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Abstract. Assessing the fragility and damage state of multiple buildings 

in an urban setting remains a challenging task requiring considerable 

time and cost. This study proposes deriving seismic fragility curves us-

ing an Artificial Neural Network (ANN) based Probabilistic Seismic 

Demand Model (PSDM) to overcome these challenges. Seismic fragili-

ty curves were developed using the ANN based PSDM to derive the re-

gression function of interstory drift and spectral acceleration. The 
methodology involves conducting nonlinear dynamic analysis for 540 

steel moment frames(SMFs) using 240 seismic records to construct a 

PSDM for each SMF. The ANN-based PSDM was developed using 

nine design variables (number of stories, number of bays, bay width, 

first-story height, floor dead load, roof dead load, and first to third natu-

ral periods of SMFs) as input and the regression function of interstory 

drift and spectral acceleration as output. Fragility curves for SMFs were 

derived using the ANN-based PSDM. ANN-based PSDM exhibited an 

accuracy of R-value 0.96 for the training database. The developed 

ANN-based PSDM is validated and compared with the results obtained 

from the general method using nonlinear dynamic analysis. The results 

show that the ANN-based PSDM accurately predicts damage states and 
the fragility curves derived using this method are consistent with those 

obtained from nonlinear dynamic analysis. The proposed methodology 

offers a time-efficient and reliable approach for assessing the fragility 

of SMFs without the need for detailed structural modeling and time-

consuming nonlinear analysis. 
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1 Introduction 

Steel moment frames (SMFs) are the most widely used lateral resisting system for 

resisting seismic loads. With an increase in the height of buildings in urban areas, 

SMFs have been commonly used to shorten the construction period and reduce CO2 

emissions during construction. Studies have been actively conducted to evaluate the 

seismic performance of SMFs. Most seismic performance evaluation techniques are 

suitable for individual buildings. However, they are difficult to apply to urban-level 

seismic performance evaluation that requires seismic performance evaluation for mul-

tiple buildings because they require precise simulation models and nonlinear analysis. 

Hence, assessing the fragility and damage-state of buildings after an urban earthquake 

is an urgent issue. 

It is necessary to derive the engineer demand parameter (EDP)-intensity measure 

(IM) relationship to assess the fragility and damage-state of a building. Fragility 

curves provide the probability that a structure or its EDP will reach a certain level of 

damage for a given IM of ground motion. Studies to derive seismic fragility curves 

have been conducted since the 1980s, and many studies have been conducted to eval-

uate the behavior of structures with respect to ground motion. Kircher et al. performed 

idealization to a single degree of freedom based on the structural type, material, and 

height of the building applied in HAZUS, and they proposed a seismic vulnerability 

function [1].  

With the development of structural analysis technology, studies on dynamic analy-

sis have been actively conducted. Methods for deriving the fragility curves of struc-

tures via nonlinear static analysis and statistical methods have been developed [2-6]. 

Incremental dynamic analysis (IDA) can predict the dynamic response of a structure 

at the maximum ground acceleration of an earthquake with a specific return period or 

at the spectral acceleration in the natural period of the structure by increasing the 

seismic intensity and observing the response of the structure [7]. Based on this non-

linear dynamic analysis, various methods were derived for the fragility curves of 

structures. Various fragility curve derivation methods based on nonlinear dynamic 

analysis have been utilized [8-12]. However, they require dozens or hundreds of non-

linear dynamic analyses, thereby consuming considerable time for analysis. Addition-

ally, there involve complicated considerations, such as material nonlinear models, 

failure modes, and strength and stiffness reduction, for the modeling of structures. 

The fragility curves derived using nonlinear dynamic analysis are accurate but diffi-

cult to apply to urban-level seismic performance evaluation for multiple buildings 

because they require considerable time [13]. 

