ﬁ EasyChair Preprint

Ne 3445

Query Optimization in Cloud Environments:
Challenges, Taxonomy, and Techniques

Mushtaqg Ahmad

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 19, 2020

Queryoptimizationincloudenvironments:
challenges, taxonomy, and techniques

Author: Mushtag Ahmad
Webeng.mushtaqg@gmail.com

CMS:406484

Riphah International University , Pakistan

Abstract

Improving query performance remains one of the most interesting and challenging goals for both
the academic and industrial communities. Indeed, cloud computing has complicated the traditional
process of query optimization since many new challenges must be considered. Great efforts have
been made to address this problem in the context of cloud computing. The present article aims to
provide a complete view of query optimization in cloud computing. It provides a systematic survey
on query processing in cloud environment through three main phases. It first identifies the specific
cloud challenges facing query processing techniques. Then, it reviews and classifies the current
query optimization techniques based on a proposed taxonomy. Finally, it compares and discusses
the surveyed techniques based on the specific challenges related to the cloud environment. This
paper provides readers with some recommendations which must be considered in future work.

Introduction

Cloud computing is one of today’s
fastest growing technology. Its ability to
allow users to perform massive-scale
and complex computing without
owning expensive computing hardware
and

dedicated software make it more
attractive. Interest in this new
technology is primarily due to the
economies of scale and for the hardware
and software costs incurred by users.
Since such users are likely to be much
lower when they are paying for a share
of a service rather than running
everything themselves . Secondly, the
costs incurred in well-designed cloud-
based data store and management
systems will be proportional to concrete
usage according to ‘“pay-per-use”
paradigm for both software licensing
and administrative costs. Hence, cloud
solution provides the illusion of infinite

pools of highly reliable, flexible, and
scalable computing, storage, and
network resources . However, even
huge storage capacities are guaranteed
in such technology, end-users need also
to query stored data and get fast query
processing. Thus, one of the major
challenges in cloud storage components
development is to develop effective
methods and strategies for query
processing and optimization.

Query optimization has been intensively
investigated in different contexts, in
centralized databases , parallel
databases , and large databases

Moreover, other studies have focused
on query optimization techniques for a
specific type of queries such as top-k
queries , recursive queries and
continuous queries . In big data context,
Lee et al. have given a thorough
discussion about mapreduce paradigm-

mailto:Webeng.mushtaq@gmail.com

based query processing, its pros and
cons, and its optimization strategies.

Traditional query optimization solutions
are generally based on several
techniques such as indexing, caching,
fragmentation, and view
materialization, etc. However,
implementation of these techniques in
cloud environments without adaptation
can have a poor performance since they
cannot anticipate future availability and
release of resources . In the cloud
computing context, query optimization
is more challenging since a query
execution involves many factors and
multiple data stores. Furthermore,
diverse challenges related to the cloud
environment must be considered during
query processing. To deal with data
storage and querying issues in cloud
environments, many studies have
suggested adopting big data
technologies as a solution to the
development of the cloud. Thus, the
status of big data in cloud computing is
given in. The authors discussed the
relationship between big data storage
systems, cloud computing, and Hadoop
technology. Sakr et al. provided a
survey summarizing various strategies
and mechanisms for processing and
deploying data-intensive applications in
the cloud. Attasena et al. focused on the
security aspect of the cloud. They
surveyed the secret sharing schemes
related to the query and data processing
with respect to data security, data access
and costs in the pay-as-you-go
paradigm. Recently, a survey paper has
pointed out and evaluated big data
indexing techniques for query
optimization in cloud computing. The
resulting taxonomy of indexing
techniques categorization is based on

three approaches which are non-
artificial-intelligent, artificial-
intelligent, and collaborative artificial-
intelligent approaches.

It is true that the indexing techniques
have been largely used for cloud query
processing. However, in recent years,
many other query optimization
techniques for cloud computing have
been carried out. Moreover, even if
these different techniques have been
studied individually in the past, the
literature still lacks a unified view of
query optimization techniques in cloud
environments. Even though there have
been some surveys and reviews
regarding query and data processing in
the cloud, they fail to cover many
techniques and do not provide a holistic
view of the research about query
processing in the cloud. Moreover, no
one of the previously presented surveys
directly focused on specific cloud
challenges to investigate query
optimization techniques. Thus, a
comprehensive survey of this field is
required.

Mainly, this study contributes to
understanding the principal of query
optimization techniques in cloud
environments. It firstly identifies
challenges facing query optimization
techniques in cloud environments and
then surveys and classifies such
techniques with respect to their
strategies. A focus on the recent
techniques that deal with the specific
challenges of cloud environments is
made. Noting that, works related to the
effect of hardware improvement on
query optimization techniques such as
memory and access costs are not
considered in this paper.

In order to achieve the contributions
mentioned above, we carry out our
research investigation by querying
scholarly online electronic databases
using the keywords “Query
optimization” and “Cloud computing.”
The queried scholarly electronic
databases include ScienceDirect,
SpringerLink database, IEEE Xplore,
ACM Digital Library, and Google
Scholar. The papers were from different
journals and conferences. Returned
articles were downloaded and carefully
examined. The selected papers were
carefully read and analyzed to extract
the addressed challenges, considered
aspects and methodologies used to
optimize queries. Complete
classification and a comprehensive
review of various query optimization
techniques are then obtained.

In this paper, we make the following
contributions:

- We give some basic
backgrounds, related concepts
and the main features of cloud
platforms, which are necessary
for the understanding of the

paper.

- We provide a detailed
description of the query

optimization problem
considering the specific cloud
challenges.

« We review and classify the most
recent techniques of query
optimization in the cloud,
scrutinizing their main aspects.

« We compare and discuss current
methods, taking into account the
described challenges.

Finally, resulting from this
study, we analyze the
limitations of current query
optimization techniques. Then,
we give some important
opportunities and
recommendations for future
research directions.

The rest of this paper is organized as
follows. In Sect. , we introduce the most
important concepts related to cloud
computing. In Sect. , we first define the
query optimization problem and then
highlight the specific challenges related
to cloud query processing. In Sect., we
review and classify the most recent
approaches for query optimization. In
Sect. , we provide the overall discussion
of the limitation of the literature
approaches. In Sect. , we present future
directions in the context of query
optimization in cloud environments.
Finally, we conclude the paper.

Background

For a better understanding of the rest of
the paper, we provide in this section a
brief background on cloud computing
models and querying within the cloud
environments.

Cloud computing

The National Institute of Standards and
Technology has defined cloud
computing as “a model for enabling
ubiquitous, convenient, on-demand
network access to a shared pool of
configurable computing resources that
can be rapidly provisioned and released
with minimal management effort or
service provider interaction.” Also,
Armbrust et al. summarized the cloud

3

computing definition as “both the
applications delivered as services over
the Internet and the hardware and
systems software in the data centers that
provide those services.”

