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Abstract— In light of the critical role of cryptography in 

safeguarding data and the advantages of AES for hardware 

implementation, this paper presents a hardware 

implementation of the 128-bit Advanced Encryption Standard 

(AES) algorithm. We designed an AES unit that utilizes the 

same hardware for both encryption and decryption, which we 

integrated into a RISC-V-based processor, by developing four 

custom instructions to facilitate this integration. Our 

methodology leverages the inherent parallelism of the AES 

algorithm to optimize speed, enhance security features, and 

ensure low power consumption and efficient resource 

utilization. A comprehensive performance analysis showed a 

nearly 19x speedup compared to a software implementation, 

demonstrating significant performance and efficiency benefits. 

Keywords—AES Encryption, AES Decryption, Custom 

Instruction, RISC-V processor Security, FPGA Hardware 

Implementation 

I. INTRODUCTION 

With the proliferation of data communications and their 

various applications, there has been an increased demand for 

enhanced security systems and devices to safeguard 

individual information transmitted over communication 

channels. Embedded systems, wireless sensors, and wireless 

security networks are particularly vulnerable to security 

breaches and cyber-attacks. Addressing these security 

concerns is crucial for maintaining the integrity and 

confidentiality of the data handled by these systems. 

RISC-V is a widely adopted instruction set architecture, 

particularly in embedded systems. The platform for this 

integration is a processor based on RISC-V, known as 

AFTAB, which was previously introduced in [1]. Our 

contribution involves the augmentation of AFTAB's 

architecture by incorporating four custom instructions and 

integrating our proposed AES unit into the system. A high-

speed hardware implementation of AES on RISC-V that 

operates at low power and efficiently utilizes resources, by 

sharing hardware for encryption and decryption, is presented. 

Integrating an AES engine within a system facilitates 

concurrency, enabling the processor to execute additional 

tasks simultaneously. However, this approach incurs 

overhead from data transactions between the CPU and the 

accelerator. Data dependencies among instructions can 

further degrade performance, as the CPU must wait for the 

accelerator to complete its operations before continuing 

dependent tasks.  

Moreover, using a BUS for data transmission between the 

CPU and the AES accelerator presents significant security 

risks. Data transferred over the BUS can be intercepted, 

potentially compromising the security of the encrypted data. 

In contrast, integrating AES directly into the RISC-V 

processor as custom instructions can mitigate these issues. 

This integration allows the processor to perform encryption 

and decryption entirely within the CPU. Data can be accessed 

securely from the memory and the Register File internally, 

without external data transactions. This reduces overhead and 

enhances security by minimizing exposure to potential 

interception. 

By eliminating the means to transfer data between the 

CPU and an external accelerator, power consumption can be 

significantly reduced. Data movement is a major contributor 

to power usage in modern systems. 

The rest of this paper is organized as follows. Section II 

provides an overview of the RISC-V ISA and AES 

encryption/decryption algorithms. Section III introduces 

related works compared to this study. Section IV focuses on 

the methods of developing custom instructions, and the 

proposed AES hardware architecture. The implementation 

results and software comparisons are provided in Section V. 

This research’s advancements and contributions are 

discussed in Section VI. Finally, the conclusion of this work 

is stated in Section VII. 

II. PRELIMINARY REVIEW 

This Section reviews the fundamental contents required 
for understanding the rest of the paper. An introduction to the 
RISC-V processor is presented and then the AES algorithm is 
described. 

A) RISC-V: 

RISC-V is an open-source instruction set architecture 

(ISA) developed at UC Berkeley that is freely available to 

academia and industry. RISC-V has a base integer ISA, to 

make RISC-V suitable for research and education, and 

optional standard extensions to support general-purpose 

software development. As shown in Fig. 1, The base 

instruction set has a fixed- length of 32-bit instructions [2]. 

 

B) The AES Encryption and Decryption Algorithm: 
The AES encryption algorithm is an iterative, symmetric-key 
algorithm. Consequently, the decryption process requires only 
the ciphertext, following the same steps as encryption but in 
reverse order, with the same number of rounds, as illustrated 
in Fig. 2. In our case, a 128-bit key and message length with 

10 rounds in CBC mode, provide sufficient security. 

