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Synopsis

This work proposes a controller design that integgraan Equivalent Consumption Minimization Strategy
framework and a quasi-LPV framework. The proposgtesie allows exploiting the characteristics of both
frameworks. Also, a proof of the input-state-st&p{llSS) of the closed-loop is presented, exprésselinear-
matrix-inequality conditions. Simulation resultg @rovided to illustrate the applicability of oyppaoach in a
hybrid powertrain setting as encountered in thetma industry.
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1. Introduction

REDUCING energy consumption and emissions of theimaaindustry nowadays has become a priority.
Powertrain hybridization is one of the approachesdthieve these goals (Miyazaki et al., 2016). Arldy
powertrain uses at least two energy sources, witbast one reversible one, su ch as a batteryinBwessels
operations, the propulsion power request needs &plit between the different energy converteragge engine,
electric machine, fuel cell, etc.) and storagetélvgt super-capacitor). An energy management dglgar(EMA)
is adopted to compute this power split and to minéma criterion such as CO2 emissions while maratie
energy storage level (e.g., the battery state afgeh(SOC)) and to consider several constraintscied by the
powertrain architecture and component sizing (Scéseet al., 2016). If operational and environmedédails of
a mission are known a priori, the energy managemexitlem can be formulated as an optimal controbfam.
Dynamic Programming (DP) (Bai et al., 2020; Wanglgt2019) and Pontryagin's Minimum Principle (PNire
widespread approaches to derive an optimal solutdmybrid powertrain energy management problemsne
though alternative approaches based on the calotikeriations have been considered (East and Car2i9).
Dynamic Programming requires discretizing both dtege and the time. Extensive search in the regudrid
allows approximating the optimal solution. This eggeh allows easily integrating state constraiois,it is only
suitable for a limited number of states due to sbecalled curse of dimensionality. Pontryagin's ikhimm
Principle (PMP) allows formulating optimality cotidins in continuous-time, which boils down to calesition
of a Boundary Value Problem (BVP) that can be sblyging an appropriate solver. The resulting atboriis, in
general, faster than Dynamic Programming. In thaskwPMP is considered since it allows derivingalitime
suboptimal, but efficient control algorithm refedréo as the Equivalent Consumption Minimizationagtgy
(ECMS) (Sampathnarayanan et al., 2014; Xie ekaR]).

Both the offine PMP and the real-time ECMS comptlie control as a solution to the instantaneous
minimization of the Hamiltonian associated with tyimal control problem. This Hamiltonian is defthas the
sum of the fuel consumption and the state dynamigliplied by a co-state. Within the ECMS framewitkis
Hamiltonian is denoted as total equivalent consionpPMP optimality conditions provide the optindgihamics
of the co-state, and the initial value of the catestcan only be computed in simulation over knovissions. In
real-time, adaptive-ECMS replaces this optimal dyigeby a real-time closed-loop control approacthefenergy
storage level (typically the SOC) (Onori et al. 120 Two main problems arise: how to design therodier and
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how to prove the closed-loop stability. Various wollers have been investigated, such as PI, fumzpredictive
controllers, but only a few of them are providethve closed-loop stability proof (Sampathnarayaetaad., 2014).

The contribution of this paper is to present a wewtroller that benefits from the ECMS frameworkl dhe
underlying PMP optimal control theory. It is destgirusing the quasi-Linear Parameters Varying (L&dfroach,
and it comprises a nonlinear state feedback colawtoupled with a state observer. The Input-t@tSStability
(ISS) of the closed loop is demonstrated (Sontagvdang, 1996). This paper is organized as folldwSection
I, the considered hybrid vessel is introduced, dredformulation of its optimal control using PM&diven. In
Section Ill, the real-time powertrain control israduced. The system dynamics are modeled usinguasi-LPV
control framework (Wang and Tanaka, 2004) and allaDistributed Control law along with a statesebver is
designed. Simulation results are provided in Sadfit Section V concludes this paper and providiesctions
for future research.

