
EasyChair Preprint
№ 8761

A Customized Protocol Cluster Analysis Method
Based on Reinforcement Learning

Peiying Wu, Xiaohui Li and Junfeng Wang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 30, 2022



A Customized Protocol Cluster Analysis Method
based on Reinforcement Learning

Peiying Wu
College of Computer Science

Sichuan University, 610065
Chengdu, China

Xiaohui Li*
School of Cyber Science and Engineering

Sichuan University, 610065
Chengdu, China

lixiaohui@scu.ecu.cn

Junfeng Wang
College of Computer Science

Sichuan University, 610065
Chengdu, China

wangjf@scu.edu.cn

Abstract—The network protocol defines the rules of commu-
nication between two or more hosts on the Internet. As an
indispensable means of information transmission in the network,
its structure and definition are directly related to communication
security. In the formulation of network security policies, the
reverse analysis of unknown protocols plays an irreplaceable
role, which is extremely important to the research and evolution
of network security. It has a wide range of applications in
malicious code detection, deep packet detection, and efficient
fuzzing. In this paper, a series of researches, implementations
and comparisons are made on the related technologies of reverse
analysis of customized protocols. The static analysis technology
route based on network tracking is selected, and it design and
implement the algorithm model RLPA, which uses reinforcement
learning DQN to cluster customized protocols. At the same time,
the representative common clustering methods are implemented
for experimental comparison. The analysis results indicate that
the unsupervised model is not effective for the resolution and
classification of customized protocols, while the reinforcement
learning and supervised models have superior performance.
Among them, the reinforcement learning model It can maintain
a stable classification effect in the face of different unfamiliar
datasets.

Index Terms—customized protocol parsing, protocol reverse
engineering, clustering, reinforcement learning

I. INTRODUCTION

Network security is an important strategic issue for any
country. It occupies an important position in national security
issues and also relates to all aspects of people’s lives. As an
indispensable means of information transmission in the net-
work, the structure and definition of the protocol are directly
related to the communication security. However, only a very
small fraction of the vast number of network protocols active
on the Internet is documented, with 53% of network traffic
being encrypted in 2016, growing to 87% in 2019 [1]. While
some applications use encrypted private protocols with the
original intention of protecting security and privacy, encryption
does not represent absolute security, and a large proportion
of these protocols support unauthorized communication, such
as malware hidden in encrypted traffic that constituted the
2017 The main body of malicious attacks [2], unknown private
protocol is the key factor. The data of online communication
is rapidly becoming opaque in an all-round way, and the
analysis of unknown protocols plays an indispensable role

in malicious code analysis, intrusion detection, and decision-
making for network security issues. The high demand for
incident response and threat intrusion detection has promoted
the development of unknown protocol reverse analysis, that is,
protocol reverse engineering (PRE).

Protocol reverse engineering is the process in which pro-
tocol parameters, formats, and semantics are inferred in the
absence of formal specifcations[3]. The reverse analysis of
unknown protocols is of great significance to the research and
development of network security, and has a wide range of
applications, for network security engineers, software devel-
opers and other relevant roles, it is very important to master the
basic format and relevant knowledge of network transmission
protocols[4]. Malware protocol analysis, as one of the most
typical problems in the field of network security, relies on
protocol reverse analysis for implementation. Most malware
uses network protocols to communicate with its command and
control servers. For instance, the general botnet intrusion and
control of distributed hosts are realized by using unique and
customized application layer network protocols. Reverse anal-
ysis of such protocols can help identify some key information,
including the location of botnet hosts, upcoming attacks, attack
targets, etc., to help predict attacks and make corresponding
countermeasures[5]. Another application direction of protocol
reverse engineering is software security audit[6], whose main
goal is to request components in different situations to check
if they can handle communication correctly. Protocol models
can be used to develop intelligent fuzzers to test the robustness
of protocol implementations. Meanwhile, Protocol reverse
engineering can detect the normalization and consistency of
the implementation of known network protocols by application
software, and test the performance. Reverse engineering can
get the protocol model from the software development source
code and the underlying configuration, so as to check whether
the implementation of the protocol conforms to the specifi-
cation; in addition, reverse protocol engineering can also be
used to support interoperability technology implementation,
a typical application is the Samba project, It enables the
interoperability of Linux and Windows systems through the
open-source implementation of the SMB/CIFS protocol[6].