 

 

 

Fig. 1. RISC-V Instruction Format 
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The AES encryption and decryption algorithms are shown 

in Fig. 2. Initially, there is a 128-bit plaintext message which 

is considered 16 bytes and represented in a 4 × 4  matrix 

format. All arithmetic computations within these steps are 

operated byte-wise. Additionally, the AES algorithm 

includes a key expansion part that generates a new round key 

for each round. In our design, the key expansion works 

simultaneously and synchronously with the AES core, 

categorizing our implementation as an iterative and rolling 

architecture. 

III. RELATED WORKS 

Implementing an AES coprocessor based on RISC-V 
introduces different approaches and challenges. RISC-V 
processors are being implemented globally, with many 
available as open-source processor IPs 

In [3], the authors implement AES on RISC-V using 
Instruction Set Extensions (ISEs), recommending distinct 
ISEs for 32 and 64-bit architectures, which yield notable 
performance gains over software-only approaches. While 
effective in adding domain-specific functionality, this 
approach does not optimize for simultaneous encryption-
decryption cycles within the processor or integrate AES-
specific parallelism, which our work addresses with a unified 
custom instruction set. 

In [4], the NLU-V instruction set extension is introduced 
for symmetric cryptography on 32-bit RISC-V, adapted from 
an 8-bit NLU architecture. This extension improves execution 
time and flash memory use but lacks flexibility for higher bit-
width architectures and does not optimize resource usage for 
both encryption and decryption, a key focus in our RISC-V 
integration. 

The Hummingbird E203 processor core [5] integrates 128-
bit AES in CBC mode for IoT, enhancing efficiency and 
reducing power for cryptographic tasks. However, its design 
remains limited to specific IoT applications and CBC mode, 
whereas our work supports a more general-purpose AES 
integration within RISC-V, providing greater flexibility and 
broader cryptographic functionality. 

[6] presents the design, implementation, and evaluation of 
Instruction Set Extensions (ISEs) for each of the 10 LWC final 
round submissions, aiming to enhance cryptographic 
functionality for resource-constrained devices. The paper 
emphasizes the importance of careful ISA design and 
quantified improvements, presenting ISEs as a hybrid 
approach between hardware and software for workload 
efficiency. However, while the evaluation of ISEs for LWC 
provides low-cost cryptographic solutions, it is limited by its 
generalized approach across algorithms, which may lack 
specific optimizations for high-performance cryptographic 
requirements like AES. Additionally, it does not explore 
custom encryption-decryption cycles or algorithm-specific 
parallelism, limiting its potential for achieving the high 
throughput needed in AES implementations. 

In [7], the authors present an FPGA implementation of 
AES using an iterative approach to optimize resource use, 
exploring both rolling and unrolling architectures. The rolling 
architecture, which iteratively transforms data, is area-
efficient but low in throughput. The unrolling approach 
achieves high throughput with pipelining but requires 
significant area. This work highlights area-throughput trade-
offs; however, while the iterative approach conserves area, it 
sacrifices speed, and the unrolled structure demands large 
resources, limiting its use in area-constrained systems. The 
design does not address power efficiency for embedded or 
processor-integrated applications. 

Ref. [8] proposes a non-pipelined AES algorithm aimed at 
balancing throughput and area with an online key generation 
method that synchronously produces round keys with 
encryption. This design allows for high-speed operation 
despite key changes but lacks the throughput advantages of 
pipelined architectures. While it supports dynamic key 
changes, it is less suited to applications needing concurrent 
encryption-decryption or minimal latency due to its 
sequential, non-pipelined nature. 

In [9], a pipelined partial rolling architecture for AES on 
FPGA is proposed to achieve high throughput within a small 
memory area, with comparisons to other AES architectures. 
This design balances area and throughput but limits 
parallelization potential with its partially pipelined structure. 
Moreover, it does not support both encryption and decryption 
on the same hardware, reducing flexibility for compact 
implementations requiring dual functionality. 