Cloud service models

Basically, NIST has defined three
service models and four deployment
models. The deployment models are
public cloud, community cloud, private
cloud, and Hybrid cloud. The service
models include laaS, i.e., Infrastructure
as Service, PaaS, i.e., Platform as a
Service, and SaaS, i.e. Software as a
Service. Thus, laaS means that
computers are proposed as physical or
virtual machines to support end-users’
operations. The service provider rents
the use of these machines to customers
in a pay-as-you-go manner. In another
hand, PaaS provides computing
platforms to customers such as
operating systems, hardware,
programming language execution
environments, servers, and databases. In
SaasS, software applications are installed
in the cloud, operated and maintained
by service providers. Customers can
access the software from cloud clients.
Recently, new expanded services model
have emerged such as StaaS, i.e.,
Storage as a Service, and DaasS, i.e.,
Database as a Service. Indeed, StaaS
forms one of the critical components of
laaS. It provides a series of cloud-based
data stores that differs in data
consistency semantic, data model, data
transaction support, and price model.
Furthermore, the DaaS model provides
database functionalities such as data
definition, storage, querying and user
interface functionalities. To implement
such a service, the majority of cloud

service providers use big data hybrid
architectures. ~ Such architectures
combine structural, non-structural, and
semi-structured data storage systems
and also open-source and commercial
cloud platforms. Thus, cloud computing
is closely related to the new
provisioning paradigm of computing
infrastructure and big data processing
technique given the variety, volume,
and veracity of data across cloud
environments.

Querying in the cloud

In the cloud computing context,
querying consists in retrieving of the
data records or files that match the
specified condition. In the cloud,
queries can take different forms such as:

« Ad hoc query means one-time
executed query, it is often
expected with results at
interactive latencies.

« Recurring query, ie.,
periodically deployed query to
get daily or hourly reports.

« Continuous query, this form of
query is executed in real-time
and incrementally compute
results as it is received.

There is various type of queries
considered in the literature. Those that
have been widely discussed in the
context of the cloud computing are SPJ
query, aggregate query, top-k query,
range query, multi-keyword query,
skyline query, and k-nearest neighbor
query.

- SPJ query is the most popular
query in the database, it includes

selection, projection, and join
operations.

« Aggregate query is defined with
a function where the values of
multiple rows are grouped
together according to some
criteria to get a single value with
significant content.

« Top-k query is to seek and
retrieve the k elements with the
highest selecting score.

- Range query is to seek and
retrieve a set of database
elements that fall within a range
of ndimensional space of
attributes.

« K-nearest neighbor query KNN
query is to seek and retrieve the
top k most similar documents in
an outsourced database to a
given document or a relatively
small set of documents.

« Skyline query assume that every

user has a set of preferences
over the attributes of data.
The sought skyline set is the
subset containing the most
preferred items of all the
preferences of all users .

« Multi-keyword query is to seek
and retrieve files or documents
containing a particular set of
keywords.

Problem definition and related
challenges

In recent years, there is increasing
research interest in query processing
over cloud environments. Such research
studies have focused on different
challenges related to query processing
in cloud computing while recognizing
diverse hypothesis on the interacted

entities and actors of the cloud. Here,
we make a brief overview of (1) the
different entities considered when
addressing query optimization issue, (2)
a description of the query optimization
problem, and (3) most important
challenges when designing a query
optimization technique.

Cloud system model

Cloud computing cluster contains
hundreds or more of heterogeneous
hardware in the form of nodes. Each
node has the ability to store data and
perform a specific computation.

A representative scheme of cloud
querying system and its components are
illustrated in Fig. 1. It includes two types
of nodes namely, master nodes and slave
nodes. Master node, which is responsible
to store some meta-data about all data
and clusters. Slave node is responsible to
store the regular data. Moreover, three
different entities can be identified as
follows:

Fig. 1

https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig1
https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig1
https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig1
https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig1

Cloud query processing system and its
components

- Data Owner (DO) is the landlord
of the stored data or files in the
cloud. In the case of files, the
landlord must identify its files
and specify a set of keywords to
be used for possible queries.

- Data Consumer (DC) is an
authorized entity—individual
users or enterprises—which has
the right to query the cloud data
and search for specific
information in the cloud.

« Cloud Service Provider (CSP)
an entity which offers storage
and computational resources
and services.

Generally, a data owner stores its data in
a specific CSP to provide its service to
diverse customers who access these
services and data over the internet. To
ensure a minimum quality of service, it
negotiates an SLA, i.e., a service level
agreement with the provider on which
they specify all monetary costs and
service level that must be satisfied.

Query optimization problem

In this sub-section, we give a short
description of the query optimization
problem in cloud environments.

In cloud environments, query processing
can be either centralized or distributed.
To perform efficient optimization, it
requires statistics from the different data
storage nodes. As illustrated in Fig. 1, a
DO stores its data on a CSP, and
multiple DCs can query this data. A DC
submits a query using a high-level

language such as SQL, HiveQL or a set
of keywords in case of multi-keyword
query. Usually, this query is submitted
to the master nodes. When the master
node receives a query, the optimizer
framework—located in the master
node—produces a detailed query
execution plan (QEP) that can be
performed by a number of nodes. To
determine an optimal plan, the
optimizer framework uses a cost model.
This cost model estimates the system
resources used for query evaluation
operators. Due to the distributed
environment, the processing of
distributed queries requires data
communication between diverse nodes
through a network. Thus, according to
the generated QEP, the optimizer
framework decomposes the query into
several sub-queries. Then, for a parallel
and concurrently processing, the master
node dispatches sub-queries to the
available slave nodes based on diverse
factor including load balancing strategy
and paying capability. Finally, the slave
nodes evaluate these sub-queries based
on the proposed plan and then return
partial results to the master nodes.
When all sub-queries on the slave nodes
are executed completely, the master
node merges the partial results, and the
result of the query is returned to the DC.
Noting that slave nodes can exchange
sub-results between them if necessary.

During this process, some traditional
issues must be addressed to carry out the
optimization operation such as:

Which is the best cost model to
be used?

+ How to estimate costs of query
execution plans, considering
multiple diverse relevant criteria

6

https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig1
https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig1
https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig1
https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig1

such as the monetary cost of
resources, staleness of data,
etc.?

« How to select the best execution
plan that could perform the
original query?

« How to select available nodes
where the query must be
processed?

« How to assign sub-queries
across different available nodes
taking into account load
balancing?

These different issues and questions
have been well discussed in the
literature of distributed databases
context. Besides the well-known
traditional issues addressed in the
conventional and distributed database
discussed above, some other issues arise
such as the lacking of scalability,
reliability, fault tolerance, data
partitioning, and replication. Such
issues were dealt with big data
solutions. However, in addition to all
these issues, new considerations and
challenges related to cloud
environments must be addressed. These
new considerations and challenges will
be discussed in the next sub-section.

