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Abstract. The issue of testing of the program in the aspect of comparing the effectiveness of random testing 

and partitioning testing was considered in this paper. However, unlike other works on this subject, the term 

partition does not refer directly to a specific subset of the program input domain, but to a fragment of the 

program, which is a specific set of paths, leading from the beginning of the program to its end, where each 

path belongs to exactly one of the subsets of paths. A formal model of the program under the testing is 

presented. This model is based on the notion of a control flow graph. The relationship between faults and 

failures is characterizes by means so called the characteristic matrix of the program under testing. The main 

result of the paper is obtaining formulae for the mean value of the number of faults encountered during the 

random testing and program partition testing . The formulation of the single-criterion optimization task which 

allows the determination of a testing strategy that maximizes the expected value of the number of program 

faults is also formulated. Considerations are illustrated with a simple numerical example. 

Keywords: Random testing, Partition testing, Program reliability. 

1. Introduction 

It is well known that a software development process consists of the following four phases: specification 

(including user requirements definition and software requirements definition), design (structural design and 

detailed design), coding and testing. The practice of modern software engineering shows that the testing stage has 

the largest impact on the error detection process. 

The method of generating the test data set, on the basis of which the software testing process will be carried 

out, depends on the adopted testing method, each of which is based on a specific criterion for the selection of test 

data set. Depending on the approach to the problem of designing the test data set, the testing methods used in 

practice can be divided into deterministic methods and random methods. 

Deterministic testing methods assume the generation of a test data set in a exclusively deterministic way, i.e. 

without the participation of a random factor. Individual sets of input data, which are elements of the designed test 

set, are determined based on the analysis of the requirements specification or analysis of the source code of the 

tested program. 

Unlike deterministic methods in random methods, part of the test data sets (or even all) used in the software 

testing process is created using a random factor, i.e. by randomly selection, whereby the most commonly used in 

practice of designing test cases is the sampling without returning. The method of creating a test data set based on 

a randomly selection is very widely used in testing practice. This is mainly due to its simplicity (it does not require 

e.g. a very labor-intensive analysis of the logical structure of the tested program), the direct consequence of which 

is the low cost of the testing process and high susceptibility to its automation. The second, which determines the 

wide practical use, feature of the random method is its high efficiency, measured by the number of errors detected 

in the testing process. Research conducted to compare the effectiveness of the most-used testing methods in 

practice has shown that for a wide class of programs, testing based on random generation of test data is more 

effective in terms of error detection capability than other methods [5, 7]. In practice, random testing is carried out 

as random testing or partition testing.  

Random testing consists in using in the testing process a set of test cases, created by randomly selection (usually 

without returning) its subsequent elements from the entire set of program input domain, i.e. set of all test cases of 

the tested program. The main problem here is determining the probability distribution with which individual test 

cases are randomly drawn. In the absence of relevant premises as to the nature of this distribution, a uniform 

distribution is often assumed over the program domain. Very often used in practice variation of the random testing 

is a such testing in which the sampling of subsequent test cases is based on the probability distribution specified 

by the so-called the operational profile of the program, determining the probability of occurrence of individual 

test cases of the program in the conditions of its actual use. 

Partition testing, also called subdomain testing, consists in dividing the set of a program domain into subsets 

called partitions and then drawing a specific number of tests from each subset. Consequently, the testing process 



is carried out based on a number of test sets (corresponding to the number of separate partitions), with the sampling 

of individual data case within the extracted partitions is most often based on an uniform distribution. 

A comparison analysis of partition testing and random testing has attracted significant attention in the literature. 

Specific contributions have been made in papers [1-8]. 

Various reliability metrics have been in use in the analysis of the effectiveness of subdomain testing and random 

testing, each based on a different intuition. Almost all of these measures are formulated in terms of failures rather 

than faults. Ideally, we would like to assess the effectiveness of testing in terms of the faults detected. Faults are 

the software defects caused by programmer errors, while a failure is an observed departure from the specified 

behavior of the software. Normally, only failures are revealed by testing, and the associated faults are usually 

identified during debugging.  

