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Abstract—The article discusses the use of Galois field (GF) 

multipliers for cryptographic data protection based on 

elliptical curves. It recommends using extended Galois fields 

with characteristics d > 2 for digital signatures. The article 

proposes a criterion for determining the best field to use for 

data protection. It also describes methods for creating 

cryptoprocessors cores, including a VHDL generator for 

extended Galois field multipliers. However, generating field 

multipliers with large characteristics can be time-consuming. 

To improve efficiency, the article suggests simplifying the 

design and minimizing logic gates in an FPGA. The article 

determines the best fields for data protection based on the 

selected criterion and a certain algorithm. 
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I. INTRODUCTION 

Microprocessors are designed based on fundamental 

components that execute basic logical operations, known as 

Boolean functions. The Quine McCluskey technique is 

applied to minimize these functions [1]. 

Presently, computer technology is prominently directed 

towards advancing and utilizing cyberphysical systems 

(CPS), while also preparing for the advent of quantum 

computers. CPS, reliant on wireless technology, introduces 

data security challenges. Adversaries can exploit 

technological and algorithmic progress to breach 

information security, necessitating the exploration of new 

dependable protective methods. Digital signatures, 

commonly employing elliptic curves (EC) and Galois fields 

GF(2m) and GF(d), constitute prevailing tools for 

information security. However, the ascent of potent 

quantum computers renders these encryption techniques 

susceptible. A prospective remedy involves leveraging EC 

isogenies within GF(2m) or other extended Galois fields 

like GF(dn). The operation units for Galois fields are 

employed to process codes within these fields. The paper 

outlines a utility for generating VHDL descriptions of 

Galois field multipliers, pivotal in EC-based information 

security. The algorithms within information security 

systems possess a multi-tiered structure, necessitating the 

adjustment of operational devices to modify the Galois 

field, its characteristic, or the elliptic curve. Field-

programmable gate arrays (FPGAs) play a vital role in 

designing specialized computer functional units and 

encompass the subsequent significant attributes [2]: 

FPGAs expedite seamless transitions to ASICs, 

ensuring efficient mass production. 

FPGAs enable hardware implementations of algorithms 

and the storage of interim results within the chip during 

algorithm execution. 

Modern FPGAs safeguard intellectual property, 

complicating unauthorized replication and reverse 

engineering. 

Contemporary information security tools employ 

operations with extended Galois fields GF(2n) with 

substantial degrees denoted by n. The field elements are 

expressed in either polynomial or normal basis [3]. 

Consequently, the development of tools for conducting 

operations on elements within these Galois fields presents 

an immensely promising avenue for scientific and 

engineering exploration. Investigating the hardware, 

structural, and temporal intricacies of element multipliers 

within these fields is a formidable undertaking due to the 

need to multiply codes whose bit sizes align with the degree 

of the Galois field, potentially reaching up to 1000 bits. The 

subject of inquiry encompasses fields characterized by 

prime numbers (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 

43, 47, 53, 59, 61, 67, 71, and so forth, up to 997). The order 

of such fields approximates around 2998. 

II. RELATED WORK 

In recent times, the utilization of elliptic curves has 

found its stride within the realm of cryptography [4]. This 

stems from the fact that elliptic curves established over 

finite fields give rise to finite groups, endowing them with 

a structurally rich framework that simplifies the 

determination of arithmetic operations [5]. Historically, 

cryptography has revolved around multiplicative groups 

situated on specific finite fields. Elliptic curves share 

similarities with these groups, yet they offer a distinctive 

advantage: the freedom to select an elliptic curve is more 
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expansive compared to the options available for finite field 

selection. Moreover, elliptic cryptosystems yield 

heightened levels of data protection. To facilitate 

operations involving points on elliptic curves, Galois field 

arithmetic is harnessed, wherein the codified elements of 

these fields are represented in either polynomial or normal 

bases [6], [7]. The multipliers essential for Galois fields 

exhibit intricate characteristics encompassing formidable 

hardware requirements [8], structural intricacies [9], and 

temporal intricacies [10]. 