Specific challenges of the cloud

In this sub-section, we identify the main
challenges encountered when designing
query optimization techniques in cloud
environments.

To address the problem of query
optimization, many authors adapted
traditional query optimization
techniques considering cloud
computing specificities. Although

traditional query optimization solutions
present various advantages. However,
even with the new big data platforms,
the specific features of cloud computing
requires rising effectively new
challenges. Cloud computing has the
features of being a large-scale,
distributed and virtual complex
information system. In the following,
we give a brief description of the most
important challenges.

How to deal with DFS and key-value storage systems?

In cloud computing systems, data
storage depends largely on the
distributed file system (DFS) to store
data and adopts a key-value and big-
table-like structures. However, such
structures have some limitations in data
management. For instance, these
structures cannot effectively process
complex queries and only basic query
operations are supported. Moreover,
they can only provide key-based
insertion. Furthermore, data are
horizontally partitioned and
redundantly stored in multiple
distributed worker nodes. In DFS, there
are multiple instances of the same
volumes, which can move between the
different nodes. When a user query is
issued, the system should seek an
adequate volume instance while
considering load balancing, scalability,
reliability, fault tolerance, and data
replication. Therefore, query
optimization techniques must address
problems arising when data volume
stored in different nodes is large.
Besides, to take the better QEP, the
master node must collect statistics from
various slave nodes to avoid high cost.

How to preserve elasticity feature of cloud services?

7

A key asset of cloud computing is its
elasticity. Indeed, the cloud elasticity
feature means that a service can be
scaled up by increasing the set of
nodes/resources or can be scaled down
by decreasing this set of nodes or
resources. Therefore, it enables the
system to add and remove resources
according to the application’s
requirements or on user demand in real-
time. Therefore, keeping cloud
computing elasticity requires observing
closely and predicting the required
resources for the system in order to
decide when to add or to remove
resources. Since a node cannot
meaningfully participate in the database
operations only if it has a substantial
proportion of the querying data. Thus,
the provisioning of data on available
transitory nodes makes elastic a hard
problem. This is a crucial task since an
under-provisioning or over-
provisioning of computing resources
will probably adversely affect the
cloud’s user as well the provider.
Furthermore, the speed of elasticity
adaption is a crucial quality of a cloud
service. Thus, query optimization tasks
must be flexible since elasticity requires
sporadic and fast shifting of data and
data ownership between nodes.
Therefore, implementing an adaptable
query optimization technique, able to
consider the capacity of data
provisioning and temporarily available
nodes is a real challenge.

How to deal with the pay-as-you-go paradigm?

One of the fundamental features of the
cloud is to allow its users to pay the use
of short-term computing resources
according to their need. Cloud resources
are rented in the unit of virtual machine

instances, or according to technical
criteria such as power, bandwidth, or in
flat-rate form. However, using a query
optimization technique implies extra
cloud resources such as additional
storage space, additional structures or
more computing power. Thus, such
extra cloud resources must be priced.
Hence, provide a query optimization
technique with minimum extra cloud
resources to keep a balance between the
customer’s ability to pay and supplier’s
profitability is a great challenge.

How to ensure security and privacy of data?

Data security remains one of the most
concerns in cloud computing. Indeed,
data security and privacy requirements
are quite crucial for many users and
often are factors that restrain their
adoption of cloud computing solutions.
Since cloud computing includes three
parties: DCs, DOs, and CSP, and the
stored data are not under the direct
authority of their DOs. Thus, traditional
security solutions are not directly
applicable. Indeed, CSPs are a possible
threat to the security of data since they
can provide a secondary usage of data
for advertisement purposes or for
governments. Dealing with cloud
security issue involves addressing data
privacy, availability and integrity
issues. In the cloud context, especially
for query processing, security concern
both storage and computation.

To enforce security, diverse solutions
were proposed including, data
encryption, data anonymization, data
verification, and data separation.
However, these solutions make query
evaluation more complicated. Thus, a
great challenge is how to design and to

8

adapt query optimization techniques to
ensure both a high-level of security and
flexible query processing. In other
words, it consists to find the most trade-
off between the high-level of data
security and efficient data access.

How to manage the volume and heterogeneity of

data?

According to Reinsel et al., the volume
of global data will grow from 33
Zettabytes in 2018 to 175 Zettabytes by
2025. Indeed, data and services of the
cloud are characterized by their
heterogeneities since processed data are
in different format including structured,
semi-structured, and unstructured data.
Thus, there is presently almost no
declarative method to define and
execute complex queries over many
data stores of heterogeneous data
models. This is principally due to the
lack of a common access model on
heterogeneous data stores. Therefore,
enhancing cloud data management
systems and query processing
techniques to be able to follow these
growing and heterogeneity trends of the
data volume are big challenges.

Solutions to manage such a growing
volume of data in cloud environments
have been proposed. These solutions
consist of data partition to provide
scalability and replication of the
partitioned data to get high availability.
However, these solutions make query
optimization more complex. Since the
query optimization techniques have to
consider specific criteria such as
replication factor, the cost of data
movement and transformation which can
be very high.

Review of query optimization

methods

In this section, we provide a
categorization of query optimization
techniques in the cloud in a taxonomy
that summarizes current research in the
field.

This taxonomy is done based on various
factors. The first level of the taxonomy
captures the basic principle used to
optimize queries including design,
architecture, and requirements of each
technique. The first level provides four
main categories. These categories also
have different subcategories. Each
category was further classified to
provide a second level of taxonomy.
This second level describes considered
information during the optimization
process including functionality, used
data and meta-data to obtain an
execution plan or result. The final
hierarchy of the taxonomy was
developed by further refining the
classifications based on the
maintainability on the technique.

Through this taxonomy, we provide
researchers with an accurate view about
most important contributions on query
processing in the cloud environment
and their limitations. This taxonomy
summarizes similarities and differences
between these contributions. Figure 2
shows the resulting taxonomy, which
categorizes query optimization
techniques in the cloud. The details of
these categories are given below.

https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig2
https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig2
https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig2
https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig2
https://link.springer.com/article/10.1007/s11227-019-02806-9#Fig2

Fig. 2
) TS ¢ :
=] i E_T'—__ﬂ
,‘—'ll—‘ s == l__[_
=) l_f (——
Y ey WO ey e o

Classification of query optimization
techniques

Additional structure-based methods

To address the query optimization
problem in cloud computing, great
efforts have been made to design
solutions based on additional data
structure such as index, materialized
views and caching.

View materialization based methods

In the database field, a view is a derived
relation, defined by a query in terms of
base relations or other views. It is said
materialized if its query result is
persistently stored. The views selection
consists to select the appropriate set of
views to be materialized, considering
some constraint such as query
workload, storage cost, etc..
Materialized views are useful only if the
query optimizer is able to find pertinent
views quickly. Based on the
maintainability of materialized views
set, we distinguish between two kinds of
methods; static and dynamic
materialization. Materialized views
have been used in cloud environments
to improve query performance. In this
paper, we distinguish between
techniques base on static
materialization and those based on
dynamic materialization.