Since the protocol specification of a customized protocol is
kept secret in the hands of the developer or owner, protocol



reverse engineering is often the only way to analyze the
customized protocol. As the features and functions change,
the protocol continues to evolve, and the completeness and ap-
plicability of the previously known protocol specifications are
reduced, making it increasingly difficult to analyze customized
protocols; at the same time, although the reverse engineering
of automated protocols is under research and development,
so far Most of the reverse parsing process is done manually,
which is time-consuming and has a high error rate. Therefore,
improving the accuracy, automation, and speed of protocol
reverse engineering is a key issue for modern network security
and improving the Internet communication environment.[7]

From the input point of view, there are two categories of
current protocol reverse analysis methods: static analysis meth-
ods based on network traces and dynamic analysis methods
based on execution traces[7]. The two inputs of protocol re-
verse engineering are execution tracking and network tracking.
Execution trace is the code executed by the communicating
application on multiple hosts at one time. Dynamic stain
analysis is used to track and analyze communication data, to
identify the semantic and structural information of the field.
This method is based on the use of memory data reflected
by program instructions in the protocol processing process
to parse the protocol format; network tracking is the real
traffic captured from the network using packet capture tools,
combined with natural language processing, statistics and other
algorithms to analyze the data in the data stream. Semantic
syntax, field format and other information and the frequency of
occurrence of keywords are counted and processed to achieve
the purpose of identifying the protocol type to which different
traffic belongs.

Based on the above background, our method selects the
static analysis method based on network tracking, researches
the clustering technology in the reverse analysis of cus-
tomized protocols, and conducts experiments and comparisons
to achieve a variety of network traffic text clustering meth-
ods. For the clustering algorithm, this paper implements two
classical training models, unsupervised and supervised, and
innovatively proposes to use reinforcement learning for text
clustering. The experimental design is to change the collection
method and source of the data set many times and improve
the preprocessing process through code implementation, select
the most effective data set, adjust and optimize the model
structure and parameters, and use the same data. Set is the
comparison of clustering analysis using multiple models as
input, and observe the effect.

II. RELATED WORK

In this section, we describe the background knowledge of
describing the work of Protocol Reverse Engineering, and
briefly present the mainstream technical methods and related
core concepts in this field. Then, introduces the two main
categories of methods, dynamic analysis and static analysis,
in protocol reverse engineering.

A. Protocol Reverse Engineering

Protocol Reverse Engineering is the process of inferring
protocol parameters, formats, and statements without a formal
specification. PRE performs segmentation of protocol format
and recovery of Protocol Finite State Machine by analyzing
traffic or program trace data[5]. The protocol finite state
machine defines the time, sequence and state of the transition
of the message between the two hosts, which is the state and
sequence of the transition from one form to another in terms of
syntax and semantics according to the protocol; the protocol
field is represented as a priority field from left to right or
reverse positioning.

The core steps of PRE analysis lie in format extraction, field
definition and reasoning. From the perspective of control, the
analysis methods of PRE can be divided into two categories:
active analysis and passive analysis. Active analysis will use
specific parameters to manipulate the system and conduct
inspection and observation during the control process, while
passive analysis will obtain various data for observation and
analysis; from the perspective of input, it can be further di-
vided into inference based on Execution Traces and inference
based on Network Traces. The two inputs of protocol re-
verse engineering are execution tracking and network tracking.
Execution trace is the code executed by the communicating
application on multiple hosts at one time; a network trace
is to use tools to capture network traffic and store it as an
analyzable file.

PRE receives the input of network tracking or execution
tracking, analyzes it in combination with the standard format
of known protocols and other information, and outputs tar-
get results through a series of processing methods such as
data processing, feature extraction, algorithm modeling, and
semantic reasoning, and deploys them to demand scenarios.
Simultaneous analysis of the results can reveal more questions
and information[7].