III. THE GOAL OF THE WORK 

The primary aim of this endeavor is to establish a 

theoretical foundation supporting the viability of 

employing extended Galois fields GF(dm) where the 

characteristic d exceeds 2 within the domain of data 

security tools. This effort seeks to formulate a yardstick for 

assessing and comparing data security tools grounded in 

such Galois fields and subsequently identifying the 

optimal fields based on the specified benchmark. 

Additionally, the article's objective encompasses the 

development of a tool capable of generating VHDL 

descriptions for multipliers operating on elements within 

these fields. These generated descriptions are intended for 

subsequent integration into the implementation of data 

protection mechanisms on Field-Programmable Gate 

Arrays (FPGAs). 

The generator's functionality is designed to encompass 

three prevalent configurations: 

The first variant entails the utilization of a Modified 

Guild Cell (MGC) as a consolidated entity, akin to a black 

box. 

The second variant involves the deployment of an MGC 

as both a multiplier and an adder. 

The third variant employs an MGC structured as a 

circuit comprising basic logical gates, effectively 

executing Boolean functions and delivering their 

outcomes. 

IV. FEAUTURES OF THE GALOIS FIELDS ELEMENTS 

MULTIPLIERS CORE GENERATORS DESIGN  

A significant challenge arises in the creation of 

multipliers for Galois field elements due to their 

substantial size, compounded by the presence of numerous 

resemblant components. 

Subsequently, a possibility worth exploring involves 

the juxtaposition of fields with roughly equivalent orders 

but varying characteristics for comparative analysis. The 

task of manually devising such multipliers is exceedingly 

intricate, if not verging on impractical. Consequently, the 

decision was made to conceive a Galois field multiplier 

generator tailored to Galois fields boasting orders of 

approximately up to 2998 and showcasing diverse 

characteristics. 

This generator was realized through the utilization of 

the C++ programming language. The generator's structural 

framework is illustrated in Figure 1. 

The generator executes multiplier generation using 

three distinct approaches: 

- Founded upon the Modified Guild Cell (MGC) concept, 

presented as a unified entity akin to a black box; 

- Constructed around MGC as a combined multiplier 

and adder; 

- Structured on MGC functioning as a circuit 

comprising basic logical gates, effectuating the 

minimization of Boolean function results. 

 

Figure 1.  Structure scheme of the Galois field multiplier generator 

The configuration of the multiplier, where MGC is 

presented as a unified entity, as well as a multiplier and 

adder, has been expounded in [9], while MGC's 

composition of basic logic gates is elaborated in [8]. 

The process of generating multipliers is subdivided into 

the following phases: 

1) Development of Boolean functions for individual 

units. 

2) Minimization of these functions. 

3) Creation of distinct units: 

SUM (an adder) 

MUL (a multiplier) 

F = (-Gm) mod d, where d signifies the field's 

characteristic, and Gm represents the output of MGC, 

SUM, or MUL. 

SMn (a module facilitating modular multiplication and 

addition, featuring result and carry outputs) 

SMch (a module executing addition or subtraction in 

the two's complement during division without restoring 

remainders) 

Sn (a module determining the operation type, addition, 

or subtraction, during division without restoring 

remainders) 

Rn (a module determining the necessity for an 

additional addition operation to ascertain the outcome, 

applicable solely for variants 2 and 3) 

4) Creation of the MGC. 



5) Establishment of interconnections between units to 

assemble the multiplier. 

During the formulation of Boolean functions, the 

generator automatically generates them in accordance with 

truth tables. The subsequent step involves minimizing 

these Boolean functions using the Quine–McCluskey 

method. 

 

Figure 2.  Galois field multiplier generator interface 

Figure 2 portrays the interface of the multiplier 

generator, offering options to configure the field 

characteristic as a prime number ranging from 2 to 2998, 

and the polynomial degree within the range of 2 to 998, 

while adhering to an order near 2998 or below. This 

interface features three buttons, each corresponding to a 

distinct generation variant. The process of generating 

multipliers for Galois fields can be notably time-intensive, 

spanning from a few minutes to several hours. 