Ref. [10] demonstrates an AES-128 coprocessor for 
wireless sensor networks, optimized for throughput, resource 
use, and power consumption on FPGA. This coprocessor 
performs well in low-power, wireless environments but is 
primarily tailored to this application, lacking considerations 
for high-performance systems, dual encryption-decryption 
functionality, or integration as custom instructions in general-
purpose processors. 

Ref. [11] discusses RACE, a RISC-V SoC designed for 
secure, efficient homomorphic encryption (HE) en/decryption 
on edge devices, achieving energy and area efficiency through 
memory reuse and a shared Datapath. While RACE is highly 
optimized for HE, it is not designed for general-purpose 
cryptographic algorithms like AES or seamless processor 
integration. In contrast, our work provides dedicated AES 
operations within a RISC-V core, enabling a substantial 
speedup over software implementations via custom 
instruction integration. 

 

 
Fig. 2. Encryption and Decryption Flowchart 

 



IV. HARDWARE ARCHITECTURE 

In this section, we present the overall architecture of the 
AFTAB processor and then we discuss our contribution in 
developing security custom instructions for AFTAB. 

A) AFTAB: 
 AFTAB, a RISC-V processor introduced in [1], supports 

the RV32IM ISA, enabling 32-bit base integer and 
multiplication/division instructions. AFTAB is designed at the 
Register Transfer Level (RTL) and features a multi-cycle 
Datapath and Controller. Its Datapath includes several 
combinational and sequential units, such as an Arithmetic 
Logic Unit (ALU), Barrel Shifter Unit (BSU), and Add Sub-
Unit (ASU) for instruction execution. Data transfer is 
facilitated by two units: the Data Adjustment Read Unit 
(DARU) and the Data Adjustment Write Unit (DAWU), 
which manage handshaking with external memory [1]. The 
processor also incorporates a Physical Memory Protection 
(PMP) unit to ensure secure memory access, raising 
exceptions for illegal access. 

To enhance data security, we propose encrypting stored 
memory data and decrypting it upon loading. This is achieved 
through an extended instruction scheme for the AES 
algorithm, utilizing RISC-V custom instructions. The added 
AES hardware unit and the custom instructions format are 
detailed in the following sections. 

B) AES Unit: 

The AES algorithm is described in the previous sections. 
In this part, we focus on the RTL design of the AES 
encryption/decryption unit.  

As shown in Fig. 3, the AES unit is formed from an AES 
core, the key expansion unit, input and output buffer units, and 
the main core controller. These units aim to convert plaintext 
to ciphertext or ciphertext to plaintext based on a mode input, 
which is extracted from the instruction and is synchronized 
together with appropriate handshaking signals, e.g., start and 
done signals. The input buffer unit collects 4 sets of 32-bit 
data, as the plaintext or message, from the memory and 
provides 128-bit data for the AES core. 

The AES core, displayed in Fig. 3, receives a 128-bit 
message, key, and expanded key as its inputs and transfers a 
128-bit output text as its output. This unit is composed of 
proper units compatible with the functionality of appurtenant 
to the steps explained in the encryption flowchart. They are 
named Add Round Key, S-box, Shift Rows, Mix Columns, 

and a local dedicated controller. The four former modules 
support both encryption and decryption based on the mode 
signal, in our design if the mode has the value of 0, the AES 
core encrypts the data, if the mode has the value 1, the AES 
core performs the decryption process.  The local controller has 
the status of the current round. It terminates the encryption 

process after 10𝑡ℎ  round and notifies the ciphertext is 
available.  

The optimization in this design consolidates the 
encryption and decryption processes into a unified unit. As 
illustrated in Fig. 2, the process begins with the essential Add 
Round Key step, where the input text and original key serve 
as inputs. The substitute input for this module varies according 
to the mode signal: for encryption, it receives output from the 
MixColumns module, while decryption uses the InverseSbox 
output. In the final encryption round, the Add Round Key step 
processes the output from ShiftRows, omitting MixColumns. 
A signal generated by the local controller manages these 
variations through multiplexers, adjusting based on the current 
round. 