B. Dynamic Analysis Based on Execution Tracings

Execution tracing is a piece of code or a tracing tool that
is executed during an operation process of an application be-
tween multiple communication hosts. Dynamic analysis based
on execution tracing captures the internal process information
of binary executable files and utilizes protocol processing.
It uses dynamic stain analysis technology to analyze data
usage and analysis process, and identifies the semantic and
structural information of the fields. This method analyzes the
relevant data of the programs and instructions called by the
system in the process of processing the protocol, including
the use frequency of each instruction, network configuration
parameters, system call parameters, operation content logs, and
the polluted word of the protocol message section, instruction
address, instruction dependency chain and pollution propaga-
tion relationship and other characteristics[5].

The Analytical methods based on execution tracing extract
static or run-time features that are closely related to protocol
handlers, and by using program analysis techniques, it is often
possible to reverse-recover clean protocol processing.



However, platform-specific instructions make code or tools
based on execution traces difficult to port, and this method
requires access to the executable file of the protocol program.
Since the executable file of the protocol program is almost
inaccessible, the implementation complexity and Considering
the difficulty, this paper does not adopt the dynamic analysis
method based on execution tracking.

C. Static Analysis Based on Network Tracings

As the rules and conventions of Internet data transmission,
the structural characteristics of protocols are relatively stable
and obvious. Different protocols and their properties (includ-
ing syntax, semantics, time, etc.) reflect different character-
istics, so the field structure of the protocol can be used to
extract a very effective analysis and identification basis. The
static analysis based on network traces is simple to operate,
has strong timeliness, and runs fast, and can quickly obtain
results when there are many message samples and protocol
types. The analysis method is to mine majority of network
communication traffic data and make full use of the sequence
features in them, mainly including field information such as
bits, bytes, and message byte frequencies. By extracting the
similar features of the data text format, identify the field
boundaries, protocol syntax and semantic information[7].

This method does not need to directly access the protocol
processing application program, so it is fit to intercept the traf-
fic data between two communication hosts for processing and
analysis. In general, a specific protocol field carries a specific
semantics, and its information content is different, resulting
in different data distribution. The prominent feature of this
analysis technology is to extract the feature differences of
protocol fields, so as to achieve the purpose of distinguishing
fields with different structure and semantics[8]. At the same
time, the stripped protocol binary executable file exposes fewer
semantic features than the source data, Although dynamically
executed binary files can more accurately reflect the action
position and execution path of the protocol, such files are
highly dependent on the environment and platform, and there
are also some other constraints, which can possibly lead binary
files to not execute correctly. Moreover, for the analyst, neither
the client nor the server can be accessed, so it is impossible
to obtain the details of the program execution process, which
makes traffic data the only externally available information,
and the traffic is the most important observation in static
analysis technology of network tracking feature.

Based on the above background premise, the technical route
of static analysis based on network tracking, which takes
network traffic as the analysis object, is established for our
goal. The purpose of identifying different customized protocol
types.

III. RLPA CUSTOMIZED PROTOCOL ANALYSIS
ALGORITHM

For the proposed method, the process is first described the
complete process of our method, then briefly introduces the
relevant basic concepts of reinforcement learning. Finally we

introduces the main innovative part of this method in detail:
the reinforcement learning-based network traffic text clustering
algorithm model (Reinforcement Learning Protocol Analysis,
RLPA) design details.

A. Framework of Algorithmic Flow

At present, the common applications with huge customer
traffic on the Internet basically encrypt and encapsulate their
application layer data, and use private customized protocols
defined by enterprises or developers for transmission. There-
fore, our method selects applications or websites which have
large real-time transmission traffic for web traffic capture,
and cuts the publicly known protocol parts such as MAC
address, IP address, TCP/UDP protocol header, etc. in the
captured network traffic text, and the remaining part is input
as one-dimensional text data after preprocessing. The text
clustering model extracts and divides the field format and
structural characteristics of traffic, so as to achieve the purpose
of directly classifying the source of unknown traffic. The
schematic flow of the entire algorithm framework is shown
in Figure 1:

The specific process described in the above figure is: first,
collect network traffic text data based on a common private
protocol, and perform data preprocessing to convert it into one-
dimensional text data that can be used by the model. Input
the text data into the established algorithm framework, the
environment continuously throws text data to the model for
classification, and gives reward feedback, the model contin-
uously interacts with the environment and learns experience
until the accumulated reward reaches the set threshold.