In the article, as in the analytical works [1-4, 6, 7-8] the issue of random testing of the program in the aspect of 

comparing the effectiveness of random testing and partitioning testing is considered. However, unlike the works 

cited above, the term partition does not refer directly to a specific subset of the all program testing cases, but to a 

fragment of the program, which is a specific set of paths, leading from the beginning of the program to its end, 

where each path belongs to exactly one of the selected subsets of paths. 

Unlike the software reliability measures used in these works formulated in terms of failures the expected 

number of faults detected to analyze subdomain and random testing will be used in this paper. A program fault 

may cause a number of failures, while a program failure may have more than one fault associated with it. There 

is no simple relationship between faults and failures. This makes it difficult to use faults in measuring the 

effectiveness of testing. In this paper relationship between faults and failures is characterizes by means so called 

the characteristic matrix of a program under testing.  

The rest of this paper is organized as follows. Section 2 describes the formal model of the program under the 

testing. Section 3 discusses the use of the expected number of faults detected during the random testing of the 

program. Section 4 analyzes partition testing using the expected number of faults and compares it with random 

testing. Section 5 presents formulation of the single-criterion optimization task, which allows the determination 

of a testing strategy that maximizes the expected value of the number of program faults. Section 6 summarizes 

and concludes this paper. 

2. Description of the program under the testing 

The tested program will be characterized by means of a directed G graph, defined as follows:  

G = (I, U), 

where:  

I - set of graph vertices corresponding to the set of module numbers of the tested program:  

I = {1, 2, ..., i, ..., I}, 

U I x I - set of ordered pairs (i, j) I x I, while a pair (i, j) U, if after the i-th module is executed, the 

j-th module can be executed next. 

Without loss of generality it can be assumed that the relevant program has one input module and one output 

module with numbers iIN, iOUT  respectively, iIN, iOUT  I. In literature, the graph G is called the control flow graph. 

Let D denote the set of numbers of all paths of the tested program, while the term path means the sequence of 

modules from the input  module iIN to the output module iOUT for which there is at least one input data set that 

activates it: 

D = {1, 2, ..., d,..., D}. 

It is worth noting that the set D can be very numerous but it is always finished. 

Let Id  denote a set of all module numbers of the d-th path: 

 
dd d ,1 d ,2 d ,k d ,I i , i , ..., i , ..., iI ,  dD, 

where: 

id,k – a number of the k-th module of the d-th path (in the order of execution of the modules included in it), 

while d ,1i 1  and 
dd ,Ii I , 

      Id  – the number of modules forming the d-th program path. 

Let us define the reliability of a module as the probability that the module performs its function correctly, i.e., 

the module produces the correct output and transfers control to the next module correctly. When a set of user input 

is supplied to the program, a sequence of modules will be executed. The reliability of the output will depend on 

the sequence of modules executed and the reliability of each individual module. We first assume that the 



reliabilities of the modules are independent. This means that faults will not compensate each other, i.e., an 

incorrect output from a module will not be corrected later by subsequent modules. Since errors do not compensate 

each other, the result of the execution of the program is correct if and only if the proper sequence of modules is 

executed and in every instance of module execution, the module produces the correct result. The reliability of a 

module, in general, is a function of many factors, and the study of the reliability function of a module is beyond 

the scope of this paper. However, if no modification is made on the modules and the user environment does not 

change, the reliability function of a module should remain invariant. Let 
ir  stand for the i-th module reliability 

coefficient. The module reliability coefficients form a following vector R, called program reliability vector 

1 2 i I( r ,r ,...,r ,...,r )R . 

We next assume that the transfer of control among program modules is a Markov process. This implies that the 

next module to be executed will depend probabilistically on the present module only and is independent of the 

past history. It is noteworthy that this assumption may not be valid for all types of programs. 