2. Hybrid vessel optimal control

Powertrain energy management can be studied usiagi-gtatic models for energy converters. The only
dynamics considered are then those of the enemrpget (Guzzella and Sciarretta, 2005). In this pape
consider the simplified series hybrid vessel degiéh Fig. 1; which is made up of a traction motmmnected to
the propeller; a battery pack, with a DC/DC coneeraind a fuel cell, with auxiliaries. In orderftomalize the
dynamics, letw denote the power to be provided for the propulsiprthe power provided to/from the battery,

u the fuel cell output power, angd the power consumed by the fuel cell auxiliaries.

Auxiliaries Fuel cell W
= ~o
x| —— - Y
= =

Fig. 1: Powertrain architecture

The mission profilew(t) is the DC power to be provided to the traction met®a function of time . It may

be computed from a speed profile and a vessel nasldescribed in (Haseltalab et al., 2016). Altévaby, in
this paper, we use data recorded on an existifigssiging barge. The considered 6-days long migwiofile is
given in Fig. 2. For the considered optimal conpalblem, the mission is assumed to be of fixegtlelm and
known of the optimization horizo[D,T] . This study investigates a possible fuel cellafétiof the barge such

that it could be operated on hydrogen and elettriodbm the batteries.
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Fig. 2: Considered mission profile




Notation: When there is no ambiguity, the time dependencoenisted. The partial derivative with respect to
a variable is denoted using a subscript. For ingtaH, denotes the partial derivative éf with respect tox
The power split is given by:

w=y+u-p 1)
Both the battery powey and the fuel cell output power are limited:

y(t) U [ ymin ’ ymax] (2)
U(t) |:l[umin’umax] (3)

Over an optimization horizo['O,T] , the hydrogen consumption to be minimized is agglto be a quadratic

function of the fuel cell produced power (Tazelaar et al., 2012):
T

m, = [I (u)dt (4)

I (u) =a+bu+cu’ (5)

The fuel cell auxiliaries electric consumption Eimated using the following loss model (Tazelataale
2012):

P=)+tnu (6)
Combining (1)-(3) and (6), the feasible {gl(w)ﬁ(w)} of the fuel cell output power can be determined:

u(w) = min[umax, ma><{umin %]] o
u(w) = max(umin ,ma{umax %J] o

The battery coupled to the DC/DC converter is medelsing a simple voltage generator with a resistam
series (Gao et al., 2021; Oncken and Chen, 2020):
E-JE*-4Ry
ly=——— 9
batt 2R 9)

The open circuit voltag&e and the internal resistand® are assumed to be constant. The battery SOC
dynamics is :

x(t) = f (u,w) (10)
with f (u,w) = Tl (1) _ ZE+E" 4Ry :

Q 20R
Two additional constraints on the SOC are consitlere
x(0) =%, (11)
X(T)=x (12)

with X, and x; as the initial and final SOC, respectively.

Equations (1)-(12) represent the optimal controbpem to be solved. Several approaches can bedayes
to solve it. With A (t) the co-state, the Hamiltonian associated withohtemal control problem is formulated as:

H(u,A,w)=1+Af (uw). (13)
The optimal control policy can now be denotedrby
u="r(A,w) (14)
MN(A,w)= argmin H(v A w) (15)
VD[Q(W),G(W)J

The optimal co-state dynamics is then:

A=-H_ =0. (16)
Let us denoteY =[x,A]", the BVP to be solved is:

. T

v=[g(4w),0] (17)

d(x(0),x(T)) =0, (18)



where d(x(0),x(T)) =(x(0) =%, .X(T) =) and the optimal state dynamics is:

g(Aw) = f(M(A,w),w). (19)

The BVP (17)-(18) can be solved using a dedicatdees (Kitzhofer et al., 2010) or using a simpleskiction
search (Armenta et al., 2022).