B. Traffic Text Classification based on Reinforcement Learn-
ing

Reinforcement learning is a training model that rewards
correct behaviors and punishes wrong behaviors. The agent
under training makes the choice of the next decision by sensing
the feedback information of the environment, and learns the
experience through multiple attempts and environment inter-
action. The essence of reinforcement learning is the process
of finding the decision that can get the best result, and it is
rarely applied to the field of classification problems before,
but our method uses it to make the first attempt to solve the
problem of text clustering with unknown protocol traffic.

a) Environment interaction logic: Reinforcement learn-
ing is to learn strategies through the state and rewards of envi-
ronmental feedback in the interaction with the environment[9],
and apply it to the scene of text clustering, just like a game
environment that constantly generates text, for the agemt the
ultimate objective is to learn to identify a Which app the traffic
text came from. At the beginning, it is random guessing, the
environment will give a feedback signal, the correct answer
is rewarded, the wrong answer is punished, and the agent
improves its score through continuous interaction. Finally,
when the score is higher than a threshold, it is considered
that the agent has learned the ”game”, that is, it has learned
to classify the traffic text.



Fig. 1. Flowchart of the algorithm framework

Our method is designed based on this idea. The overall
process is: the environment randomly returns a piece of text
data; the agent makes an action to the environment, that is,
guesses 0-4 of the application category number to which
the source of the text belongs; the environment returns the
reward and the next random traffic text data. The reward and
punishment mechanism is to add points for correct prediction,
minus points for wrong prediction, and return 0 points for
initialization actions.

b) Calculation of Q value: One of the reinforcement
learning methods, Q-Learning, is a value-based algorithm that
inputs the current state s and outputs Q(s, a), which represents
the expectation of the benefit that can be obtained by taking
action a in state s. A Markov decision process, Q-Learning
starts from the current state and, at any and all successive steps,
finds an optimal policy based on the principle of maximizing
the expected value of the total return.

The Bellman equation is the core equation in reinforcement
learning algorithms and builds the recursive relationship be-
tween the value functions before and after state transitions.

Q (S0, A0) = Q (S0, A0) + α [R (S0, A0)+

γmax {Q (Si, A0) , Q (Si, A1) , ...} −Q (S0, A0)
(1)

It is a dynamic programming equation. The left side of
the equation is the new Q(S0, A0), and the right side of the
equation is the new Q(S0, A0); S0 is the current state, A0 is
the current action, Ai is the next action selected, and Si is the
state after Ai is selected; α is learning rate, γ is the degree of
attenuation, indicating the degree of dependence on the future.

Traditional Q-learning stores Q values in table form, which
is essentially an exhaustive idea. As the complexity of the
problem and the amount of data increase, there are too many
types of states that may exist, resulting in bottlenecks caused
by dimensional disasters. Then Deep Q-Network was proposed
to solve this problem[10]. DQN is an advanced Q-Learning
algorithm based on neural network, which is integrated into
the neural network to generate the corresponding Q value,
instead of storing the Q value in the traditional table format.

In our method, if the Q-table is constructed directly using
text data as a state, only a single character can be used as
a feature, and the structural and grammatical features of the
entire text cannot be learned. Therefore, the DQN algorithm
is selected, which first uses CNN to encode the text data, and
then uses the fully connected layer to output the corresponding
Q value.

The steps of estimating and outputting the Q value by the
neural network are: convert the input one-dimensional text
data into a feature vector after processing by CNN, then input
it to the fully connected layer and output the corresponding
source application classification number, and input the current
state to take action, and the dot product of the two is obtained
to obtain the Q value estimate corresponding to the current
pair of state-action pair.