Illustrated in Figure 3 is the schematic representation of 

the synthesized multiplier for GF(73) using Xilinx Vivado. 

This multiplier is formed from the Modified Guild Cell 

(MGC), encompassing both a multiplier and an adder. In 

Figure 4, the multiplier's diagram is presented for visual 

reference. 

 

Figure 3.  The scheme of the multiplier GF(73) in the implementation 

of the MGC as a unified entity 

 

Figure 4.  Scheme of the MGC in the implementation 

Several multipliers were produced using the generator, 

and subsequent analysis was conducted on the synthesized 

circuits within the Xilinx Vivado environment. The 

forthcoming analysis will encompass the evaluation of the 

generated multipliers within three distinct scenarios: the 

MGC implemented as a single element, the MGC 

composed of both a multiplier and an adder, and the MGC 

constructed as a circuit employing elementary logical 

gates. The substantial quantity of MGCs involved renders 

manual creation of these multipliers an exceedingly 

daunting task. In practical terms, millions of MGCs are 

employed within multipliers. 

V. USING THE TEMPLATE 

Tables I, II and III provide a comprehensive depiction 

of both actual and theoretical outcomes in the generation 

of VHDL-descriptions for multipliers, intended for the 

FPGA Virtex UltraScale+ XCVU9P, which incorporates a 

substantial 2,069,000 Look-Up Tables (LUTs). Notably, in 

the case of implementing multipliers with the MGC 

functioning as an integral unit, the hardware costs 

experience rapid escalation as the field order increases. 

Among various Galois fields, the costs are at their lowest 

for binary and ternary fields. 

Similarly, when employing the MGC composed of a 

multiplier and an adder, the hardware complexity exhibit a 

swift upsurge with the expansion of the field order. For this 

architecture, the most economical hardware costs 

materialize for fields with characteristics d = 2, 3, 5, and 7. 

In scenarios where MGC multipliers are designed with 

the architecture featuring MGC comprised of elementary 

logical gates, hardware costs exhibit an upward trajectory 

in tandem with the augmentation of the field order. As a 

result, the three specified architectures offer the flexibility 

to construct multipliers catering to varying requirements. 

The tables also presents the duration required for 

multiplier generation. It's observed that the time taken 

increases in direct proportion to the field characteristic. All 

measurements were conducted on a computer system with 

the following parameters: 

CPU: Intel(R) Core i7-4770 CPU 

Frequency: 3.40 GHz 

Memory: 32 GB 

Operating System: Windows 11, 64 bit. 

TABLE I.  HARDWARE COMPLEXITY OF MULTIPLIERS IN TERMS OF LUT 

COUNT NRD, NTD AND GENERATION DURATION FOR GALOIS FIELD 

MULTIPLIERS ON FPGA VIRTEX ULTRASCALE+ (MGC IMPLEMENTED AS 

A UNIFIED ENTITY) 

The field 

for which 

FPGA 

multiplie

r is built 

 

d 

Galois 

field 

order 

(approxi

mately, 

Od) 

MGC implemented as a 

unified entity 

LUT 

amount

, NRd 

Tim

e, 

sec. 

LUT 

amount

, NTd 

GF(250) 2 1,1E+15 2504 1,0 4901 

GF(332) 3 1,9E+15 4034 1,4 3970 

GF(522) 5 2,4E+15 19936 1,6 41625 



GF(718) 7 1,6E+15 16851 3,0 27585 

GF(1314) 13 3,9E+15 32134 8,0 185420 

TABLE II.  HARDWARE COMPLEXITY OF MULTIPLIERS IN 

TERMS OF LUT COUNT NRD, NTD AND GENERATION DURATION FOR 

GALOIS FIELD MULTIPLIERS ON FPGA VIRTEX ULTRASCALE+ (MGC 

COMPOSED OF A MULTIPLIER AND AN ADDER) 

The field 

for which 

FPGA 

multiplie

r is built 

d Galois 

field 

order 

(approxi

mately, 

Od) 

MGC composed of a 

multiplier and an adder 

LUT 

amount

, NRd 

Tim

e, 

sec. 