Let us represent the logical structure of the program by a directed graph where every node i represents 

a program module and a directed branch  i, j U  represents a possible transfer of control from the i-th module 

to the j-th module. To every directed branch  i, j U  we will attach a probability 
ijp  as the probability that the 

transition (i, j) will be taken when control is at i-th node. If 
ijp 0 , the branch (i, j) does not exist. Without loss 

of generality, let us assume that the program graph has a single entry node 1 and a single exit node M.  

Probabilities 
ijp , i, j 1,2,..,I , form the following square matrix ij I I

P p


    , called the transition matrix: 

11 12 1i 1I

21 22 2i 2M

i1 i2 ii iI

I 1 I 2 Ii II

p p ... p ... p

p p ... p ... p

... ... ... ... ... ...
P

p p ... p ... p

... ... ... ... ... ...

p p ... p ... p

 
 
 
 

  
 
 
 
  

    (1) 

where element 
ijp  means the probability of the event that after execution of the i-th module, the j-th module will 

be executed next, i, j 1,2,...,i,...,I . The matrix P determines so called the operational profile of the program. 

Let pq, pq > 0, mean probability of an activation by a single test case of the d-th path of the tested program, 

wherein 

d

q ij

i , j

p p


 
I

, dD.        (2) 

The process of program execution for a given test case of program input domain consists in activating a certain 

sequence of modules corresponding to this case, forming one of the executable paths of the program. It is assumed 

that the measure of reliability of the considered program is the probability of its correct execution for a single, 

randomly selected, test case. This probability is equal to the product of the probabilities of the correct execution 

of the modules included in the path from the input module to the output module, which activates the given test 

case. Using the introduced assumptions, the program reliability coefficient with the reliability structure R and the 

transition matrix P can be determined as follows: 

d

d i

d i

r  p r
 

 
D I

.               (3) 

3. The random testing of the program 

Execution of the program under the testing process with one input data set (test case) will be called a run in 

this paper. The run can be successful, if program execution did not lead to encounter any default or not successful, 

if program execution was incorrect, i.e. some default were encountered. 

It is assumed that the testing process of the considered program consists in carrying out n test cases (tests), 

drawn from the set of all possible test cases, with the draw being carried out based on the probability distribution, 

determined by the operational profile of the program, determined by the transition matrix P, defined by (1). 

According to assumed testing scheme a situation that a number of different test cases  of all n tests encounter 

the same program fault is possible. So, according to the note mentioned above, a situation that several runs will 

lead to encounter the same program fault is possible.  



Let nmq  define the probability of an event that n faults will be encountered as a result of the program testing if 

there are m tests that lead to reveal failures during the program testing process. If we assume that every run of the 

program with a single test can lead to reveal at most one program failure, and every failure makes it possible to 

detect exactly one fault we have 

nm0 q 1   if n m,  n 0  ,   (4) 

where in particular 

00 11

nm

q q 1

q 0    if  n m

 

 
       (5) 

Probabilities nmq , },...,2,1,0{m  },m,...,2,1,0{n  , that are defined by (4-5) form an infinite matrix 

 nmQ q  that has a following form 

 

12 13 14

22 23 24

33 34

44

1 0 0 0 0 ...

0 1 q q q ...

0 0 q q q ...
Q

0 0 0 q q ..

0 0 0 0 q ...

...

 
 
 
 

  
 
 
 
  

,          (6) 

while 

nm

n 0

q 1




 ,     ,...}2,1,0{m .              (7) 

The matrix Q contains the values 0 below the main diagonal because – in accordance with earlier assumption 

that every run of the program with a single test can lead to reveal at most one program failure and every failure 

makes it possible to detect exactly one fault - it is not possible to encounter more different faults than the number 

of failures. 

The values of probabilities nmq  that form the matrix Q depend on a logical structure of the program under the 

testing. In particular, an important impact on these probabilities has: number of paths that have been identified in 

the program, degree of covering individual paths, that can be measured by number of program instructions that 

belong to two or more paths and length of individual paths, i.e. measured by number of program instructions that 

are executed in case of path activation. The matrix Q will be called the characteristic matrix of the program under 

the testing. 