Fig. 2. Fitting Q-Functions Using Neural Networks

c) Dual network structure: In basic Q-Learning, the
agent’s optimal policy always chooses the best behavior in
a given state. The background assumption of this move is
that the optimal action has the largest estimated Q value, but
the actual situation is that the agent initially knowing nothing
about the environment, the Q value needs to be estimated and
updated, and it is impossible to determine whether the action



with the largest estimated Q value is the best action. In fact,
the Q value of the best behavior is not the maximum Q value
in most cases, and the optimal policy method adopted by the
agent can make the Q value move closer to the target quickly,
but it will lead to overestimation of the Q value, resulting in
suboptimal strategic question.

The Google DeepMind team introduced a Double-
DQN architecture for this Q-Learning optimistic estimation
problem[11]. DDQN has two Q networks with the same struc-
ture, one is the main for action decision-making, and the other
is the target for calculating the Q value. It does not directly
select the one with the largest Q value among all actions,
instead, it first finds it in the current Q network. The action
corresponding to the maximum Q value is obtained, and then
the action is used to calculate the target Q value in the target
network. Its calculation formula is as follows:

yj = Rj + γQ′ (Φ (
S′
j

)
, argmaxQ

(
Φ
(
S′
j

)
, α, ω

)
, ω‘

)
(2)

Among them, yj is the current target Q value; Q represents
the current Q network of model1, Q′ represents the target Q
network of model2; Rj is the reward corresponding to the
current state-action; Φ(S′

j) is the feature vector of the state;
α is the learning rate; ω is the network parameter of the
current Q network; ω′ is the network parameter of the target
Q network.

Fig. 3. Schematic diagram of dual network DQN process

The Main network, which is responsible for the action
decision, always calculates the Q value according to its
own weight, and uses the maximum value calculated by
the target network to update the parameters of the policy
function to make decisions about the action;the target network
responsible for value estimation updates its own parameters
by observing the Main. The two networks have exactly
the same structure, so the parameters of the Main network
are copied to the target network every certain number of steps.

d) Simplified experience playback steps: Experience re-
play is a memory replay technique in reinforcement learning,
which stores the (St, At, Rt, St+1) quintuple experienced by
the agent in each step in an array named memory, and then
randomly samples A batch of experience is used for learning.

The key reason for using experience replay is that in general
reinforcement learning problems, the state St and the next state
St+1 are considered to be strongly correlated, and the update
of Q(S0, A0) in the Bellman equation depends on Q(Si, Ai).

Experience replay can break the correlation between con-
secutive samples and avoid continuous samples from causing
the variance of parameter update to increase. Neural networks
require training data to be as low as possible, and experience
replay is used in reinforcement learning frameworks based on
the context of continuous problems to ensure data indepen-
dence.

The general reinforcement learning framework includes the
steps of using experience playback to optimize parameters, but
because our purpose is to solve a classification problem, it is
a discrete problem rather than a continuous one; the data is
independent and identically distributed, and each traffic data
is independent of each other, so there is no certain correlation
before and after. It does not need experience replay to solve
the problem of strong correlation of data.

Therefore, the DQN framework of our method does not
integrate the next state St+1 into the calculation of the current
Q value update, simplifies the structure, and reduces the
amount of calculation.Thus, the above Bellman equation can
be simplified as follows:

Q (S0, A0) = (1− α)Q (S0, A0) + αR (S0, Ai) (3)

IV. EXPERIMENTAL VERIFICATION

Based on the network tracking-based protocol reverse
method and static network traffic text clustering algorithm
proposed above, this paper develops a relatively complete
customized protocol parsing system including data capture
and protocol clustering. In terms of clustering algorithm, the
above DQN algorithm model is implemented, and four models
of KMeans, Agnes, KNN, and CNN are implemented for
comparison.

A. experimental environment

We use Python3.8 as the development language, the op-
erating environment of the experiment is Mac OS10.13 with
Pycharm Edu 2021.3.3, and the network traffic data is captured
from Tencent video app, Youku video app, iQiyi app, Mango
TV app, and bilibili web version

B. Data set

For the purpose of verifying the validity of the algorithm
model implemented by this method, this paper intends to use
the real scene private protocol data set and the Internet public
data set for comparison and verification. The specific data set
includes the following contents:

• Video playback private protocol data set: Each time a
video app is opened and run, the socket program is used
to capture packets. In order to obtain enough valid data,
each app captures 20,000 pieces of data. After the invalid



data is filtered by data preprocessing, each app has 5000
pieces of data for experiments.