LUT 

amount

, NTd 

GF(250) 2 1,1E+15 2190 0,5 2450 

GF(332) 3 1,9E+15 4032 0,7 1984 

GF(522) 5 2,4E+15 5615 0,8 2768 

GF(718) 7 1,6E+15 3522 1,2 1837 

GF(1314) 13 3,9E+15 10211 2,0 10216 

TABLE III.  HARDWARE COMPLEXITY OF MULTIPLIERS IN 

TERMS OF LUT COUNT NRD, NTD AND GENERATION DURATION FOR 

GALOIS FIELD MULTIPLIERS ON FPGA VIRTEX ULTRASCALE+  (MGC 

COMPOSED OF SIMPLE LOGIC GATES) 

The field 

for which 

FPGA 

multiplie

r is built 

 

d Galois 

field 

order 

(approxi

mately, 

Od) 

MGC composed of 

simple logic gates 

LUT 

amount

, NRd 

Tim

e, 

sec. 

LUT 

amount

, NTd 

GF(250) 2 1,1E+15 18784 0,5 29208 

GF(332) 3 1,9E+15 17950 0,5 36510 

GF(522) 5 2,4E+15 17867 0,5 35049 

GF(718) 7 1,6E+15 16689 0,5 23366 

GF(1314) 13 3,9E+15 15369 0,5 23658 

Tables IV, V, and VI present a comprehensive 

comparison between the theoretical KTmul and the actual 

KRmul hardware costs of multipliers, juxtaposed against 

their relationship with the KT2 and KR2 costs of 

multipliers for binary fields. This analysis encompasses 

three distinct variants of MGC implementation. 

Specifically, KTmul is defined as NTd/NT2, and KRmul 

is expressed as NRd/NR2. 

The data highlighted in Tables IV, V, and VI, and 

graphs Fig. 5, 6, 7 underscore that, when the MGC is 

implemented as an integral entity, ternary Galois fields 

outperform binary ones by approximately 3%. However, 

when generating a multiplier utilizing MGC consisting of 

both a multiplier and an adder, a discernible pattern 

emerges. In comparison to binary fields, a field with 

characteristic 3 exhibits an 11% larger cost index, while a 

field with characteristic 5 demonstrates a 20% larger cost 

index, and a field with characteristic 7 reflects an 18% 

larger cost index. 

TABLE IV.  COMPARISON OF THEORETICAL AND ACTUAL 

HARDWARE COSTS OF MULTIPLIERS ON FOR FPGA VIRTEX 

ULTRASCALE+ (MGC IMPLEMENTED AS A UNIFIED ENTITY) 

Galois 

field 

d GF order 

(Od) 

𝐶𝑜

=
𝑂d
O2

 

MGC implemented as a 

unified entity 

𝐾𝑇mul  𝐾𝑇mul
Co

 
𝐾𝑅mul 𝐾𝑅mul

Co
 

GF(250) 2 1,1E+15 1 1 1 1 1 

GF(332) 3 1,9E+15 1,65 0,81 0,43 1,61 0,97 

GF(522) 5 2,4E+15 2,12 8,49 4 7,96 3,75 

GF(718) 7 1,6E+15 1,35 5,63 4,17 6,72 4,97 

GF(1314) 13 3,9E+15 3,5 37,8 10,8 12,83 3,66 

TABLE V.  COMPARISON OF THEORETICAL AND ACTUAL 

HARDWARE COSTS OF MULTIPLIERS ON FOR FPGA VIRTEX 

ULTRASCALE+ (MGC COMPOSED OF A MULTIPLIER AND AN ADDER) 

Galois 

field 

d GF order 

(Od) 
𝐶𝑜

=
𝑂d
O2

 