1. (A)

Static materialization based
methods In traditional
approaches, to select a set of
views to be materialized,
authors ~ considered some
parameters to estimate the cost
model of view materialization
including query workload and
database size. To adapt such
cost models to the cloud
environment, Nguyen et al.
defined new cost models which
consider the pay-asyou-go
paradigm of cloud computing.
They considered some new
parameters related to cloud
environments such as cloud
pricing model of CPU, storage,
and networking. They used
these cost models for query
optimization process achieving
a trade-off between computing
power enhancement and view
materialization under a budget
constraint. The proposed cost
models allow achieving a multi-
criteria optimization based on
materialized view selection.
However, the authors did not
consider the evolution of their
parameters. For instance, an
evolution of query workload can
be considered due to the
evolution of the application
requirements. Thus, in this case,
they must repeat views selection
process from scratch.

(B)

Dynamic materialization based
methods unlike the previous
method, Qu and Dessloch
considered view selection
problem as the process to find

10

out a position of a materialized
view insertion in the view
materialization flow in real-
time. To select materialized
views, they defined a measure
called performance gain which
depends on some metrics like
source update rate and
original/incremental operation
cost from different platforms.
Then, they proposed an

incremental on-demand
maintenance technique to
maintain the

materialization point which
would be in the flow. The
location of a materialization
point in transformation flow
varies dynamically based on
some metrics such as the data
source update rates and
maintenance cost. This real-
time view materialization
method took into account the
evolution of parameters such as
the workload.

Index-based methods

In the database context, different multi-
dimensional index structures such as R-
tree and B*-tree have been developed
for query optimization. In cloud
environments, great efforts have been
devoted to adapt these structures in
order to address query optimization
challenges. Based on the
maintainability of an index, we
categorized these works into two
categories: static index-based methods
and dynamic index-based methods.

1. (A)

Static index-based methods In
this category of methods, many
frameworks have been carried
out. Thus, an elastic cloud
storage system called EcStore
was developed by Vo et al.
EcStore is based on a distributed
index called BATON with two
new extension functions:
optimistic concurrency control
and load-adaptive replication. It
supports automated data
partitioning, load balancing, and
replication. It also efficiently
handles range queries and
transactional access. Users can
access data using transactions
that combine read and write
operations on multiple pieces of
data stored on different cluster
nodes. Authors argue that
ecStore provides two additional
features including transactional
semantics across multiple keys
and load-adaptive replication
compared to other closedsource
cloud data serving systems such
as Dynamo and Pnuts, and
open-source systems such as
HBase. Another framework
based on VF-CAN indexing
scheme was developed by
Cheng et al.. The proposed VF-
CAN scheme includes content-
addressable network (CAN)-
based routing protocol and an
improved index of the vector
approximation file (VA-file).
The VF-CAN index structure
has two levels: a global index
level and a local index level.
The local index called VAK-file
built in each storage node by an
improved VA-file. Then, data
are quantified and compressed

11

into approximation vectors of
VA-file. To group the VA file
vectors, they used a k-means
clustering algorithm
considering the degree of
proximity of VAK-file. The
global index is built on the top
of the previously defined local
index. For scheme operation,
the storage node sends its local
cluster center information and
its IP address to the overlay
network through the CAN
interface. Noting that the
authors have given an algorithm
describing how the local index
is built and how to issue a local
index in the global index. In
order to eliminate bottleneck
problems, the global index is
distributed in storage nodes. To
facilitate data management,
each storage node is organized
with a structure overlay CDN to
manage the global index.
According to the authors, VF-
CAN reduces index storage
space and improves greatly
query performance. However,
this framework does not
sufficiently ~ handle index
maintenance, and further effort
is required to improve the
efficiency of maintenance of the
proposed indexing scheme. Guo
et al. exploited key-value stores
and the map-reduce parallel
computing paradigm to
implement the KVI-index,
which is based on two interval
indices: on time dimension and
sensor value dimension. Each
index has an in-memory search
tree and a secondary list
materialized in the key-value

store. They developed a new
approach to perform query
processing under modeled data
streams by enhancing
intersection search algorithm
called iSearch that produces
consecutive results suitable for
map-reduce processing. Noting
that the time complexity is O(1)
in terms of network I/O, the
space cost is O(N) for time
index, and the space complexity
of vs-tree iSearch algorithm is
O(1). Li J et al. proposed a
multi-dimensional indexing
mechanism PR-Chord. The PR-
Chord index includes a PR-
Index and a Chord network. It is
a hierarchical index structure
and based on the improved
version of PR quadtree. The
multi-dimensional space trained
by the range of the multi-
dimensional data is split into
equal hyper-rectangle spaces.
The effectiveness of PR-Chord
comes from the load balancing
and simplicity of its indexing
algorithm. According to the
authors, the average
transmitting hops of PR-Chord
query are O(log N).

Furthermore, the time
complexity of PR-Index in the
worst condition is

O(d x N' "4 "in which N is the
total node number of index for
d-dimension.

While Li Y et al. used additional
information to a complete
binary tree called PBtree
(privacy Bloom filter tree)
index. It is used to organize
indexing elements. Noting that

12

query result will be
accompanied by validation
information, allowing users to
check the integrity of results. To
manage the security issue, the
authors proposed a leveled
verifiable range queries scheme
based on a private-preserving
scheme. They achieve the
property of verification by
adding some additional
information into the query
result, and data users also use
additional information to verify
the query result. Unfortunately,
this means an additional storage
cost to this method. Moreover,
the time complexity of their
algorithm is O(|R| log n), where
the number of query result is R
and n is the number of index
items. Likewise, Mei et al.

addressed the security issue
when optimizing range query
using a new encrypted-index-
based scheme called EIT.
Indeed, to execute range
queries, a data owner creates an
index EIT, i.e., Encrypted
Interval Tree for its encrypted
data. If the data in the cloud is
not evenly distributed, the data
owner must complete cipher-
texts in each sheet the same size.
The filling procedure ensures
the security of this data. To
perform the EIT index, the
authors adopt the KNN search
pattern on encrypted texts.
Noting that this technique
makes encryption schemes
support the scenario of multiple
users. In this scenario, the
proposed scheme supports
efficient logarithmic complexity

search over encrypted multi-
dimensional data. However,
additional Ccosts of
communication between users
and cloud provider are required.