As a result of the program testing process in accordance with the assumed testing scheme a number of failures 

may be revealed. Because different tests can reveal the same failures, the real number of faults encounter as 

a result of running n tests may be less. of course, the faults associated with reveal failures are usually identified 

during debugging. 

Let M(P) denote the number of tests that lead to incorrect execution of the program under the testing with the 

transition matrix P, i.e. to reveal failures, during the program testing process.  

Let N(P,Q) mean the total number of faults encountered during the program testing process with the transition 

matrix P and the characteristic matrix Q. While planning the program testing process it is reasonable to consider 

the values M(P,Q) and N(P,Q), as random variables, while N(P,Q)   M(P). 

Joint distribution of the random variables (N(P,Q), M(P)) can be determined as follows: 

     P,Q P P,QPr{ N n,M m} Pr{ N n }Pr{ M( P ) m} 
M( P ) m|    


          (8) 

According to earlier denotations we have 

 nm P,Qp Pr{ N n  }
M( P ) m| 


,    (9) 

and  

m L m
L

Pr{ M( P ) m ) (1 r ) r
m

 
   

 
,               (10) 

where L is the number of tests performed during program  testing process. 

So,  

    m L m

nm

L
Pr{ N n,M m } qP, (1 r ) rQ P

m

 
    

 
.   (11) 

Probability distribution of the random variable N(P,Q) can be determined as a marginal distribution in 

a distribution of two-dimensional random variable (N, M): 



   

                                  =       (12)|

L

m 0

L L
m L m

nm

m 0 m 0

Pr{ N n } Pr{ N n,M( P ) m }

L
Pr{ N n }Pr{ M( P ) m } q (1 r ) r .

M( P ) m

P,Q P,Q

m
P,Q





 
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 
     



 
 

The knowledge of the probability distribution function (11) makes possible to obtain a formula for the mean 

value of the number of faults encountered during the program testing process. We have 

   
L

r

n 0

E [N ]  n Pr{ N nP,Q }P,Q


  ,    (13) 

and then, according to (12): 

 
L L

m L m

r nm

n 0 m 0

L
E [N ]  n q (1 r ) r

m
P,Q 

 

 
  

 
  .                                           (14) 

Let * **Q , Q  denote characteristic matrices that have form: 

1 0 0 0 ... 1 0 0 0 ...

0 1 0 0 ... 0 1 1 1 ...

     Q  ,         Q    .0 0 1 0 ... 0 0 0 0 ...

0 0 0 1 ... 0 0 0 0 ...

... ...

    

 

   
   
   
    
   
   
   
   

           (15) 

The characteristic matrices * **Q , Q  correspond with some specific, extreme forms of the program testing 

scheme. The matrix 
*Q  correspond with a such testing scheme in which different tests can encounter only new 

faults, i.e. not encounter by tests that were executed earlier. The matrix 
** Q  correspond with a such testing 

scheme in which all tests can encounter at most one and the same program fault. 

The formula (14) will be simplified if the program characteristic matrix Q is of the form (15), i.e.: 

 
L

n L* n

r

n 0

L
E [N ]  n (1 r ) r L(1 r )P,

n
Q 



 
    

 
            (16) 

and 

 
L L

n L n m L m L

r nm

n 0 m 1

**
L L

E [N ]  q (1 r ) r 1 (1 r ) r 1 P{ M( P )P, 0 } 1 r
n m

Q  

 

   
           

   
  .      (17) 

In practice, the formula (14) for evaluating the mean value of the number of faults encountered during the 

program testing process can be used if the program characteristic matrix Q is known. If the probabilities 

nmq ,  n,m {0,1,2,...L }, , are unknown, it is possible to determine the boundary values of this evaluation.  

Let * **Q , Q denote characteristic matrices of the program under the testing of forms (15). Then, as proved in 

[9], for any characteristic matrix P is: 

r r rE [ N( P,Q )] E [ N( P,Q)] E [ N( P,Q )]   ,     (18) 

where the quantities 
rE [ N( P,Q )]

 and 
rE [ N( P,Q )]

 are determined by (16) and (17), respectively. 