MGC composed of a 

multiplier and an adder 

𝐾𝑇mul  𝐾𝑇mul
Co

 
𝐾𝑅mul 𝐾𝑅mul

Co
 

GF(250) 2 1,1E+15 1 1 1 1 1 

GF(332) 3 1,8E+15 1,65 0,81 0,49 1,84 1,11 

GF(522) 5 2,4E+15 2,12 1,13 0,53 2,56 1,2 

GF(718) 7 1,6E+15 1,35 0,75 0,55 1,6 1,18 

GF(1314) 13 3,9E+15 3,5 4,17 1,19 4,65 1,32 

TABLE VI.  COMPARISON OF THEORETICAL AND ACTUAL 

HARDWARE COSTS OF MULTIPLIERS ON FOR FPGA VIRTEX 

ULTRASCALE+ (MGC COMPOSED OF SIMPLE LOGIC GATES) 

Galois 

field 

d GF order 

(Od) 

𝐶𝑜

=
𝑂d
O2

 

MGC composed of simple 

logic gates 

𝐾𝑇mul  
𝐾𝑇mul
Co

 
𝐾𝑅mul 𝐾𝑅mul

Co
 

GF(250) 2 1,1E+15 1 1 1 1 1 

GF(332) 3 1,9E+15 1,65 1,25 0.75 0,95 0,57 

GF(522) 5 2,4E+15 2,12 1,2 0,56 0.95 0,44 

GF(718) 7 1,6E+15 1,35 0,8 0,59 0,88 0,65 

GF(1314) 13 3,9E+15 3,5 0,81 0,23 0.81 0,23 

 

The Fig 5, 6, 7 represents the change in hardware 

complexity of multipliers for Galois fields with different 

field characteristics and different order of the polynom.  

 

Figure 5.  Comparison of theoretical and real hardware complexity 

coefficient when MGC is a whole element 

 



 

Figure 6.  Comparison of theoretical and real hardware complexity 

coefficient when MGC consists of a multiplier and an adder 

 

 

Figure 7.  Comparison of theoretical and real hardware complexity 

coefficient when MGC consists of simple logic gates 

VI. CONCLUSIONS 

The paper provides a comprehensive consolidation of 

the theoretical groundwork underpinning the development 

of Galois field multipliers on FPGAs. It delineates three 

distinct variants for the construction of Galois field 

multipliers, and subsequently conducts an insightful 

comparison among these alternatives. A bespoke tool has 

been engineered to facilitate the generation of VHDL-

descriptions for multipliers handling elements within such 

fields. These generated descriptions are intended for 

subsequent integration into the implementation of data 

protection mechanisms on FPGAs. 

The criterion employed for the comparative analysis of 

Galois field multipliers is hardware complexity. The study 

reveals that employing extended Galois fields GF(dm) with 

characteristics d > 2 is a judicious choice for data 

protection tools. Notably, the specific complexity of fields 

characterized by d = 3 outperforms fields characterized by 

d = 2 by 3% when the MGC is implemented as a unified 

entity. 

When the MGC is structured as both a multiplier and an 

adder, fields characterized by d = 3 exhibit an 11% higher 

hardware complexity index. Fields with d = 5 and d = 7, 

on the other hand, exhibit 20% and 18% higher indices of 

hardware complexity respectively, as compared to binary 

fields. 

The article outlines the architecture and outcomes of the 

Galois field multiplier core generator, accommodating 

various orders up to 9.49e+300 elements. This 

groundbreaking generator enables the creation of VHDL-

descriptions for multipliers that would be prohibitively 

intricate to devise manually. The generator formulates 

multiplier descriptions centered around the MGC 

composition, alongside proposing three diverse MGC 

construction approaches. Employing MGC as a complete 

unit, a multiplier and adder, holds advantages for fields 

with characteristics d = 2, 3, 5, and 7. However, MGC as a 

matrix multiplier and adder shines when dealing with 

multipliers featuring substantial field characteristics. 

The generation process for VHDL-descriptions can 

extend up to 889 seconds. Moreover, plans are underway 

for the creation of pipeline cores. 
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