matching Loss (ITM), and Language Modeling Loss (LM)

3.2. Evaluation Metrics

We employed two main metrics: BERT Score [11] and ROUGE score [12].To calculate BERTScore, we
use the ’microsoft/deberta-xlarge-mnli’ model, which can be found on the Hugging Face Model Hub.
Additionally, other metrics such as BLEU-1 [13], BLEURT[14], METEOR[15], CIDEr[16], CLIPScore [17],
RefCLIP score[18], ClinicalBLEURT score, and MedBERT score were also applied for evaluation Before
evaluation, the text data underwent post-processing through three steps: conversion to lowercase,
replacement of numbers with a special token, and removal of punctuation. This preprocessing aimed to
standardize the text inputs and enhance the quality of evaluation result.



Contrast-enhanced T1-weighted sagittal image of
the brain, 1 month after initial presentation...
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Figure 3: Pre-training model architecture and objectives of BLIP (same parameters have the same color).The
multimodal mixture of encoder-decoder was proposed, a unified vision-language model which can operate in one
of the three functionalities: (1) Unimodal encoder is trained with an image-text contrastive (ITC) loss to align the
vision and language representations. (2) Image-grounded text encoder uses additional cross-attention layers to
model vision-language interactions, and is trained with a image-text matching (ITM) loss to distinguish between
positive and negative image-text pairs. (3) Image-grounded text decoder replaces the bi-directional self-attention
layers with causal self-attention layers, and shares the same cross-attention layers and feed forward networks
as the encoder. The decoder is trained with a language modeling (LM) loss to generate captions given images.

4. Experiments

4.1. Experimental Setup

In our experiments, we employed BLIP model (base/large) from pretrained checkpoints. For BLIP
base, we utilized weights from checkpoint "Salesforce/blip-image-captioning-base". The training was
conducted over 15 epochs with initial learning rate of 1e-5. We used a StepLR scheduler to decrease
the learning rate by factor of 10 every 3 epochs. For the BLIP large model, we utilized weights from
the checkpoint ’Salesforce/blip-image-captioning-large’. The training was conducted over 5 epochs
with an initial learning rate of 1e-5 and was stopped when the loss ceased to decrease. Throughout all
three experiments, we utilized the AdamW optimizer. Input image were resized to 224x224, while the
maximum length of text input was set to 200 tokens. To facilitate model training, we used a single GPU
A100 PCIE 40GB.

For each model, we experimented with 4 different generation settings with no_repeat_ngram_size =
3:

(1) Greedy Search
(2) Beam Search with beam_size = 3
(3) Beam Search with beam_size = 4
(4) Beam Search with beam_size = 5
(5) Beam Search with beam_size = 10

4.2. Experimental Results

4.2.1. Results on Validation Set

Based on the results in Table 1, the BLIP large model demonstrates better performance compared to the
BLIP base model. Both models show significant generative capabilities, with beam search outperforming
greedy search across ROUGE score, as well as BERTscore and BLEU score. Specifically, the BLIP base
model achieves its highest BERTscore and ROUGE scores with a beam size of 5, and its best BLEU score



ROUGE BERTscore BLEU

BLIP base (1) 0.263178 0.659321 0.291905
BLIP base (2) 0.264012 0.658852 0.300932
BLIP base (3) 0.264665 0.659548 0.299855
BLIP base (4) 0.264674 0.659648 0.297638
BLIP base (5) 0.263178 0.659321 0.291905

BLIP large (1) 0.269548 0.666101 0.285273
BLIP large (2) 0.274387 0.667651 0.295454
BLIP large (3) 0.274497 0.667971 0.295484
BLIP large (4) 0.272249 0.667263 0.292144
BLIP large (5) 0.269548 0.666101 0.285273

Table 1
Evaluation results of BLIP base and large models on the validation set in 5 generation configurations.

Ground truth: Computed tomography (CT) shows floating thrombosis (white arrow)
Prediction with greedy Search: contrast - enhanced computed tomography image
of the aortic arch ( white arrow ).
Prediction with Beam Search (beam_size = 3):  contrast - enhanced computed
tomography image of the aortic arch ( white arrow ).
Prediction with Beam Search (beam_size = 4):  contrast - enhanced computed
tomography image of the aortic arch ( white arrow ).
Prediction with Beam Search (beam_size = 5):  contrast - enhanced computed
tomography image of the aortic arch ( white arrow ).
Prediction with Beam Search (beam_size = 10):  contrast - enhanced computed
tomography image of the aortic arch ( white arrow ).