Table 1 : Parameters values

Paramete Value

(Yiin» Yinax) (-30kw, 30kW)

(Ui Uma) (0 kW, 15kW)
(E,R,Q) (105.3v ,0.985nQ , 2818n)
(a,b,c) (7.48010° ,6.97110 ,7.40 10)
(Yo 14) (6.3110° ,0.125

As an illustration, let us consider a powertrainos# parameters are shown in Table 1. The BVP éas b
solved forx(0) =1, x. =0.2. The initial co-state is1 (0) = -18.94. Fig. 3 depicts the optimal control result. The

obtained hydrogen consumption2§.8 kg and the final SOC i$9.99 %. It should be noticed that the studied

optimal control problem does not include any SOW@tk. As a result, the SOC is allowed to reach tiegaalues,
and its corresponding fuel consumption will be ipteted as a lower bound as it does not have pliysieaning
(Interested readers may refer to state constrdiiéi studied in (Hermant, 2008) or to PMP with sfaaalties
(Sanchez and Delprat, 2018)). This result emphasiz real-time powertrain operations should egbérformed
using a constant co-state, but a SOC feedbackattemtr
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Fig. 3: Optimal control results fox(0) = 1and x(T) =0.2

3. Real-time control

During real-time operation, the future values @& thission profile and the mission length are wvkm The
considered energy management consists of minimitieghydrogen consumption while regulating the SOC
nearby a reference setpoint. This reference sdtpainbe either a constant or may follow a discharmgfile when
the battery is large enough to ensure the vessghtipn in pure electric mode for a period of tilmeg enough
(plugin operations). If additional information dmet mission is available, then more elaboratedegir@$ can be
adopted. It should be noticed that the consideredipm involves not only the state-of-charge (S@&gking but
also the energy management (i.e. ensuring enefigyeet powertrain operations). In this work, théa® aspects
are tackled (i) using the quasi-LPV literature floe controller synthesis and for demonstratingdlosed-loop
stability and performances (ii) using the Hamilemmiminimization (based on optimal policy (14)) viitlthe
control scheme to ensure an efficient energy mamage



3.1. Control structure

Due to the control saturation (2)-(3) , not all tteestate values are of interest for SOC contret.us restrict
the co-state tol ;,, (W) <A <A, (W), such thatg, (4,w) <&, with £ small negative constant. As an example,
Awn (W) @nd A, (w) have been computed for the parameters given iteTabThey are depicted with a green
and red line in Fig. 4.
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Fig. 4: State dynamicg (A, w)

The following assumptions are considered. The mispirofile w is differentiable with|w < d,,. The SOC
referencex is a piecewise linear function of time, $o, =0 holds almost everywhere. Additionally, the
assumptions from Lemma 1 of (van Keulen et al., 40hre also considered but restricted to
Amin (W) <A <A (W) 1 | is a convex function iru and f is a strictly concave and strictly monotonically
decreasing function il .

Let e=X—X4 be the tracking error. The dynamic to be contbite

e(t) = g(A (), w(t)) - %4 (20)
To design a controller for (20), first, we considlee time derivative of (20) as follows:
e=g,(Aw)d+g,(A,w)X+g, (1,w) G- X, (21)
Since g, =0 and %, =0, (21) can be simplified:
g=g,(A,w)d +g,(1,w) v (22)
Let us introducev as a new control with:
t
A= gt(‘[v(r)drjmin (w) ,Amax(w)] , (23)
0

where sat(a,b,c) = min(b, maxa p)) . In practice, (23) should be implemented usingmtirwindup scheme.
The following state space representation is comsile
? - 0 0 € + g/](/l,W) W+ gw(/‘a ) WV (24)
é 1 0)le 0 0

The derivative of the mission profil& is in general not available. It will be treated asmorm bounded
disturbance.

3.2.  Controller design

Let us introduce a more compact notation for thetesy (24):
X = AX +B(A,w)¥+D(A,w)
x=CX

with x=©, A=(2 gj, B:[QA("’W)], D=[gw(’]'w)], c=(0 1), d=w.