Machine learning technology and artificial neural network models have been used 

to predict member-level and system-level behavior in the field of civil engineering 

[14-17]. Recently, various machine learning-based seismic analysis techniques were 

developed in order to reduce the time required for earthquake analysis and to process 

massive data. A new approach to nonlinear modal analysis based on the machine 

learning method [18]. A novel procedure for identifying the dynamic characteristics 

of a building and diagnosing whether the building has been damaged by earthquakes, 

using a back-propagation neural network approach [19]. Machine learning methods 
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were applied in many civil engineering areas such as damage identification [20-24], 

damage state of steel frame [25], predicting the nonlinear time history response of 

structure [26]. However, most seismic response prediction models can only predict 

responses such as top displacement, floor acceleration and so on, for a specific earth-

quake intensity, and it is difficult to derive a relationship between seismic intensity 

and response. 

This study aimed to develop a seismic fragility analysis method that enables 

fragility assessment of steel moment frames (SMFs) without the need for detailed 

structural modeling and time-consuming nonlinear analysis. The proposed 

methodology involved the use of an Artificial Neural Network (ANN)-based 

Probabilistic Seismic Demand Model (PSDM) to derive fragility curves for SMFs. (1) 

For 540 SMFs, nonlinear time history dynamic analysis was conducted via 240 seis-

mic records. Based on the dynamic analysis results, data for a probabilistic seismic 

demand model (PSDM) were constructed for each SMF. (2) Artificial neural network 

(ANN)-based PSDM that uses nine design variables of SMFs as input values and the 

regression function of interstory drift and spectral acceleration as an output value was 

developed. (3) seismic fragility curves of SMFs were derivated using ANN-based 

PSDM. 

2 Methodology for seismic fragility curves using ANN based 

PSDM 

2.1  Derivation of seismic fragility curve 

The conventional fragility curve is calculated as the probability that EDP will ex-

ceed limit states at IM. Therefore, EDP of a structure should be predicted at random 

IM to derive fragility curves. Two methods are mainly available to predict EDP of a 

structure. The first method involves measuring EDP by conducting the dynamic anal-

ysis of the structure while increasing IM of seismic records. This method, which is 

referred to as incremental dynamic analysis, requires scaling of seismic records to 

increase their IM. During the scaling process, the unique characteristics of the original 

seismic record can change. Hence, it is necessary to consider whether the scaled seis-

mic records are reasonable. To address this problem, the cloud method that uses only 

the data of original seismic records has been commonly used [27]. 

The cloud method derives PSDM and EDP-IM relationship using the data obtained 

by conducting a nonlinear dynamic analysis of the structure through original seismic 

records. PSDM assumes that EDP follows a lognormal probability distribution [28]. 

  (1) 

Where  and  denote the regression coefficients that can be determined from a re-

gression analysis of the response obtained from dynamic analysis. 

Given the seismic demand and capacity, the fragility of the structure at each dam-

age states (DS) can be calculated as follows: 

  (2) 
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Where Φ[•] is the cumulative distribution function of the standard normal distribu-

tion; λ and ξ are the median and standard deviation of the IM, respectively. 

   (3) 

   (4) 

where Sc and βc(=0.3) denote the median estimate and logarithmic standard devia-

tion of the capacity, respectively; βD|IM denotes the standard deviation of the demand 

that can be calculated as follows. 

  (5) 

where N denotes the total number of simulation cases. ξ is a parameter that can 

take into account the uncertainty of the analysis model and the uncertainty of the non-

linear dynamic analysis. βc is a parameter considering the uncertainty of the numerical 

model, and βD|IM is a parameter considering the uncertainty of the nonlinear analysis 

results. Uncertainty in the data was reflected through the arithmetic sum of βc and 

βD|IM. The proposed fragility analysis enables derivation of fragility curves by replac-

ing structure modeling, nonlinear dynamic analysis, and regression analysis process-

es, which consume a significant amount of time in the cloud method involving ANN-

based PSDM. Specifically, ANN-based PSDM derives the regression curve of IM 

(spectral acceleration1st period) and EDP (inter-story drift) as the design parameter of the 

structure. Based on the derived regression curve, the fragility curve was derived using 

equations (1) to (5). 