4. The partition testing of the program 

Testing a program with partitions consists in dividing the program into fragments, each of which is a specific 

set of program paths, leading from the input module iIN to the output module iOUT, with each path belonging to 

exactly one of the selected subsets of paths. In further considerations, these subsets will be called program 

partitions. 

Let's consider the division of the graph G = (I, U) of the tested program into the subgraphs Gk = (Ik, Uk) such 

that IkI, UkU, while iIN, iOUT  Ik, k=1,2 …K,  and 
K

k

k 1

I I , 
K

k

k 1

U I .     (19) 

Let's consider the division of the set of numbers of all paths of the tested program leading from the input module 

iIN to the output module iOUT into disjoint subsets DkD: 

 
kk ,1 k ,2 k ,l k ,k D , , ..., , ...d , d d dD , k=1,2 …K, 

wherein 



K

k

k 1

D D  and 
K

k

k 1




D .        (20) 

Each subgraph Gk = (Ik, Uk) has a fragment of the transition matrix 
k k

k

k ij I I
P p


    . It takes place 

K

k

k 1

P P


 ,            (21) 

where the summation operator is the matrix summation operator. 

The division of the set of all program paths leading from the input module iIN to the output module iOUT into 

disjoint subsets DkD means the division of the set of all possible test cases into disjoint subsets, with each test 

case activating exactly one path. Therefore, this division can be treated as one of the ways to divide the all program 

input domain into the partitions referred to in [1-3, 5-8]. In the presented considerations, the term "partition" 

refers, however, not so much to a specific subset of all possible test cases, but to a part of the program being tested, 

represented by the subgraph Gk = (Ik, Uk), the probability of transitions between modules described by the matrix 

Pk, k=1,2,…, K. In further considerations, the term "partition" will be understood as a part of the program being 

tested, which is a subset of the set of paths leading from the input module iIN to the output module iOUT. 

Similarly to the formulae (3), the reliability coefficient of the k-th partition of the program with the transition 

matrix Pk, understood as the probability of correct execution of the program for a single test case activating the 

path with the number from the set Dk, can be determined as follows: 

k d

k d i

d i

r  p r
 

  
D I

, k=1,2,…, K.     (22) 

Let nk be the number of test cases randomly selected from the subset of all test cases that activate the set of paths 

with the numbers from the set Dk, k=1,2,…, K. 

As an alternative to the testing strategy described in Section 3, the testing strategy consisting in randomly selection 

from each set Dk  nk > 0 test cases, k = 1,2, ..., K, will be now considered. 

Let L   denote the set of vectors as follows 
K

1 2 k K k k

k 1

( L ,L ,...L ,...,L ) :   L >0, L L }


 LL = {         (23) 

The vector L L  will be called a testing strategy with program partitioning. To ensure the proper conditions for 

comparability of random testing strategy and testing strategy with program partitioning, it is assumed that this 

occurs 
K

k

k 1

L L


  and 
K

k

k 1

r r


 .               (24) 

Let Mk(L,P) denote the number of tests that lead to incorrect execution of the k-th program partition under the 

testing with the testing strategy L and transition matrix Pk, i.e. to reveal failures, during the program partition 

testing process.  

Let Nk(L,P,Q) mean the total number of faults encountered during the program partition testing process with 

the testing strategy L and the transition matrix P and the characteristic matrix Q. While planning the program 

testing process it is reasonable to consider the values Mk(L,P) and Nk(L,P,Q), as random variables, while 

Nk(L,P,Q)  Mk(L,P). 

Conducting considerations analogous to those presented in Section 3, it can be shown that the expected value 

of a number of faults encountered during the testing the k-th partition determines the following relationship: 

 
k k

k

L L
k L mm

k k k nm k k

n 0 m 0

L
E [N ]  n q (1 r ) r

m
,P ,Q



 

 
  

 
 L ,   k=1,2,…, K.                       (25) 

Thus, the mean value of total number of faults encountered during the testing of all K partitions takes the form 

   
k k

k

L LK K
k L mm

p k k k nm k k

k 1 k 1 n 0 m 0

L
E [N ]  E[N ],P,Q n q (1 )P r

m
, ,Q r


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 
   

 
  L L ,              (26) 

while Lk is the number of tests performed during testing the k-th program partition. 