Ground truth: Early sagittal T2-weighted MRI.
Prediction with greedy Search: sagittal t2 - weighted mri of the thoracic spine.
Prediction with Beam Search (beam_size = 3):  sagittal t2 - weighted magnetic
resonance image of the cervical spine.
Prediction with Beam Search (beam_size = 4):  sagittal t2 - weighted magnetic
resonance image of the cervical spine.
Prediction with Beam Search (beam_size = 5):  sagittal t2 - weighted magnetic
resonance image of the cervical spine.
Prediction with Beam Search (beam_size = 10):  sagittal t2 - weighted mri of
the thoracic spine.

Figure 4: Two examples of predicted results and ground truths in the validation set of the caption prediction
task.

with a beam size of 3. The BLIP large model attains optimal results across all three metrics with a beam
size of 4. Additionally, as illustrated by the two examples in Figure 4, the model accurately identifies
objects and colors (white arrow), as well as different imaging modalities (CT and sagittal T2-weighted
MRI).

4.2.2. Results on Test Set

Based on the Test Set results in table 2 announced by the organizing committee, our team ranked
5th according to BERTscore; With ROUGE score, BLEURT score, RefCLIP score we ranked 3rd. With
BLEU-1, METOER and CIDEr score we achieved 2nd place. With CLIP score, we get the 1st result with
0.827074. These results demonstrate the model’s expected performance. However, the model we tested
still has a lot of room for further improvements, especially to optimize BERTscore.



Table 2
Results on Test Set

Team ID BERTScore ROUGE BLEU-1 BLEURT METEOR

pclmed 634 0.629913 0.272626 0.268994 0.337626 0.113264
CS_Morgan 429 0.628059 0.250801 0.209298 0.317385 0.092682
DarkCow 220 0.626720 0.245228 0.195044 0.306005 0.088897
auebnlpgroup 630 0.621112 0.204883 0.111034 0.289907 0.068022
2Q2T 643 0.617814 0.247755 0.221252 0.313942 0.098590
MICLab 678 0.612850 0.213525 0.185269 0.306743 0.077181
DLNU_CCSE 674 0.606578 0.217857 0.151179 0.283133 0.070419
Kaprov 559 0.596362 0.190497 0.169726 0.295109 0.060896
DS@BioMed 571 0.579438 0.103095 0.012144 0.220211 0.035335
DBS-HHU 637 0.576891 0.153103 0.149275 0.270965 0.055929
KDE-medical-caption 557 0.567329 0.132496 0.106025 0.256576 0.038628

Team ID CIDEr CLIPScore RefCLIPScore ClinicalBLEURT MedBERT

pclmed 634 0.268133 0.823614 0.817610 0.466557 0.632318
CS_Morgan 429 0.245029 0.821262 0.815534 0.455942 0.632664
DarkCow 220 0.224250 0.818440 0.811700 0.456199 0.629189
auebnlpgroup 630 0.176923 0.804067 0.798684 0.486560 0.626134
2Q2T 643 0.220037 0.827074 0.813756 0.475908 0.622447
MICLab 678 0.158239 0.815925 0.804924 0.445257 0.617195
DLNU_CCSE 674 0.168765 0.796707 0.790424 0.475625 0.612954
Kaprov 559 0.107017 0.792183 0.787201 0.439971 0.608924
DS@BioMed 571 0.071529 0.775566 0.774823 0.529529 0.580388
DBS-HHU 637 0.064361 0.784199 0.774985 0.476634 0.582744
KDE-medical-caption 557 0.038404 0.765059 0.760958 0.502234 0.569659

5. Conclusion and Future work

In this paper, we implemented and experimented the BLIP model for the task of medical image captioning
in the imageCLEFmedical-Caption 2024 challenge. Experimental results across various configurations
showed promising outcomes. Specifically, the model achieved a CLIP score of 0.82707 on the test set of
the ROCOv2 dataset. However, there is still significant room for improvement in our research. The
primary weakness of the model is that it was pre-trained on a dataset quite different from the medical
domain, resulting in considerable bias.

In the future research, we will focus on improving the model’s accuracy by utilizing pretrained
models with datasets that are more closely aligned with medical and diagnostic domains, as well as
applying preprocessing methods tailored to different types of images.
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