1. (B)

Dynamic index-based methods
This kind of indexing scheme is
dynamic and support schema
adaptation. Some works have
been done in this direction. For
instance, to deal with query
optimization of range queries
considering the security aspect,
Talha et al. proposed DISC
technique which means
dynamic index for spatial data
on the cloud. Indeed, DISC is an
index based on the Hilbert
dynamic tree R-tree. Its
structure is encrypted by an
orderpreserving encryption
(OPE) scheme, while the data
are encrypted separately with a
secure symmetric encryption
method. DISC encrypts the
nodes without altering the
structure of the index, which
explains its fast execution. A
spatial transformation is applied
to the data and the dynamic
spatial index is encrypted using
OPE. Such OPE encryption
balances between efficient
query processing and data
confidentiality in the cloud.
Noting that this spatial index
supports dynamic updates on
the outsourced data. To speed
up multidimensional query
processing through data
recording and an efficient
indexing scheme, Zhang et al.

13

developed a multi-dimensional
index called EMINC\ EEMINC
by combining two structures: R-
tree and KD-tree. To address
EMINC\ EEMINC index
maintenance problem, they
proposed a cost estimation-
based index update strategy to
update the index structure.
However, the maintenance cost
is high.

Finally, and maybe most importantly, in
cloud environments, scalability issue is
initially addressed by data partition and
availability is addressed by replication
of the partitioned data. Index-based
methods are known as adaptative for
data partitioning, i.e., these methods are
able to support automated data
partitioning and replication. And
therefore the scalability issue is handled
through these techniques. On the other
hand, the static index is rebuilt
periodically from scratch rather than
updated incrementally, while dynamic
index requires an extra cost for its
maintenance. Furthermore, the dynamic
index approaches outperform static
index approaches by maintaining
location updates incrementally.
However, dynamic index approaches
suffer from scalability cost due to their
single-server (one data store) design and
the extension of the centralized dynamic
index approaches do not scale out when
the number of servers increases, while
tree-based index methods incur
dimensionality problem with the
increasing in the dimensionality.

Caching-based methods

Cache is a set of data duplicating
original values stored in memory,

generally, for easier access and reduce
response time. Thus, caching is a
technique which consists to replicate
most requested content on a system
closer. Then, these replicated data will
be used to process future queries. Some
works have also adapted this technique
to process queries in the cloud context.
Based on maintainability of replicated
data, we categorized these works into
two categories: static-cachingbased
methods and dynamic-caching-based
methods.

1. (A)

Static-caching-based methods In
this category, replicated data is
not maintained after the
modification of original data. In
this context, Dash et al.
developed a cost model for
selftuned cloud caching. Their
cost model takes into account all
possible computing and
infrastructure expenditure.
Depending on the business line
of the cloud computing, the
proposed cost model takes into
account the necessary and
available cloud resources:
including disk space, 1/O
operations, CPU time, and
network bandwidth. This model
is self-tuned to the three policies
that aim to (1) high quality of
individual query service (2)
increasing overall quality of
query services, and (3) cloud
profit. According to the first
policy, users are satisfied with
the received query services
given the amount of money they
are charged. According to the
second, the overall query

14

service is gradually ameliorated
so that individual query charges
are minimized. According to the
third, cloud infrastructure
remains profitable at all times.
Therefore, the proposed model
is adapted to policies that
encourage high-quality
individual and overall query
services but also brace the profit
of the cloud provider.

(B)

Dynamic-caching-based

methods In this category, the
cache element is maintained to
store the latest data up-to-date.
In this context, Ma et al.
introduced a dynamic cache
replacement strategy based on
the frequency of segment
access. They define a semantic
segment as a decomposed or
coalesced query result. When a
query is processed, the semantic
cache manager analyzes the
contents of the cache and creates
two sub-queries: a probe query
will be handled using the
retrieved data of the cache and a
remainder query will be
handled using the retrieved data
of the cloud. The authors
proposed an algorithm that
allows the semantic cache to
provide enough information for
a comparison between the input
query and the query of the
semantic region without
processing all the tuples in each
semantic region. During this
access algorithm, four types of
events can occur: (1) The query
is completely processed from

the cache. (2) Additional
operations and treatments must
be performed in order to retrieve
the result of the query in its
entirety by a different segment
of the cache. (3) The result of
the query can be retrieved from
the cache, but another part has
to be recovered from the cloud.
(4) The query cannot be handled
by the cache. They also
examined how to increase cache
utilization to further reduce
query processing time. To
ensure cache consistency, they
provided an effective lifecycle
tag for the cache element to
store the latest data up-to-date,
and when the data are updated,
the cache element will be
automatically updated.
However, the consistency issue
among different cache nodes
and fault tolerance must be
addressed.

Partitioning-based methods

In this kind of optimization techniques,
searchers do not use additional
structure. However, they focused on
how organizing and partitioning the
data or query, so as to find them more
quickly. We distinguish between
methods based on data partitioning and
query partitioning.

Data partitioning and placement based methods

In this category, the authors focused on
data organization. To optimize query
performance and reduce resource
consumption, Kumar et al. built up a
data placement approach called
SWORD of replicated data considering

15

query workload. Their aim is to cluster
data required for each query on to as
few partitions as possible. To achieve
this aim, they developed a partitioning
technique based on a weighted hyper-
graph. This last is used to model the
query workload. Since the resource
consumption of a task depends in
addition to its characteristics, the
overall status of the system such as
other simultaneously running tasks. A
hyper-graph means that the connected
data items, i.e., a set of relation
partitions, file chunks, or tuples, appear
together in a query workload. Its
weights assigned to the edges capture
the access frequencies. The authors
developed several algorithms for data
placement with replication including
Dense Sub-graph, Pre-replication,
Localbased Motion, and K-Way
Replication algorithm. They proposed a
routing mechanism that minimizes
hyper-graphic compression overhead in
two steps. Firstly, grouping hyper-graph
nodes into groups, secondly, reducing
the group of nodes into a single virtual
node. While Wang et al. addressed the
problem arising out of the low sampling
efficiency when using OLA (online
aggregation) querying. This last
consists to give the user an approximate
query result using random samples of
the data then refine the result with other
samples. The authors have developed an
aggregation system called OLACIloud
coupling two key concepts: repartition
and allocation. The base relation is
divided into blocks according to its
attributes, allowing combining the
appropriate tuples together to form a set
of new blocks according to these
attributes. Then, they proposed a block
placement strategy considering block
size and variance of storage

consumption. However, it would be
interesting to improve the online
aggregation performance by reducing
the redundant statistical computation
cost. Oktay et al. proposed a
partitioning-based method using
division strategy of selection and
projection operations. Partitioning of
data is achieved using a special column
called CPT column. Results, i.e.,
partitioned data are then stored and
placed in a private cloud (trusted part)
or in a public cloud (untrusted part)
according to data sensitivity. The
authors have also developed an
approach to execute SQL style queries
in a hybrid cloud. They claimed that
their approach ensures query processing
with @ minimum communication
between the public and private cloud.
Moreover, the partitioning approach
improves greatly the overall query
execution time, by as much as ten times
as compared to the case of working only
in a private cloud. However, balance
the load between private and public
machines is not guaranteed in this
approach. Huang et al. proposed an
elastic spatial query processing
technique in an OpenStack cloud
computing environment. They focused
on horizontal auto-scaling containers.
They implemented a spark-based
spatial query processing algorithm
(SQPA) and identified the parameters
that affect the effectiveness of parallel
SQAPA. In their technique, spatial data
objects are partitioned and stored in
distributed nodes. Then, the query
objects are broadcast to the nodes of the
partitions reside. They suggested the
use of a small number of containers with
a reduced number of total executor
cores for substantial spatial query
processing of big spatial data. However,

16

many parameters must be done
manually in this technique which limits
its use.