The formula (26) will be simplified if the program characteristic matrix Q is of the form (15), i.e.: 

 
k

k

LK K K
k L nn*

p k k k k k

k 1 n 0 k 1 k 1

L
E [N ]  n (1 r ) r L (1 r ) L L r

n
,P,Q


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 
      

 
  L         (27) 

and 



 E [N ]  

                 (28)
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p nm k nm k k

k 1 n 0 n 0
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
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   

 
         
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Taking into account the relationship (28), the following lower and upper estimations of the mean value of total 

number of faults encountered during the partition testing of the program with a given characteristic matrix Q can 

be determined in the form: 

     ** *

p p pE [N ] E [N ],P,Q ,P,Q ,P,QE [N ] L L L .   (29) 

Taking into account the relationship (18), the following lower and upper estimations of the mean value of total 

number of faults encountered during the partition testing of the program with a given characteristic matrix Q can 

be determined in the form: 

     ** *

p p pE [N ] E [N ],P,Q ,P,Q ,P,QE [N ] L L L ,   (30) 

and therefore 

 k

K 1
L L K 1

k K p

k 1

(1 r ) 1 r ,P, QE [ N ]


 



     L k kL(1 r ) Kr r   .      (31) 

5. Optimization of the program partition testing 

The basic problem to be solved at the planning and organization stage of the software testing process is to 

specify a subset of the set of all possible test cases that would maximize the probability of detecting all program 

faults made in earlier stages of the software development process. This problem arises because, in general, due to 

the duration and cost of the testing process, it is impossible to test the software based on the entire set of all 

possible test cases. The problem of defining the mentioned subset is the problem of designing the test cases (tests). 

Each test is an acceptable combination of values that can take the input variables of the software program being 

tested, required for its single run, and the input variables are those variables whose values are determined directly 

based on the input data, e.g. as a result of executing the data loading instructions. 

As noted earlier, the partition program testing consists of dividing the program into fragments, each of which 

is a specific set of paths, leading from the input module iIN to the output module iOUT, with each path belonging to 

exactly one of the selected subsets of paths. In the process of planning the implementation of the program testing 

stage, it is necessary to decide how many test cases should be used for testing each of program partitions. 

Mentioned problem can be solved based on the formulation and solution of a single-criterion optimization task, 

allowing the determination of a testing strategy that maximizes the expected value of the number of program faults. 

As noted earlier, the program testing process with partitions involves splitting the program into fragments, each 

of which is a specific set of program paths, leading from the initial vertex iIN to the final vertex iOUT, with each 

path belonging to exactly one of the selected subsets of paths. In the process of planning the program testing 

process, we should decide how many test cases should be used for testing each of program partitions. 

The aforementioned problem can be solved based on the formulation and solution of the single-criterion 

optimization task, which allows the determination of a testing strategy that maximizes the expected value of the 

number of program faults. The optimization problem that was mentioned above can be formulated as follows: 

for specific transition matrices P and characteristic matrix Q determine the testing strategy L L  such that: 

   p pE [N ]=max E,P,Q ,P,[N ]Q
L

L L
L

,               (32) 

where quantity  p ,E [N ]P,QL is determined by the formula (26) and L  is a set of acceptable strategies defined 

as follows 
K

1 2 k K k k

k 1

( L ,L ,...L ,...,L ) :   K>1, L >0, L L }


 LL = { .             (33) 

6. Numerical example 

The methodology of determination of the program reliability structure that has been presented can be illustrated 

by the following numerical example. Let Fig. 1 be the directed graph representing the control structure of a 

program with seven modules, where the module number 1 represents the input module and the module number 7 

is the output module. 