Fig. 4. Socket capture source data and hexadecimal conversion example.

• Compare data set: In order to further accurately verify the
effect of the model and avoid the over-fitting phenomenon
caused by the special structure of the captured data set,
our experiment uses the Android Adware and General
Malware Dataset[9] ] for experimental comparison. The
traffic of this data set is captured on real Android de-
vices installed with various applications, and processes
them into csv format files, which contain the traffic of
more than 1900 applications and are divided into three
categories: adware, malware, and common software. The
comparative experiment uses 4745 pieces of software
traffic of each type.

The steps of data preprocessing are as follow.

TABLE I
STEPS OF DATA PREPROCESSING

Step Content

Step 1
Convert a hexadecimal character to the correspond-
ing decimal number, each hexadecimal character is
a processing unit

Step 2 Take the average of all data lengths of the five apps,
and cut all data to a uniform length

Step 3 Fill in the null part of each row of data using
homogeneous mean interpolation

Step 4
Use fit transform to fit some data, find out indicators
such as mean and variance, and then transform the
data, including standardization, normalization, etc.

Step 5

Perform PCA dimensionality reduction on part of the
data of the five apps. The parameter is 0.98 to retain
98% of the valid information, and obtain the data
length of each app after dimensionality reduction.

Step 6

Take the average value x of the length after dimen-
sionality reduction, and perform PCA dimensionality
reduction with the parameter of integer x on all data,
so that all data lengths are uniformly reduced to x

Step 7 Perform fit transform processing on the dimension-
ally reduced data again

C. Analysis of Results

• KMeans
For the unsupervised clustering model, the prediction accu-

racy cannot be directly obtained like the supervised model,
and the clustering effect evaluation is performed using the
evaluation index for unsupervised clustering. There should be
5 types of accurate clusters in this experiment, and the K value
is 2-10 for training, and it is checked whether the K value with
the best evaluation effect is 5, so as to assist in judging whether
the clustering effect is accurate.

Evaluation index: The closer the Silhouette Coefficient is to
1, the better; the higher the Calinski-Harabasz score, the better.
When the count of real clusters is greater than the value of the
parameter K, with the increase of the value of K, the values
of the two will also increase significantly; after the value of
K reaches the actual number of clusters, the increase of the
value of K no longer has too much effect on the degree of
aggregation. Influence, the range of change is reduced, and
finally stabilized.

Fig. 5. Silhouette Coefficients for video app datasets.

Fig. 6. Calinski-Harabasz score for video app datasets.

TABLE II
KMEANS TRAINING RESULT EVALUATION VALUE OF VIDEO APP DATASET

K Value Silhouette Coefficients Calinski-Harabasz score

2 0.652991 13643.059605

3 0.260383 10060.567892

4 0.102143 8392.130427

5 0.106239 7563.166399

6 0.111139 7180.266612

7 0.121585 6700.355679

8 0.114103 6067.188146

9 0.118053 5669.182936

Average 0.198329 8159.489712



It can be seen from the distribution of evaluation indicators
in Figure 5, Figure 6 and Table II that the training results
obtained by this model believe that 2 or 3 are the real number
of species, which is inconsistent with the actual value of 5,
and the performance of the silhouette coefficient and Calinski-
Harabasz score when K is 5 are very bad.

Fig. 7. Silhouette Coefficients for Android dataset.

Fig. 8. Calinski-Harabasz score for Android dataset.

TABLE III
KMEANS TRAINING RESULT EVALUATION VALUE OF ANDROID DATASET

K Value Silhouette Coefficients Calinski-Harabasz score

2 0.959698 2323.664049

3 0.453894 2496.063979

4 0.466851 3016.911699

5 0.360408 2978.173265

6 0.366110 2849.757736

7 0.379042 2777.929478

8 0.392565 2811.220668

9 0.412769 2819.390079

Average 0.473917 2759.138869

As for the Android dataset, it can also be seen from the
above results that the KMeans model thinks that the best K
values in the data set are 2 and 4, which is inconsistent with

the actual number of categories 3. Therefore, it is judged that
the KMeans clustering model has poor clustering effect on the
customized protocol data in the project.