 

2.2 Data generation for ANN based probabilistic seismic demand model 

The methodology to develop ANN-based PSDM consists of five steps. (1) A simula-

tion model for SMFs is constructed. In this study, 540 SMFs that satisfy AISC 360-16 

were modeled [29]. (2) 240 ground motion records were collected. (3) Nonlinear dy-

namic analysis was conducted 129,600 times using 540 SMFs and 240 ground motion 

records. (4) PSDM was derived using the story drift ratio and spectral acceleration 

obtained via the nonlinear dynamic analysis results of each of 540 SMFs, and a data-

base was constructed for the regression coefficient. (5) ANN-based PSDM was 

trained by selecting the design parameters of structures, and the first, second, and 

third natural periods were selected as input data and three regression parameters as 

output data. 

In this study, 540 SMFs were selected as target buildings [29]. The number of sto-

ries ranged from 5 to 19, and the ratio of the first-story height to the typical story 

height was set to 1.0, 1.5, and 2.0. The number of bays was set to 3 and 5. The bay 

width was set to 6.1, 9.14, and 12.19 m. The database of SMFs was composed of 162 

five-story, 162 nine-story, 128 fourteen-story, and 88 nineteen-story. Archetypes of 

SMRFs were designed with a spectral acceleration of Ss=2.25 g and S1=0.6 g based on 

site class D of Los Angeles, California used in the ATC-123 Project [30]. The floor 

dead load was set to 2.39, 3.83, and 5.27 kN/m2. The lower values denote the case of 

using a thin slab of lightweight concrete while the upper value shows the case of us-

ing a thicker slab of normal-weight concrete. The roof dead load was set to 0.96, 3.23, 
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and 5.51 kN/m2. The lower value corresponds to the case in which only steel decks 

are used while the upper value corresponds to the case in which steel decks with nor-

mal-weight concrete are used. Furthermore, a load of 2.39 kN/m2 was applied as the 

floor live load based on offices, and a load of 0.96 kN/m2 was applied as the roof live 

load. Gravity load (seismic mass) was defined as 1.05DL+0.25LL according to 

FEMA P695. Furthermore, 2% was selected for the allowable drift ratio according to 

ASCE 7, and the yield stress of steel was 345 MPa.  

 

 

Fig. 1 Overview of the methodology for ANN based PSDM 

A total of 240 earthquake acceleration time histories recorded in the state of Califor-

nia for 12 different earthquakes were used in this study. A particularly large number 

of earth-quake ground motions was selected in order to assess the dispersion of the 

inelastic displacement ratios. 

Some scholars studied the seismic performance of structures by introducing fre-

quent or non-frequent records to consider the randomness of ground motion [31]. The 

240 non-frequent ground motion records are acceleration records for 12 seismic rec-

ords that occurred in California [32]. Furthermore, 240 ground motions are the ground 

motions in high seismicity zones. All seismic records were measured from rock and 

firm sites with a mean shear wave velocity of 180 m/s or higher. The soil-structure 

interaction effect was neglected. Furthermore, the magnitude of seismic records 

ranged from M 6.0 to M 7.0, and the average was M 6.7. The maximum ground ac-
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celeration ranged from 0.03 g to 0.77 g. Fig. 3 shows the individual and average ac-

celeration spectra of 240 seismic records. 

 

2.3 Extracting regression coefficients of PSDM 

In this study, IM of PSDM in equation (1) was defined as the spectral acceleration 

in the 1st period and EDP as the maximum interstory drift ratio. The spectral accelera-

tion is a value derived based on the displacement value according to the change in the 

natural period of SDOF, and the spectral acceleration of the target structure in the 1st 

period has a significant impact on its seismic response displacement. Therefore, in 

this study, the spectral acceleration that considers the influence on the structure was 

selected as IM as opposed to PGA, which is the unique characteristic of seismic rec-

ords. As for the seismic response EDP of structures, there are various types, such as 

interstory drift, maximum interstory drift, and floor acceleration. Among several 

EDPs, the maximum interstory drift (DRmax) has the largest influence on damage to a 

structure. It has been used as the threshold of the damage state in many studies, such 

as Hazus ML [33] and FEMA P-58 [34]. Equation (6) is the regression curve of the 

selected Sa and DRmax PSDM as follows: 

  (6) 

Where  and denote the regression coefficients that can be determined based on a 

regression analysis of the response obtained from dynamic analysis. 