Let's assume that the control flow graph of the tested program has the form shown in Figure 1. 

 



 

 

 

 

 

 

 

 

 

Figure 1. Graph of the sample program 

According to the Figure 1 we have: 

I = {1, 2, 3, 4, 5, 6, 7}, iIN =1, iOUT=7,  

U = {(1, 2),(1, 3), (1, 4), (1, 5), (1, 6),(2, 3), (5, 6), (2, 7), (3, 7), (4, 7), (5, 7), (6, 7)}, 

D = {1, 2, 3, 4, 5, 6, 7}, 

 1 1, 2, 7I ,  2 1, 2, 3, 7I ,  3 1, 3, 7I ,  4 1, 4, 7I ,  5 1, 5, 7I ,  6 1, 5, 6, 7I ,  7 1, 6, 7I . 

Let the program characteristic matrix have the form 

0 0,4 0,1 0,3 0,1 0,1 0

0 0 0,7 0 0 0 0,3

0 0 0 0 0 0 1

P 0 0 0 0 0 0 1

0 0 0 0 0 0,6 0,4

0 0 0 0 0 0 1

0 0 0 0 0 0 0

 
 
 
 
 

  
 
 
 
 
 

 

Then, according to (2), the probabilities of activation by a single test case of paths have the following values: 

1 12 27p p p 0,096  , 2 12 23 37p p p p 0,2016  , 3 13 37p p p 0,09  , 4 14 47p p p 0,24  ,  

5 15 57p p p 0,028  , 6 15 56 67p p p p 0,0294  , 7 16 67p p p 0,07  . 

Let the values of the program reliability vector is as in Table 1. 

Table 1. Module reliability coefficients. 

i 1 2 3 4 5 6 7 

ri 1 0,8 0,9 0,8 0,7 0,7 1 

 

Then, according to (3), the value of the program reliability coefficient is r = 0.755. Let's assume that the testing 

process of the investigated program consists in executing 10 randomly selected test cases, i.e. L = 10. Let the 

characteristic matrix Q has the form 

1 0 0 0 0 0 0 0 0 0

0 1 0,8 0,3 0,1 0,05 0,05 0,05 0,05 0,05

0 0 0,2 0,5 0,6 0,2 0,1 0,05 0,05 0,05

0 0 0 0,2 0,2 0,5 0,3 0,3 0,1 0,05

0 0 0 0 0,1 0,2 0,4 0,3 0,3 0,15
Q

0 0 0 0 0 0,05 0,1 0,2 0,2 0,3

0 0 0 0 0 0 0,05 0,05 0,1 0,2

0 0 0 0 0 0 0 0,05 0,1 0,05

0 0 0 0 0 0 0 0 0,05 0,05

0 0 0 0 0



0 0 0 0 0,05

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

According to (16), the value of mean value of the number of faults encountered during the program testing process 

is  rE [N ]=1P,Q ,557 . If the characteristic matrices have the form (15) we have respectively 

 *E[N ]P,Q 2,45  and  **E[N ] 0,P 8,Q 939 . That means, according to (18), that indeed it happens 

r r rE [ N( P,Q )] 0,9398 E [ N( P,Q )] E [ N( P,Q )] 2,45     . 

Let K=3 and program partitions have the form presented on the Figure 2. 
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                     a) Partition 1                                     b) Partition 2                   c) Partition 3 
 

 

 

 

 

 

 

 

 

Figure 2. Sample program partitions 

According to (22) we can calculate the values of the k-th program partition coefficients, k=1, 2, 3. The values of 

these coefficients are summarized in Table 2. 

Table 2. Values of the program partitions coefficients. 

k 1 2 3 

rk 0,3876 0,24 0,1274 

Of course, according to (24) it occurs 
3

k

k 1

r r 0,775


  . 

Table 3. The mean values of the number of faults encountered during the program testing. 