Upon encryption or decryption, the 128-bit output is 
segmented byte-wise. The output buffer stores this 128-bit 
ciphertext and distributes it in four-byte packs. 

The key expansion unit generates round keys for each 
encryption round by applying substitution and permutation to 
the original key, divided into four 32-bit words. This unit 
comprises a controller, multiplexer, XOR gates, registers, and 
a cipher_word0_key module (Fig. 4). For the first word, 
cipher_word0_key is used, while subsequent words are 
generated by XORing the input key with the previous key 
segment, providing the input for each following round. 
 Fig. 5 illustrates the assembled AES unit. Data is loaded 
from the memory in 32 bits (Load word), so there is an input 
buffer to save 4 words from the memory and concatenate them 
to make the 128-bit input for the AES Core. Since the data is 
stored in the memory in 32 bits, an output buffer gets the 128-
bit result from the AES Core and transfers it as a vector of 4 
words, back to memory. All these are wired together, and their 
sequential behavior is realized through handshaking with the 
controller. Once the entire 128-bit output text is prepared, it is 
transferred back to the memory through 4 successive clocks, 
with each clock transferring 32 bits of data. 

C) AFTAB custom instructions: 

The complex encryption and decryption tasks of AES can 

be handled by a hardware unit specifically designed to be 

initiated and invoked by custom instructions added to the 

AFTAB processor. RISC-V ISA provides a series of reserved 

 
Fig. 4. Key Expansion Unit Schematic   

Fig. 3. AES Core Schematic 



opcodes for future usage. We exert and customize four 

reserved instructions for running on the AFTAB processor. 

Hence, load-AES and store-AES instructions are customized 

for AFTAB, each with an additional bit called mode that 

defines the encryption or decryption process, in our case 

when the mode value is 0, the unit proceeds with encryption, 

otherwise it decrypts data.  

The load-AES loads a set of four consecutive 32-bit data 

from the memory saves them into the input buffer of the AES 

core and then activates the AES core. As shown in Fig. 6, 

load-AES instruction's fields use bits 0 to 6 for the opcode and 

bits 8 to 12 for the source register, which encompasses the 

memory address. The 7th bit indicates that the memory is the 

destination for the data. The rest of the bits remain unused.  

 
Fig. 6. load-AES Instruction Format 

     As depicted in Fig. 7, the readReg-AES instruction shares 

the same opcode as load-AES and transmits the data similarly. 

The key difference is that the data transfer occurs directly 

between the Register File and the AES core, as indicated by 

the 7th bit. 

 
Fig. 7. readReg-AES Instruction Format 

     The store-AES stores four consecutive sets of 32-bit data 

from the output buffer to the memory. As shown in Fig. 8, 

store-AES instruction uses bits 0 to 6 for the opcode and bits 

7 to 11 for the source register, which encompasses the 

memory address. The rest of the bits remain unused. 

 
Fig. 8. Store-AES Instruction Format 

       As illustrated in Fig. 9, The writeReg-AES also shares the 

same opcode with Store-AES and only differs in the data 

transaction location. This opcode is intended to store the data 

in the Register File instead of memory, thereby reducing the 

overhead for certain tasks. 

 
Fig. 9. writeReg-AES Instruction Format 

D) Integration of AES Encryption Core into AFTAB: 

This part attempts to elucidate the process of ASE core 

integration into the AFTAB processor. As shown in Fig. 10, 

the AES core is placed in AFTAB, and it has interfaces with 

DARU and DAWU for reading/writing from/to the memory. 

The AES core also has connections with the register files and 

the controller units. 

Once AFTAB’s controller detects the opcode of load-

AES or store-AES instruction, it traverses to the 

corresponding state dedicated to these instructions. In load-

AES execution states, the controller starts reading from 

memory through DARU and storing the data in the AES 

core’s input buffer, and it also starts the AES core. In store-

AES execution states, the controller starts writing the AES 

core’s output buffer to the memory through DAWU. 

V. IMPLEMENTATION AND RESULT 

This section explores both the software and hardware 

implementation of the AES encryption algorithm, providing 

a comprehensive comparison between the two approaches.  