• Agnes

The Agnes model observes the effect of the number of
samples in each cluster after clustering the statistical model.
The clustering results of the two data sets are as follows.

Fig. 9. clustering results of video app dataset.

Fig. 10. clustering results of Android dataset.

The ideal clustering effect should be that the number of
samples in each cluster is roughly close to 5000. The ideal
result of the Android dataset should be that the number of
samples in each cluster is roughly close to 4745, and the
number of samples in each cluster in the two clustering
results is too large. It can be seen that the Agnes model is
not effective for clustering the customized protocol data in
this experiment.

• Supervised Learning and Reinforcement Learning

These three algorithms can directly calculate the precision
rate, accuracy rate and recall rate as evaluation indicators.
The experimental results of KNN, CNN, and reinforcement
learning models are shown in figure11.

For the experimental results, it is obvious that the overall
effect of supervised learning is much better than that of
unsupervised learning. The performance of the three algorithm
models is very good when using the video traffic data captured
and processed by our method, but when using the Android
data set, the performance of the three all declined, indicating
that there may be some overfitting in the data processing and
model structure of our method.



Fig. 11. Clustering results of KNN, CNN, DQN.

Under the premise of different sources and structures of
customized protocol traffic data, all three can maintain an
accuracy rate of more than 80%. Among them, CNN has a
large change, and the three indicators of KNN and DQN are
all maintained at about 85%.

V. CONCLUSION

During the completion of this paper, we consulted a large
number of relevant papers in the field of reverse engineer-
ing of customized protocols, studied the core concepts and
mainstream technical methods, and selected a static analysis
method based on network tracking to implement.

At the same time, the machine learning clustering algorithm
is carefully studied, and the use of reinforcement learning
method for text clustering is innovatively proposed to achieve
a variety of network traffic text clustering methods, and
experiments are designed for research and comparison.

In terms of achievements, this project selected a static anal-
ysis method based on network tracking, used python socket
programming to capture network traffic and preprocessed it
into a data set; proposed a reinforcement learning clustering
model based on dual-network DQN. Finally, it is verified by
experiments that the supervised learning clustering model and
the reinforcement learning model have good effects in the
application of customized traffic clustering analysis.

Since time is limited, the improvement of the model struc-
ture and the experimental design are not very perfect, and
some related parameters have not been compared with all the
values. Therefore, the validity comparison of the model and the
performance and effect improvement work need to be further
improved.

The application of reinforcement learning in the field of
clustering is very rare. The characteristics of the model itself
are not suitable for the clustering problem. DQN is basically
the same as KNN and CNN models in terms of accuracy, but
has some disadvantages in terms of timeliness and algorithm
complexity. There is still a lot of room for exploration in the
application of reinforcement learning in the field of classifi-
cation, and there is still a lot of room for improvement and
improvement.

REFERENCES

[1] Mary Meeker,Internet Trends 2019,
https://www.bondcap.com/report/itr19/(accessed March 23 2021).

[2] Cisco,Cisco 2018 Annual Cybersecurity Report,
2018, https://www/csico.com/c/dam/m/digital/elq-
cmcglobal/witb/arc2018/acr/2018final.pdf(accessed 23 March 2021).

[3] J. Narayan, S.K. Shukla, T.C. Clancy, A survey of automatic
protocol reverseengineering tools, ACM Comput. Surv. 48 (2015)
http://dx.doi.org/10.1145/2840724.

[4] Jack Halon, Reverse Engineering Network Protocols, 2022,
https://jhalon.github.io/reverse-engineering-protocols/.