0 0

(25)



The quasi-LPV provides a methodology to stabilizeide range of nonlinear systems in a systematig. wa
According to Lemma 1 of (van Keulen et al., 2014% g, (A,w) is upper bounded. In order to formulate the
system dynamic as a quasi-LPV model, let us consig®n-linear sector D[zi, zz] with z <z,<£<0 and X
as the measured and controlled output (Tanaka aamby\2001):

. 2
X =AX+Y h(z)Bv(t)+Dd = AX +B,v(t)+Dd (26)
i=1
x=CX

. [z _z-z _
with B = , z)=——, z)=1-h/(z).
HECE=SNORENS

There exists an extensive literature on quasi-LBNMoI to deal with systems with the form of (28)very
simple control law is used but of course, many otiternatives are available (robust control, noadratic
stability (Abdelkrim et al., 2019), etc.).

In order to stabilize the system (26) let us comsa PDC control law (Tanaka and Wang, 2001). $t the
following form:

v:ih(z)ﬁf( ) (27)

with F, as the gains to be determined axdan estimate of the stat¢ computed using a linear observer of
the form:

)A(=AA)A(+B()I,W)V+L(X—>A() 28
X =CX
with L as the observer gain. Lej = X - X be the observer error whose dynamics is
& =(A-LC)e, +D(A,w)d. (29)
Considering (26) and (29) , we obtain
~ 2 2 ~ — ~ —
X =>>"h(z)h (z)G;X+Dd=G,X +Dd (30)
i=1 j=1
. [x A+BF -BF, — [D
Where X = , G = ! ' |,andD = :
e, ! 0 A-LC D

In the particular casé (t) =0, computing the gairF; and L for the closed loop (30) stabilization using

Linear Matrix Inequalities (LMI) is straightforwardsing classical matrix manipulations (Boyd et 4994,
Tanaka and Wang, 2001). Then, our goal is to ptheelSS stability of the system (30) in the pregeata
disturbanced .

Proposition. Let us consider the system dynamics (26) with thainear control law (27) and observer (28),
then, the originX =0 of the closed-loop dynamics (30) is ISS with aaje@tea and input constrairM U,
for a scala >0 and initial conditionX, , if there exist matrice$}, >0, P,>0,L , M,, iD{l,Z,...,r} .of
suitable size, such that

S, <0,
S - 5125;512 <0, (31)

T -1 T
1 XO >0, RI. Ivli >O,
X, R’ M, 14

where S,=AR*+BM, +(D+aP , S,=-BM,R" , S,=pB[R*(A-LC)+(D+aR;*]| , with

controller gainsk, = M, R, and observer gaif .
Proof. Consideringd (t) =0, let us prove that the origiX = 0 of the system is asymptotically stable with a
decay rater . Taking a quadratic Lyapunov function as:

V(X):XTPX:XTP 0 }x
)



Let 0,,,, and g, . be the smallest and largest eigenvalu€of The proof of the stability condition (31) is

trivial and is given in (Yoneyama et al., 2000n& the system is asymptotically stable with a deate a , we
have:

X"(G,P+PG,)X <-aX"P<-ag,

minP

X[". (32)

Now, let us considerd(t)#0 . If there exist £ -functions @ , iD{l,2,3,l} such that
a([%))=v(|X])= o (%) o)x|ore
andV(|X|,|d|) < —q@(|)~<|)+qo4(|d|) then the system is ISS (Sontag and Wang, 1998 fifst condition is

fulfilled, since o,,,p
condition, let us consider the derivative of theapynov function:
. ~ ~ — ~ ~ —_ ~12 i ~ ~ —
V(x)=X"(G,P+PG,)X +d"D"PX + X"PD"d < -a0,,,, |X| +d"D"PX + X PDd

minP

||x||2 <xX'Px<o

maxP ”

x||2 for any quadratic Lyapunov function. To prove tkecond

(33)
X|2 +2|P5||X||d| ==Q0,p X|2 + 25|)Z||d| = —aammpe|)2|2 + 25|)Z||d|—aam . (1—6?)|)2|2 :

< _aamin P

where0<g<1,ando = |PE_)| = Umaxpx/iag /ow,,,. Now considering the following inequality:
52
aaminPe

(1-6)|X["and g (|d]) =|d[* 5/ ac,

minP

2
a0 e(|>2|— J |d|]<Oe25|d||)2|<aammp6'|>2|2+ o (34)

minP
aAmin PB

Finally, substituting (34) into (33) and taking(|X|) = a0, 6,
the second condition is fulfilled.