A) Verification Results: 

To verify the encryption and decryption, the unit 

processed a 32×32-pixel image. The image data, transformed 

into 32×32 8-bit segments, is stored as eight packs of four 32-

bit data, requiring 32 load instructions to fill the input buffer 

in 8 iterations for encryption. The encrypted data is then fed 

back to the unit for decryption. The results show that the 

decrypted image closely matches the original, confirming the 

accuracy of the AES core. As shown in Fig. 11, the decrypted 

image closely matches the original, demonstrating high 

precision and confirming the accuracy and reliability of the 

AES core integrated into the RISC-V processor. 

       Fig. 12 presents an example of an 8-bit 512×512 example 

for encryption results. In this example, the image was gray-

 

Fig 5. AES Unit Schematic 

 

 
Fig. 10. AES in AFTAB 

 

 
Fig. 11. Original Image, Encrypted Image, and Decrypted Image in order 

 



scaled and fed to the unit in 128-bit packs. The encrypted 

output was later partitioned in its original form, and the right 

image was obtained, indicating  a thorough encryption. Its 

decrypted image was identical to the original picture proving 

its high accuracy. Demonstrating the process across multiple 

image processing case studies and decrypting them showed 

that the AES Unit exhibits high precision with negligible 

error. 

B) Simulation and FPGA Results: 

The AES core, described in Verilog HDL, is integrated 

within the AFTAB processor. A 128-bit AES algorithm, 

including the two developed custom instructions, is simulated 

on AFTAB. The AES Core and AES unit were synthesized 

and implemented on a Xilinx FPGA “7vx485tffg1157-1”. The 

results are presented in Table I. The number of slices reported 

for our proposed AES design includes both encryption and 

decryption, whereas other entries in the table reflect only 

encryption or decryption. 

TABLE I.  FPGA RESULTS COMPARISON 

Implementation FPGA 

Architecture 
Number 

of 

Slices 

𝐹𝑚𝑎𝑥(𝑀𝐻𝑧) 
Latency 
(Clock 

Cycles) 

Our proposed AES Unit 3751* 163.63 65 

Our proposed AES Core 2271* 200.12 20 

FPGA-based AES[3] (encryption) 10773 10.81 20 

FPGA-based AES[3] (decryption) 15240 7.017 30 

NLU-V-only [4] 5608* - 19056 

[12](encryption) 2444 456.00 - 

[13](encryption) 15612 14.69 - 

*This includes hardware for both encryption and decryption. 

The AES core is synthesized and implemented on 

“Cyclone IV E: EP4CE115F29I8L”. The compilation is 

configured to map onto Logic Elements only, excluding the 

use of any embedded multipliers in the device. Table II 

compares our proposed non-pipelined architecture with other 

related works. The maximum frequency of the AES core is 

reported as 101MHz, with results available within 65 clock 

cycles. The number of logic elements reported for our 

proposed AES design reflects both encryption and 

decryption, while other entries in the table pertain solely to 

encryption.  

During the fabrication of AFTAB, it is essential to 

ascertain the area occupied by the AES unit relative to the 

entire processor. Table III compares the ASIC 

implementation result of our proposed core to [11]. 

 

TABLE II.  FPGA RESULTS COMPARISON 

Implementation FPGA 

Architecture 
Logic 

Elements 
𝐹𝑚𝑎𝑥(𝑀𝐻𝑧) 

Latency 

(Clock 
Cycles) 

Our proposed 

AES Unit 
9326* 163.63 65 

Our proposed 
AES Core 

8063* 200.12 20 

Aes 128 

arch1[7] 
75840 - - 

Aes 128 

arch2[7] 
80829 - - 

Aes 128 
arch3[7] 

75147 - - 

Harshali Zodpe 

[8] 
4089 495.32 

- 

AES-4SM [9] 10530 49.8 21 

AES-8SM [9] 10730 98.31 21 

AES 

Coprocessor 
[10] 

3047 - - 

 *This includes hardware for both encryption and decryption.  