Strategy 

number 
L  p ,E [N ]P,QL   rE [N P,Q ]  

L1 L2 L3 
1 8 1 1 4,512690 

1,557041 

2 7 2 1 4,481045 
3 6 3 1 4,546941 
4 5 4 1 4,594280 
5 4 5 1 4,691253 
6 3 6 1 4,819420 
7 2 7 1 4,918613 
8 1 8 1 4,971773 
9 7 1 2 4,446580 

10 6 2 2 4,403888 
11 5 3 2 4,472574 
12 4 4 2 4,534005 
13 3 5 2 4,642040 
14 2 6 2 4,771958 
15 1 7 2 4,869695 
16 6 1 3 4,624030 
17 5 2 3 4,584128 
18 4 3 3 4,666907 
19 3 4 3 4,739398 
20 2 5 3 4,849184 
21 1 6 3 4,977647 
22 5 1 4 4,705099 
23 4 2 4 4,679288 
24 3 3 4 4,773128 
25 2 4 4 4,847371 
26 1 5 4 4,955702 
27 4 1 5 4,900472 
28 3 2 5 4,885723 
29 2 3 5 4,981314 
30 1 4 5 5,054102 
31 3 1 6 5,103681 
32 2 2 6 5,090683 
33 1 3 6 5,184819 
34 2 1 7 5,210870 
35 1 2 7 5,196417 
36 1 1 8 5,264051 

The analysis of the data contained in Table 3 shows that for each strategy L L  the relationship (30) happens 

indeed. We can also notice that the best, i.e. the strategy that maximizes the expected value of the number of errors 

detected is the strategy  1,1,8L  for which  pE [N ] 5,2,P, 51Q 640L . Successively, the worst, i.e. the 
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7 

1 

5 6 

7 



strategy that minimizes the expected value of the number of errors detected is the strategy  6,2,2L  for which 

 pE [N ] 4,4,P, 88Q 038L . From the calculations carried out in the example under consideration it follows that 

in the light of the program reliability coefficient, any program testing strategy with partitioning is better than a 

random testing strategy. 

7. Conclusions 

In this paper, as in the analytical works [1-4, 6, 8], the issue of random testing of the program in the aspect of 

comparing the effectiveness of random testing and partitioning testing was considered. However, unlike the works 

cited above, the term partition does not refer directly to a specific subset of the all program testing cases, but to 

a fragment of the program, which is a specific set of paths, leading from the beginning of the program to its end, 

where each path belongs to exactly one of the selected subsets of paths.  

A formal model of the program under the testing was presented. This model is based on the notion of a control 

flow graph. It was assumed that the probabilities of transitions between individual program modules are 

determined by the transition matrix P, the element 
ijp  means the probability of the event that after execution of 

the i-th module, the j-th module will be executed next. The transition matrix defines so called operational profile 

of the program, determining the probability of occurrence of individual test cases of the program in the conditions 

of its actual use. 

The use of the expected number of faults detected during the random testing of the program was discusses. 

Unlike the software reliability measures used in these works formulated in terms of the expected number of faults 

to analyze subdomain and random testing have been used. The relationship between faults and failures is 

characterizes by means so called the characteristic matrix Q of the program under testing, while the qnm element 

of that matrix define the probability of an event that n faults will be encountered as a result of the program testing 

if there are m tests that lead to reveal failures during the program testing process. The values of probabilities nmq  

that form the matrix Q depend on a logical structure of the program under the testing. The main result of this 

section is obtaining a formula for the mean value of the number of faults encountered during the program testing 

process. In practice, the formula for evaluating the mean value of the number of faults encountered during the 

program testing process can be used if the program characteristic matrix Q is known. In this section shown that if 

this matrix is unknown, it is possible to determine the both sides boundary values of the mean value of the number 

of faults encountered during the program testing. 

Using the expected number of faults partition testing was analyzed and compares with random testing. The 

main result of this section is obtaining a formula for the total mean value of the number of faults encountered 

during the testing of all partitions. 

A formulation of the single-criterion optimization task, which allows the determination of a testing strategy 

that maximizes the expected value of the number of program faults. 

Presented considerations have been illustrated by a simple numerical example.  
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