Remark. From the first inequality in (31), matricht ,i D{1,2} , can be obtained. In the second inequality, by
fixing negative poles for the linear observg,can be chosen large enough such that (31) holdspioposition
above implies that the LMI conditions allow desigmithe observer and the controller separately anctover
the origin X =0 of the closed-loop system (30) is ISS.

Finally, the control design procedure is : Stefhpute the functiorg and its limits A, (w) and A, (w).
Step 2: Chose a nonlinear secKm[zl, zz] and solve the LMI (31). Step 3 : design a lineaseasher (28) by pole

placement. The whole control scheme to be impleettnbmprises the observer (28) , the control lawy, (the
change of variable (23), and finally the Hamiltanminimization (15).

4. Simulation results

In this section, a simulation of the hybrid poweitt shown in Fig. 1, is carried out using the &S/
ECMS to obtain the control signal. Consideringibendsz[0[—4.696x 107, —3.202k 10°], the two controller

gains are computed choosing a decay matelx107 and the initial conditionX, =[0 0.425] ; whereas the

observer gain is obtained by poles placement witlego—10 and —-11. When solving the LMI conditions of
proposition 1, the value off allows reaching different closed loop dynamicarder (resp. lowery values lead

to larger (resp. lower) control gairts , and larger (resp. smaller) amplitude of the adrgtignal A in response
to the exogenous signal. The reference SOC signal, (t) varies from 100% down to a specified value with
a rate limitation of -0.75%/ h.

From the PMP optimality conditions (16)] should be kept as close to 0 as possible. In ipech
compromise has to be found between the SOC erbtle hydrogen consumption. Several simulationse hav
been conducted over the mission profile depictdeign 2 for 15 linearly spaced values gf and the final value

of the reference signal is adjusted such that theahfinal SOC isx(T) =20z 0.1%. The quality of the SOC
regulation is assessed through the RMS value o8®€ deviationJ, :

3= \/%](x(t)—xref (0) o (35)

0




Obtained results are depicted in the Fig. 5 . Asfaweis on the H2 consumption minimization, the &mos
value 1 =100 is depicted with a vertical dashed line in the. Big
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Fig. 5: Hydrogen consumption arRMS(A) as a function of .

For the particular casg =100, by solving the LMI conditions of proposition et following gains are

obtained:
F =[1218 3.8¥10"], F,=| 203.12 1.%10°]

-5
L:[110 21, P = 5.09 1.45x 10 _
1.45x10° 3.38% 10%

In order to assess the effectiveness of our appribtas compared against the adaptive-ECMS stratemy
(Onori et al., 2011), where the costate is compated

Ak+12)= 0.5 )+ k= 1) +c, (X~ %) (36)

We chose, =100 and a costate update periodffs. Fig. 6 depicts the comparison of the controlitng(t)
and the battery power profilg(t) ; it is shown how in the adaptive-ECMS strategy ¢hatrol signal presents a

bang-bang behaviour, whereas in the quasi-LPV EQMS control signal is smoother; the corresponding
evolution of the SOC is presented in Fig. 7. The@med hydrogen consumption38.6kg for our approach and

41.68kg for the adaptive one.
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Fig. 6: Real time control law (simulation result).



100

x qLPV
2 Adaptive | |
Lref

80

60

SOC

40

20

0 50 100 150
Time (hours)

Fig. 7: SOC profiles comparison (simulation result)

5. Conclusions

A controller that benefits from the ECMS and quaBV framework has been proposed. The controller
synthesis is reduced to a set of LMI conditionsbto solved. The closed loop ISS has been demorttrate
Preliminary results have been presented to illtestitze effectiveness of our approach. Two desigarpatersy

(related to a constraint on the costate derivatwve)a (decay rate) allows tuning the closed loop dynamic

control the tradeoff between fuel consumption aatesof charge regulation. Future work will be deebto more
in dept analysis of the control performances botterms of fuel consumption and SOC reference tngck
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