TABLE III.  ASIC RESULTS COMPARISON 

Implementation ASIC 

Architecture 
Area 

(mm²) 

Power 

(mW) 

Our proposed 

AES Unit 
0.0296 1.31 

(1024, 27) [11] 0.1569 0.35 

(2048, 30) [11] 0.1638 0.58 

(4096, 90) [11] 0.1756 1.47 

(8192, 130) [11] 0.1996 3.78 

(16384, 390) [11] 0.2509 11.51 

       Fig. 13 illustrates the latency of our design compared to 

the encryption/decryption units proposed in [6]. This 

comparison highlights the efficiency of our design in 16- and 

128-byte transactions. Our design outperforms all others in 

16-byte data transmissions and most in 128-byte 

transmissions. However, in 1024-byte data transmissions, our 

performance is slightly lower than some other designs due to 

the overhead associated with larger data blocks. Despite this, 

for small to moderately sized data transmissions, our design 

demonstrates superior performance, making it highly suitable 

 
Fig. 12. Original image, Encrypted Image 

 
 

Fig 13. Latency Comparison with [6] 



for applications requiring efficient, small-scale data 

encryption.  

Fig. 14 illustrates an average power comparison between 

our proposed AES core and the AES coprocessors from [5]. 

In this comparison, our AES core operating in CBC mode 

exhibits the lowest power consumption among all resources, 

in both CBC and CMAC modes.  

C) Software-based Simulation: 

To validate THE effectiveness of implementing an AES 

core, we conducted a test wherein the 128-bit AES algorithm 

was executed solely using the original RISC-V ISA on the 

processor. The AES program was compiled using the RISC-

V GNU toolchain [13]. This simulation showed that the 

software-based implementation of AES requires 1219 clock 

cycles to complete each encryption and decryption process. 

In contrast, our hardware-based implementation completes 

the same task in 65 clock cycles. This significant difference 

in the number of clock cycles required for encryption 

between the software-based and hardware-based 

implementations is noteworthy. Our hardware 

implementation is approximately 18.75 times faster than the 

software approach This enhanced speed is crucial for time-

sensitive operations and large-scale data encryption.  

VI. ADVANCEMENTS AND CONTRIBUTIONS 

A) Power Efficiency and Resource Utilization 

Our implementation excels in power efficiency and 

resource utilization, particularly by merging encryption and 

decryption functions—a feature that sets it apart from state-

of-the-art solutions. Leveraging the RISC-V architecture’s 

characteristics and optimized implementation techniques, we 

achieve notable power reductions without compromising 

encryption strength, making it ideal for energy-constrained 

environments like IoT devices and battery-powered systems.  

B)   Speed Enhancement 

One of the key contributions of our work is the 

substantial speed improvement compared to software-based 

implementations of AES. Our hardware implementation 

operates at a remarkable speed, achieving a performance 

increase of 19x compared to its software counterpart. This 

enhancement ensures rapid encryption and decryption, 

making our solution suitable for real-time applications where 

both speed and efficiency are critical. C) Security Assurance 

In addition to its efficiency and speed, our 

implementation guarantees a high level of security. Through 

image processing testing, we have demonstrated high-

precision encryption and correct decryption, ensuring the 

confidentiality of sensitive data. The presented figures in the 

results section affirm the robustness of our encryption 

scheme, highlighting its effectiveness in securing data against 

unauthorized access and malicious attacks. 

VII. CONCLUSION 

 This paper presents an enhanced AES encryption 

implementation on the RISC-V processor, AFTAB, aimed at 

improving security for data transmission in safety-critical 

hardware platforms. By integrating an AES unit with four 

custom AES instructions, we achieved a nearly 19x speed 

increase in executing a 128-bit AES program compared to the 

standard implementation. Our design leverages an innovative 

approach that combines encryption and decryption using 

resource sharing and mode bit differentiation, optimizing 

logic element utilization during SoC fabrication. This work 

represents a significant advancement in cryptographic 

implementations on RISC-V, balancing power efficiency, 

resource utilization, speed, and security, making it well-

suited for applications ranging from resource-constrained 

embedded systems to high-performance computing. 
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