Query-partitioning-based methods

In this category, the authors focused on
queries partitioning and management.
Guabtni and colleague focused on range
queries processing by combined a load
balancing technique with a density-
based partitioning technique. They
introduced a partitioning method which
consists to split a range query into
smaller ones so that they can be
distributed across the available replicas
of the database with load-balanced
fashion. The authors have developed a
density-based query partitioning
algorithm enabling to evenly share the
workload across a set of database
replicas deployed on a cloud
infrastructure. Nevertheless, a pre-
treatment phase that may take a long
time is required to perform the
partitioning operation. Da Silva et al.
proposed a non-intrusive and adaptive
performance monitoring technique
which consists to dynamically
providing the necessary set of virtual
machines able to execute each query.
Their technique operates over the
relational data model with complete
replication of the database. Thus, each
deployed virtual machine has a database
management system with a complete
copy of the database. The authors
proposed the architecture of four
modules, partition module, a
monitoring module, capacity planner
module, and orchestration module. The
partition module is responsible for
virtual partitioning and dividing the
query into several sub-queries. The
partitioning algorithm distributes a

number of partitions to each available
virtual machine based on its
performance. The capacity planner
initially provisions a number of VMs to
treat the query while minimizing the
computational cost and penalty. The
monitoring module instantiated in each
virtual machine allocated to process a
sub-query, while the orchestration
engine is responsible for
communication between the previously
presented modules. Thus, this technique
follows the query response time of the
SLA contract and then makes adaptive
monitoring, considers that the virtual
machines may have different
performances. However, it is limited
only to select-range queries. Moreover,
the authors did not address i/o and
storage costs of the proposed technique.
In their work, Zhao et al. dealt with SQL
query. They proposed to firstly
decompose the queries into sub-queries
according to the operator and operand
request, which can run in parallel. Then,
they proposed two scheduling
algorithms ~ for query processing
procedure providing load balancing and
improving query performance. They
exploited replication offered by the
cloud database system for query
processing to provide better alternatives
for the scheduler. Moreover, they used a
pipeline strategy when the results come
back to reduce the response time of the
query. However, the query cost does
not reduce linearly because of the
computation of the large matrix.
Besides, the proposed scheduling
algorithms select sub-query according
to a heuristic method-variance to
achieve maximum load balancing.

17

Storage system improvement based methods

In order to enhance query processing in
cloud environments, many
improvements to the storage systems
have been made in the literature. Since
previous investigations and surveys
have focused on techniques based on
the improvement of the storage system,
we analyze and discuss only two
categories of methods namely map-
reduce based methods and additional
storage structure-based methods.

Map-reduce based methods

Map-reduce model has received great
interest from academic and industrial.
Indeed, in the mapreduce paradigm,
programs read input and store output in
distributed file systems such as GFS and
HDFS. Such distributed file systems
represent the storage layer of cloud
computing platforms. Map-reduce
divides the parallel processing using
two functions map and reduce. Several
optimizations and improvements of the
map-reduce model have been proposed
in the literature. For instance, map-
reduce-merge is a framework proposed
to address the data transfer bottlenecks.
It allows merging of already partitioned
and sorted data. While HalLoop is an
improved implementation of the map-
reduce framework by adding Loop
control. The HaLoop framework was
implemented to support iterative
applications. Another framework was
developed by Koh et al., who focused
on skyline queries optimization. It
processes efficiently skyline queries
and avoids the bottleneck of centrally
finding the global skyline from local
skylines using the mapreduce
framework. It is based on two

algorithms, the first one called MR-
DDTP, i.e., map-reduce distributed
dominance Test with Projection
algorithm and it applies the division of
the grid to produce segments assigned
to the mappers. Subsets dominated
operations are distributed to multiple
reducers to find the global skyline from
the local skylines objects. Dominator
reduction strategies are designed to
reduce the amount of data transmission.
The transmission of data is from the
mappers to the reducers according to the
dominance ratio between the resulting
segments of the splitting methods. The
second algorithm called MR-Sketch
avoids high IT costs during local
skylines objects finding by computing
the skylines objects of the sample points
to filter out most non-skyline points in
the mappers. However, the reducers
responsible for processing these
segments need more processing time
due to unbalanced loads among the
reducers.

On the other hand, map-reduce job
scheduling has received considerable
attention in the cloud context. An
efficient job scheduler is crucial to
improving resource utilization and
system performance considering the
importance of the number of jobs..
Kllapi et al. proposed several greedy
and probabilistic optimization
algorithms. These algorithms explore
the space of alternative scheduling of
data-flows on the cloud considering
time and money constraints. This family
of algorithms follows a nested loop
approach used in the schedule and stops
when the optimality criterion does not
improve. Noting that, the proposed
solution has considered resource
elasticity of the cloud.

18

Bit vector storage structure-based methods

Bit vector storage methods offer high
scalability. Indeed, Yang et al. have
been attracted by the issues related to
the column storage system including its
inability to scale to support the increase
storage rates to petabytes and ever-
increasing in scale, and also the
impedance mismatch that occurs when
complex data is normalized in a
relational table. The authors realized
that these issues do not allow to
effectively processing the aggregate
query. Hence, they proposed a bit vector
storage method to address aggregated
query optimization in cloud
environments. This method is based on
the principle that a bit vector is a
sequence of elements of a bit in which
each element is referenced by its index.
In bit vector storage system, the
attribute coding schemes are used to
decide how the attribute values are
transformed into binary vectors. The
appropriate scheme is chosen based on
the characteristics of each attribute. The
authors claim that the bit vector storage
method is better compared to the
column storage method in many
evaluated parameters such as execution
time, processing and i/o costs, and
compression time. However, the data
compression technique requires further
investigation and improvement.

Query plan optimization based methods

Query cost models are used to predict
and estimate the cost of the query
execution plans in terms of the number
of operations (I/O and CPU) needed,
considering that physical resources to
be employed are known. According to
the number of involved queries during

one optimization phase, we distinguish
between simple query optimization
methods and the multi-query
optimization methods.