[5] Baraka D. Sija, Young-Hoon Goo, Kyu-Seok Shim, Huru Hasanova,
Myung-Sup Kim.A Survey of Automatic Protocol Reverse Engineering
Approaches, Methods, and Tools on the Inputs and Outputs View.
Hindawi Security and Communication Networks Volume 2018, Article
ID 8370341, 17 pages, https://doi.org/10.1155/2018/8370341

[6] Julien Duchene, Colas Le Guernic, Eric Alata, Vincent Nicomette,
Mohamed KaÃ¢niche. State of the art of network protocol reverse engi-
neering tools. Journal of Computer Virology and Hacking Techniques,
Springer, 2018, 14 (1), pp.53-68. ff10.1007/s11416-016-0289-8ff. ffhal-
01496958f.

[7] Yuyao Huang, Hui Shu, Fei Kang, Yan Guang. Computer Communica-
tions 182(2022)238-254. www.elsevier.com/locate/comcom.

[8] Pan Fan, et al., Overviews on protocol reverse engineering, Appl. Res.
Comput.28 (Aug) (2011) 2801–2806.

[9] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, Anil An-
thony Bharath, A Brief Survey of Deep Reinforcement Learning, EEE
Signal Processing Magazine, Special Issue on Deep Learning for Image
Understanding (arXiv extended version),Submitted on 19 Aug 2017 (v1),
last revised 28 Sep 2017 (v2).

[10] MoFan, https://mofanpy.com/tutorials/machine-learning/ML-intro/DQN/
[11] Arash Habibi Lashkari, Andi Fitriah A. Kadir, Hugo Gonzalez, Kenneth

Fon Mbah and Ali A. Ghorbani, “Towards a Network-Based Framework
for Android Malware Detection and Characterization”, In the proceeding
of the 15th International Conference on Privacy, Security and Trust, PST,
Calgary, Canada, 2017.

[12] Hado van Hasselt, Arthur Guez,David Silver, Deep Reinforcement
Learning with Double Q-Learning.Vol.30 No.1(2016):Thirtieth AAAI
Conference on Artificial Intelligence.

[13] O. Esoul, N. Walkinshaw, Using segment-based alignment to ex-
tract packet structures from network traces, in: 2017 IEEE In-
ternational Conference on Software Quality, Reliability and Se-
curity (QRS), Prague, Czech Republic, Jul.2017, pp. 398–409.
http://dx.doi.org/10.1109/QRS.2017.49.

[14] F. Sun, S. Wang, C. Zhang, H. Zhang, Clustering of unknown protocol
messages based on format comparison, Comput. Netw. 179 (2020)
107296, http://dx.doi.org/10.1016/j.comnet.2020.107296.

[15] X. Luo, D. Chen, Y. Wang, P. Xie, A type-aware approach to message
clustering for protocol reverse engineering, Sensors 19 (3) (2019) 716,
http://dx.doi.org/10.3390/s19030716.

[16] Min Liu, Chunfu Jia, Lu Liu, Zhi Wang, Extracting sent message formats
fromexecutables using backward slicing, in: 2013 4th International Con-
ference on Emerging Intelligent Data and Web Technologies (EIDWT),
pp. 377–384.

[17] K. Anastasis, M. Michail, ICSREF: A Framework for Automated
Reverse Engineering of Industrial Control Systems Binaries, 2019,
http://dx.doi.org/10.14722/ndss.2019.23271.

[18] G. Balakrishnan, T. Reps, Analyzing memory accesses in x86 exe-
cutables, in: International Conference on Compiler Construction, CC
2004. Lecture Notes in Computer Science, vol. 2985. Springer, Berlin,
Heidelberg. http://dx.doi.org/10.1007/978-3-540-24723-4-2.

[19] G. Bossert, Exploiting Semantic for the Automatic Reverse Engineering
of Communication Protocols, Supelec, NNT: ´2014SUPL0027, 2014.

[20] S. Kleber, Survey of protocol reverse engineering algorithms : Decom-
position of tools for static traffic analysis, IEEE Commun. Surv. Tutor.
PP (2018) 1, http://dx.doi.org/10.1109/COMST.2018.2867544.

[21] D. R. Fletcher Jr., Identifying Vulnerable Network Protocols with
PowerShell, SANS Institute Reading Room site, 2017.