  (7) 

For each SMF, the regression analysis of Sa and DRmax was conducted via the dy-

namic analysis results of 240 ground motions, and regression coefficients and  

were derived. The regression coefficients ( , and  of a total of 540 SMFs were 

converted into a database. Fig. 2 shows the nonlinear dynamic analysis results of 240 

ground motions, and the regression analysis results for 5-story 3-bay and 14-story 5-

bay SMFs. 

 
Fig. 2 Structural response of (a) 5-story – 3-bay SMF, (b) 14-story–5-bay SMF 
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2.4  Determination of input & output data 

For the training of the ANN model, it is very important to construct the training 

sets of input and output data. In this study, a total of nine input variables were defined 

using six design parameters (the number of stories, ratio of the first-story height to the 

typical story height, number of bays, bay width, floor dead load, and roof dead load) 

and three dynamic properties (1st, 2nd, and 3rd natural periods) of SMFs. The two coef-

ficient parameters ( b) and , which were converted into a database in section 

2.2.4, were defined as output variables. Table 2 summarizes the statistic properties of 

the 9 input variables and 3 output variables. ANN-based PSDM was trained by con-

structing a total of 540 training sets. 

3 Derivation of seismic fragility curves using ANN based PSDM 

3.1 Description of two steel moment resisting frame 

In this section, seismic analysis is conducted on two example SMFs using the de-

veloped ANN-based PSDM. The two example SMFs were not included in the SMF 

database constructed in section 2.2, and 8-story 5-bay and 19-story 5-bay SMFs were 

selected. Both structures were designed as offices and had a first-story height of 7.92 

m, floor height of 3.96 m for the other floors, and bay width of 12.94 m.  

They had natural periods of 1.887 and 2.58 seconds, respectively, and were de-

signed based on Los Angeles, California, Site D. Their design spectral accelerations 

were 0.36 g and 0.26 g, and the MCE level spectral accelerations were 0.54 g and 

0.39 g, respectively. Tables 4 and 5 summarize the cross-sectional information of the 

two SMFs. 

3.2 Comparison fragility curves between PSDM using ANN model and Cloud 

method 

The design parameters and 1st, 2nd, and 3rd natural periods of the 8-story and 19-

story SMFs as well as ANN-based PSDM were used to derive the regression coeffi-

cients of the two structures. Fig. 10 shows PSDM derived using the regression coeffi-

cients, the 95% confidence interval of PSDM obtained using β, and PSDM derived 

using the cloud method after conducting nonlinear dynamic analysis using 240 seis-

mic records. ANN-based PSDM was consistent with PSDM derived using the cloud 

method for the 8-story and 19-story structures. Furthermore, 236 data (98.3%) out of 

240 data were included in the range of the regression function calculated with the 

95% confidence interval of ANN-based PSDM for the 8-story SMF, thereby confirm-

ing the high reliability of ANN-based PSDM. In the case of the 19-story SMF, 228 

data (95%) out of 240 data were included in the range of the regression function cal-

culated with the 95% confidence interval of ANN-based PSDM, thereby confirming 

that the regression function of ANN-based PSDM is highly reliable.  
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Fig. 4 Probabilistic seismic demand model derived from ANN model and cloud method; (a) 8-
story SMF, (b) 19-story SMF 

 