Simple query optimization

In order to provide a time and cost
estimation of query plans running on
virtual machines from multiple cloud
providers, Gounaris et al. have used a
bi-objective cost model. The authors
extended existing methods—which
used only time estimates—to be suitable
for multi-cloud environments. In this
method, resources used have a
monetary cost. However, it suffers from
two issues: the cost model must be
amortized from the cost of the used
resources (rather than the charged price)
and it did not take into account all
potential objectives, such as the
security, reliability, and QoS. Sellami et
al. defined a common data model and
query algebra to process complex
declarative queries. In this technique,
queries are processed in multi-data
stores named VDS, i.e., virtual data
stores. Optimization phase is done by a
mediator in two steps. Firstly, select and
project operations are pushed down to
the local data stores. This allows
reducing the size of exchange data.
Secondly, an optimal distributed plan is
built by a dynamic programming
method. The distributed plan seeks to
minimize i/o, CPU, data shipping and
transformation costs. However, this
technique is limited to the ODBAPI
query algebra and some query
operators. Another approach s
developed by Armbrust et al., who
proposed an extension of the SQL
compiler called PIQL query compiler.
PIQL system is based on a declarative

19

language allowing to express
relationship cardinality and the result
size requirements using a simple query
plan optimizer. It provides scale
independence by computing an upper
bound on the number of key/value store
operations that will be performed for
any query. It supports three remote
operators: IndexScan, Index-FKJoin,
and SortedIndexJoin. PIQL optimizer
execution engine is implemented as an
iterator model allowing the execution
of several operators with pipelined
processing. However, some useful
queries are disallowed by PIQL due to
the constraint that the number of
operations needs to have a compile-time
upper-bound. Ding et al. have
developed an efficient query processing
optimization solution based on extreme
learning machine. This framework
called ELM_CMR was built under com-
map-reduce framework, which is an
improved version of map-reduce.
ELM_CMR uses a classifier to build the
optimization model. The classifier
obtains the query classification results
at run-time which will be sent to the
query optimizer. The query optimizer
uses classification results to select an
optimized execution order. They
proposed two implementations of
ELM_CMR: for one query and for
multiple queries. However, ELM_CMR
framework requires user intervention.

Multiple-query optimization

To select the most appropriate MQO,
i.e., multiple queries optimization able
to improve the total execution time in a
cloud relational database, Dokeroglu et
al. proposed heuristic algorithms to
select the best one over many
alternative query plans. In their

framework, a distributed query engine
is used to detect the common sub-
expressions. Based on the statistics of
the database, the authors developed a
cost model based on the total execution
time of several queries. To optimize the
MQO, they developed four different
algorithms: Branch-and-Bound (B&B)
algorithm, Genetic Algorithm (GA),
Hill-Climbing (HC) algorithm, and
Hybrid Genetic Hill-Climbing (Hybrid
GHC) algorithm. Based on the total
optimization time and solution quality,
the authors showed that the GA
algorithm has the best performance. A
distributed query engine called
CloudMdsQL was proposed by Kolev et
al. The proposed engine supports
querying heterogeneous cloud data
stores. CloudMdsQL allows submitting
queries using a functional query
language to the query engine. In this
approach, each engine node is
composed of two parts, a master part,
and a worker part. Both are able to
exchange data or query sub-plans
between them. Two levels of
optimization are used in this approach.
This level of optimization is done using
a simple cost model and information
stored in the database catalog which is
replicated at all master nodes. At the
master part level, queries are analyzed
and optimized, sub-plans execution by
the different workers are also
monitored. At the worker’ levels, local
optimizations of sub-plan are achieved
and then executed. Partial results are
sent either to another worker or to the
master. However, this technique ignores
the fault tolerance aspect. Another
approach is developed by Silva et al.
who extended a Cascade-style
optimizer. The proposed optimizer
generates many possible query rewrites,

20

then, selects the one with the lowest
estimated cost. First, they used sub-
expression fingerprints to identify
common sub-expressions. The
conventional optimization is extended
to record the history of physical
properties used in the earlier identified
shared groups. Then, information about
shared groups are propagated and LCA
(least common ancestor) groups are
identified. Finally, the query enforcing
physical properties are re-optimized at
the shared groups. This approach has
been prototyped in SCOPE Microsoft’s
system for massive data analysis.
Experimental analysis of both simple
and large real-world scripts showed that
the extended optimizer produces plans
with 21-57% lower estimated costs.
While Ge et al. focused on the second
phase of the MQO technique. This
phase consists to generate a global
execution plan producing the minimum
processing time for all queries when
they are executed. They proposed the
lineage signature (LS) approach for
MQO based on common components
specified in the first phase. LS approach
is based on AST (abstract syntax tree) of
SQL statements. They first used lineage
analysis to process the set of recurring
queries. Then, using signature
extraction, they obtain signature values
for each query layer in the original
query set. Using the feedback principle
of LSShare, the efficiency of the
optimization LS approach will be
equitably shared over time over the set
of recurring queries. However, the LS
approach can be combined with other
MQO methods to further improve
system performance.

Hybrid methods

In addition to the previously presented
approaches, there exist hybrid methods
that combine several techniques. For
example, to provide on-demand
provisioning cloud services while
ensuring elasticity, Graefe et al.
proposed a query processing approach
that combines several prior works
including B-trees partitioning
technique, an adaptive merging
technique for index optimization, views
materialization, index, and deferred
maintenance. The partitioned B-tree
adds an integer indicating the partition
to which each index entry belongs. It
manages the differential information for
multiple helper nodes. Then, adaptive
merging optimizes index on-demand
manner as a side-effect of query
execution. However, the authors did not
implement or evaluate their approach to
demonstrate performances, scalability,
and the elasticity of their solution.

Comparison and discussion

In this section, we propose to conduct an
overall summary of the most relevant
results about studied and surveyed
solutions in Sect. 4. This summary will
be done regarding general challenges
then against specific challenges related
to the cloud environments.

Related challenges

Indeed, many challenges related to the
query optimization process including
fault tolerance, load balancing,
scalability, partitioning, and replication
are crucial for cloud environments.
Such challenges should be considered in
current query optimization techniques.

21

https://link.springer.com/article/10.1007/s11227-019-02806-9#Sec15
https://link.springer.com/article/10.1007/s11227-019-02806-9#Sec15
https://link.springer.com/article/10.1007/s11227-019-02806-9#Sec15
https://link.springer.com/article/10.1007/s11227-019-02806-9#Sec15

We have carried out a comparison
among the different challenges which
are not specific for cloud computing,
but important for the proper functioning
of query optimization techniques.

Although most of the optimization
techniques listed are able to support
scalability, partitioning, and replication.
However, many of them have not
addressed load balancing and most
algorithms of them have not designed to
run with fault tolerance challenge.
Therefore, it is necessary to improve the
existing query optimization techniques
and propose new techniques able to run
with fault tolerance challenge.

Specific challenges

We first examine how the query
optimization techniques deal with each
challenge separately. Then, we compare
them through, which summarizes and
reviewed techniques wusing the
identified challenges.