3.3 Seismic fragility curve using ANN-based PSDM 

 In section 3.3, seismic fragility analysis was conducted using the fragility curves 

of 8-story and 19-story SMFs derived via ANN-based PSDM. To verify the fragility 

curves derived via ANN-based PSDM, the fragility curves derived using nonlinear 

dynamic analysis and cloud method were compared with the seismic fragility analysis 

results. Based on the regression function and  of ANN-based PSDM for 8-story 

and 19-story SMFs obtained, fragility curves for the damage state in Table 6 were 

derived using equations (1) to (5). We evaluated the maximum interstory drift pre-

dicted by the regression function through the ANN-based PSDM according to the 

damage state of steel moment frames in FEMA 356. Collapse of structures was de-

fined as a case where the inter-story displacement ratio exceeded 4%. Fig. 5 shows 

the fragility curves derived using ANN-based PSDM and those derived using the 

cloud method via the nonlinear dynamic analysis results. For the design level spectral 

acceleration (0.36 g) derived via ANN-based PSDM, the probabilities that the 8-story 

structure exceeds the LS and CP levels were 1.54% and 0.933%, respectively. For the 

design level spectral acceleration derived via the cloud method, the fragility probabili-

ties at the LS and CP levels were 1.6% and 0.97%, respectively, almost identical to 

the fragility curves derived through ANN-based PSDM. For the MCE level spectral 

acceleration (0.54g), the fragility probabilities at the LS and CP levels were 2.04% 

and 1.24%, respectively, which were similar to the fragility probabilities at the LS and 

CP levels derived via the cloud method (2.08% and 1.27%). In the case of the design 

level spectral acceleration (0.26g) of the 19-story structure derived through ANN-

based PSDM, the fragility probabilities at the LS and CP levels were 1.49% and 

0.84%, respectively, resulting in a slight difference of 0.12% when compared to the 

fragility probabilities derived via the cloud method (1.32% and 0.72%). For the MCE 

level spectral acceleration (0.39g), the fragility probabilities at the LS and CP levels 

were 1.89% and 1.11%, respectively, which were similar to the fragility probabilities 

derived via the cloud method (1.68% and 0.96%), with a difference of 0.2%. Seismic 

fragility assessment was very similar to conventional seismic fragility assessment that 
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uses nonlinear dynamic analysis and the cloud method. This indicates that seismic 

fragility assessment is a reasonable fragility assessment method 

 
Fig. 5 Fragility curves derived from ANN-based PSDM and cloud methods at LS, CP level; (a) 
8-story SMF, (b) 19-story SMF 

4 Conclusion 

The study began by highlighting the importance of assessing the fragility and dam-

age state of buildings after an urban earthquake. It discussed the challenges of apply-

ing existing seismic performance evaluation techniques to multiple buildings in an 

urban setting due to the requirement of precise simulation models and nonlinear anal-

ysis. 
ANN-based PSDM derived the spectral acceleration-interstory drift regression 

function based on the nine parameters of SMFs (number of stories, number of bays, 

bay width, first-story height ratio, floor dead load, roof dead load, and 1st, 2nd, and 
3rd natural periods) and the results showed good prediction. The developed ANN 

model was trained and validated using a large dataset of SMFs and ground motion 

records. The performance of the ANN model was evaluated using mean square error 

(MSE) and regression R-value. The results showed high prediction accuracy with an 

R-value of 0.9681 or higher and an average MSE of 2.25%. 

Fragility curves derived via ANN-based PSDM exhibited similar accuracy when 

compared to those derived through nonlinear dynamic analysis. For the design level 

spectral acceleration, the fragility probabilities of the eight-story SMF at the LS level 

derived using the two methods were very similar, with a difference of 0.16%. 

Overall, the proposed methodology using the ANN-based PSDM provided a relia-

ble and efficient approach for assessing the fragility and damage state of SMFs. It 

eliminated the need for detailed structural modeling and time-consuming nonlinear 
analysis, making it suitable for urban-level seismic performance evaluation of multi-

ple buildings. The study's findings contribute to the field of earthquake engineering by 

offering a practical and efficient method for assessing the seismic vulnerability of 

SMFs. 
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