« Volume and heterogeneity Cloud
computing solutions must be
able to carry out, analysis and
processing several types of
queries over huge volumes of
heterogeneous data. However, a
dramatic increase in overlap
will affect query
efficiencywhen the dimension
is high or data volume is large.
Indeed, most of the previously
presented techniques have
addressed how managing issues
related to the volume of data
during the optimization process
and how to assign data across
data nodes. This can be
explained by the greater effort

devoted to developing big data
solutions. However, the
heterogeneity aspect has not
received enough attention. Only
a few works have considered
heterogeneity aspect. This may
be explained by the complexity
of dealing with the
heterogeneity aspect.
Pay-as-you-go Cloud computing
resources are allocated based on
a quantum pricing system per
period. Indeed, during query
optimization steps some
techniques use additional data
such as caching and
materialized views. However,
such additional data implies an
extra storage cost. As illustrated,
some techniques have taken into
account the pay-as-yougo
paradigm. These solutions have
considered pay-as-you-go
paradigm in different ways:
using a cost model, caching
price, data-flows price, views
materialization price. However,
many other solutions did not
take into account this aspect.
Elasticity Elasticity is one of the
main features of cloud
computing. To properly ensure
elasticity, some studies used
directly the auto-scaling groups
to spawn virtual machines.
Some other solutions used
horizontally partitioning of
tables and tablets to be
distributed across multiple
nodes. Graefe et al. addressed
the sporadic unavailability of
the temporary node from elastic
service by deferring
maintenance of indexes and
materialized views. However, if

22

the adding/removing nodes
frequency becomes too high, it
would have a considerable
negative impact on queries
performance, even with the
proposed solutions. Therefore,
much effort is required to handle
the elasticity aspect.

Data security Security and
privacy of data are critical
aspects that must be ensured by
current technologies of data
management systems in cloud
environments. Only a few
techniques of query
optimization were proposed
which considered the security
aspect. When examining such
approaches, we found that the
encryption method before
outsourcing of data is largely the
most adopted solution. Thus,
these approaches focused on the
most effective scheme. The
most drawbacks of these
approaches are the complex
calculation and communication
required to achieve encryption
and query answering.

Types of queries Various types
of queries have been studied in
the cloud context. Indeed, great
efforts have been made to
address range queries. On the
other side, some techniques
have focused on aggregate
queries, which are important for
OLAP systems. Some other
works addressed other query
types including SPJ queries and
multi-dimensional queries.
However, little effort has been
made to investigate skyline
queries and top-k queries. As we
have seen, optimization

techniques typically focused
only on one type of query in
cloud environments. analyzes
and compares these different
presented query optimization
techniques using the set defined
challenges.

Open challenges

Cloud computing has clearly
complicated the traditional approaches
to query optimization. Although there
have been great efforts made in this
context, there remains a colossal
amount of work in this field to reach
more interesting performances in query
optimization. Indeed, illustrates that
pay-as-you-go paradigm is addressed
using materialized views and caching.
However, most of the works—which
addressing security issue—are based on
index techniques. Furthermore, the
elasticity challenge is addressed by data
partitioning-based methods.

Based on, we can see that there is no
work that fulfills all the described
challenges. Thus, there are still a
number of aspects that require further
investigations. Firstly, in the context of
query type, current distributed cloud
data management systems based on the
key-value store cannot support complex
query models such as range query, QNN
query, and multi-dimensional query.
Thus, we highlight the importance of
developing optimization techniques
dealing with a wide range of query
types, especially more complex ones.

In another hand, illustrates that the most
query optimization techniques focus on
the volume to the detriment of
heterogeneity of data, mainly due to the

23

use of big data technologies in cloud
platforms. Therefore, future works must
address how to consider the
heterogeneity aspect of both data and
platforms in query optimization
techniques. In the context of pay-as-
you-go paradigm, we emphasize that
future approaches of query processing
must keep a balance between cloud
resources cost and performance gain.
Otherwise, they must get the best
formula to price cloud resources as a
quality of service delivery.
Furthermore, there are relatively few
works have considered the elasticity
aspect. Therefore, further studies are
suggested to more investigate this
aspect.

In the context of the security aspect,
proposed query optimization
approaches addressing the security
aspect have neither considered elasticity
and nor economic aspect. Moreover,
such studies used encryption techniques
which use complex calculation and
communication to achieve encryption
and, thus high-query processing cost.
Thus, we highlight that the trade-off
between security and query efficiency
must be carefully considered. It is clear
that most of the examined techniques
lack in considering the volume,
elasticity, security, monetary, and
heterogeneity aspects at the same time.
Consequently, future work needs to
consider all these challenges for
providing enhanced query optimization
methods. Furthermore, we reiterated the
importance to examine the case of query
optimization techniques over
compressed data and how to get
accurate statistics from autonomous
data stores. Finally, some new

challenges and factors have appeared in
the cloud context such as energy
efficiency. Indeed, the increase in
energy ~ consumption in cloud
computing poses a severe threat to the
environment. Thus, it is important to
consider energy efficiency when
developing new query optimization
techniques.

Conclusion

In cloud environments, query
optimization is an essential and crucial
stage for massive data processing since
their performances are directly felt by
customers. However, in order to address
the query optimization problem, one has
to face several challenges.

In this study, we investigated the most
important challenges related to query
optimization in cloud environments.
Following the proposed taxonomy, we
have analyzed the literature regarding
each challenge. We have presented a
summary of this analysis considering all
the described challenges. Our summary
includes a comparison between studied
works on the basis of the classical
challenges of query optimization and
those related to the cloud environments.
This survey made it possible to suggest
openings and opportunities as well as
recommendations. Our study of existing
research on query optimization
techniques in cloud environments is an
important and essential step for future
work. It will help researchers either to
adapt these techniques or to propose
new techniques based on the
constructive criticisms proposed in this
study.

24

References

1.

Curino C, Jones EPC, Popa RA, Malviya N, Madden E, Wu S, Balakrishnan H,
Zeldovich N (2011) Relational cloud: a database-as-a-service for the cloud. In:
Proceedings of the 5th Biennial Conference on Innovative Data Systems
Research. Pacific Grove, CA, pp 235-241

Mansouri Y, Toosi AN, Buyya R (2018) Data storage management in cloud
environments: taxonomy, survey, and future directions. ACM Comput Surv
(CSUR) 50(6):91. https://doi.org/10.1145/3136623

loannidis YE (1996) Query optimization. ACM Comput Surv (CSUR) 28(1):121-
123. https://doi.org/10.1145/234313.234367

DeWitt D, Gray J (1992) Parallel database systems: the future of high performance
database systems. Commun ACM 35(6):85-98

Graefe G (1993) Query evaluation techniques for large databases. ACM Comput
Surv (CSUR) 25(2):73-169. https://doi.org/10.1145/152610.152611

25

https://doi.org/10.1145/3136623
https://doi.org/10.1145/3136623
https://doi.org/10.1145/234313.234367
https://doi.org/10.1145/234313.234367
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/152610.152611

