
EasyChair Preprint
№ 15553

Sharing AES Engine for RISC-V Custom
Instructions Performing Encryption and
Decryption

Zahra Hojati, Zahra Jahanpeima, Maryam Rajabalipanah,
Hossein Ta’Ati, Atefe Rabiei and Zain Navabi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 11, 2024

Sharing AES Engine for RISC-V Custom

Instructions Performing Encryption and Decryption

Abstract— In light of the critical role of cryptography in

safeguarding data and the advantages of AES for hardware

implementation, this paper presents a hardware

implementation of the 128-bit Advanced Encryption Standard

(AES) algorithm. We designed an AES unit that utilizes the

same hardware for both encryption and decryption, which we

integrated into a RISC-V-based processor, by developing four

custom instructions to facilitate this integration. Our

methodology leverages the inherent parallelism of the AES

algorithm to optimize speed, enhance security features, and

ensure low power consumption and efficient resource

utilization. A comprehensive performance analysis showed a

nearly 19x speedup compared to a software implementation,

demonstrating significant performance and efficiency benefits.

Keywords—AES Encryption, AES Decryption, Custom

Instruction, RISC-V processor Security, FPGA Hardware

Implementation

I. INTRODUCTION

With the proliferation of data communications and their

various applications, there has been an increased demand for

enhanced security systems and devices to safeguard

individual information transmitted over communication

channels. Embedded systems, wireless sensors, and wireless

security networks are particularly vulnerable to security

breaches and cyber-attacks. Addressing these security

concerns is crucial for maintaining the integrity and

confidentiality of the data handled by these systems.

RISC-V is a widely adopted instruction set architecture,

particularly in embedded systems. The platform for this

integration is a processor based on RISC-V, known as

AFTAB, which was previously introduced in [1]. Our

contribution involves the augmentation of AFTAB's

architecture by incorporating four custom instructions and

integrating our proposed AES unit into the system. A high-

speed hardware implementation of AES on RISC-V that

operates at low power and efficiently utilizes resources, by

sharing hardware for encryption and decryption, is presented.

Integrating an AES engine within a system facilitates

concurrency, enabling the processor to execute additional

tasks simultaneously. However, this approach incurs

overhead from data transactions between the CPU and the

accelerator. Data dependencies among instructions can

further degrade performance, as the CPU must wait for the

accelerator to complete its operations before continuing

dependent tasks.

Moreover, using a BUS for data transmission between the

CPU and the AES accelerator presents significant security

risks. Data transferred over the BUS can be intercepted,

potentially compromising the security of the encrypted data.

In contrast, integrating AES directly into the RISC-V

processor as custom instructions can mitigate these issues.

This integration allows the processor to perform encryption

and decryption entirely within the CPU. Data can be accessed

securely from the memory and the Register File internally,

without external data transactions. This reduces overhead and

enhances security by minimizing exposure to potential

interception.

By eliminating the means to transfer data between the

CPU and an external accelerator, power consumption can be

significantly reduced. Data movement is a major contributor

to power usage in modern systems.

The rest of this paper is organized as follows. Section II

provides an overview of the RISC-V ISA and AES

encryption/decryption algorithms. Section III introduces

related works compared to this study. Section IV focuses on

the methods of developing custom instructions, and the

proposed AES hardware architecture. The implementation

results and software comparisons are provided in Section V.

This research’s advancements and contributions are

discussed in Section VI. Finally, the conclusion of this work

is stated in Section VII.

II. PRELIMINARY REVIEW

This Section reviews the fundamental contents required
for understanding the rest of the paper. An introduction to the
RISC-V processor is presented and then the AES algorithm is
described.

A) RISC-V:

RISC-V is an open-source instruction set architecture

(ISA) developed at UC Berkeley that is freely available to

academia and industry. RISC-V has a base integer ISA, to

make RISC-V suitable for research and education, and

optional standard extensions to support general-purpose

software development. As shown in Fig. 1, The base

instruction set has a fixed- length of 32-bit instructions [2].

B) The AES Encryption and Decryption Algorithm:
The AES encryption algorithm is an iterative, symmetric-key
algorithm. Consequently, the decryption process requires only
the ciphertext, following the same steps as encryption but in
reverse order, with the same number of rounds, as illustrated
in Fig. 2. In our case, a 128-bit key and message length with

10 rounds in CBC mode, provide sufficient security.

Fig. 1. RISC-V Instruction Format

Zahra Hojati, Zahra Jahanpeima, Maryam Rajabalipanah, Hossein Ta’ati, Atefe Rabiei, Zainalabedin Navabi

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

{zahra.hojati, jahanpeima, m.rajabalipanah, hosseintaati89, atefe.rabiei, navabi }@ut.ac.ir

The AES encryption and decryption algorithms are shown

in Fig. 2. Initially, there is a 128-bit plaintext message which

is considered 16 bytes and represented in a 4 × 4 matrix

format. All arithmetic computations within these steps are

operated byte-wise. Additionally, the AES algorithm

includes a key expansion part that generates a new round key

for each round. In our design, the key expansion works

simultaneously and synchronously with the AES core,

categorizing our implementation as an iterative and rolling

architecture.

III. RELATED WORKS

Implementing an AES coprocessor based on RISC-V
introduces different approaches and challenges. RISC-V
processors are being implemented globally, with many
available as open-source processor IPs

In [3], the authors implement AES on RISC-V using
Instruction Set Extensions (ISEs), recommending distinct
ISEs for 32 and 64-bit architectures, which yield notable
performance gains over software-only approaches. While
effective in adding domain-specific functionality, this
approach does not optimize for simultaneous encryption-
decryption cycles within the processor or integrate AES-
specific parallelism, which our work addresses with a unified
custom instruction set.

In [4], the NLU-V instruction set extension is introduced
for symmetric cryptography on 32-bit RISC-V, adapted from
an 8-bit NLU architecture. This extension improves execution
time and flash memory use but lacks flexibility for higher bit-
width architectures and does not optimize resource usage for
both encryption and decryption, a key focus in our RISC-V
integration.

The Hummingbird E203 processor core [5] integrates 128-
bit AES in CBC mode for IoT, enhancing efficiency and
reducing power for cryptographic tasks. However, its design
remains limited to specific IoT applications and CBC mode,
whereas our work supports a more general-purpose AES
integration within RISC-V, providing greater flexibility and
broader cryptographic functionality.

[6] presents the design, implementation, and evaluation of
Instruction Set Extensions (ISEs) for each of the 10 LWC final
round submissions, aiming to enhance cryptographic
functionality for resource-constrained devices. The paper
emphasizes the importance of careful ISA design and
quantified improvements, presenting ISEs as a hybrid
approach between hardware and software for workload
efficiency. However, while the evaluation of ISEs for LWC
provides low-cost cryptographic solutions, it is limited by its
generalized approach across algorithms, which may lack
specific optimizations for high-performance cryptographic
requirements like AES. Additionally, it does not explore
custom encryption-decryption cycles or algorithm-specific
parallelism, limiting its potential for achieving the high
throughput needed in AES implementations.

In [7], the authors present an FPGA implementation of
AES using an iterative approach to optimize resource use,
exploring both rolling and unrolling architectures. The rolling
architecture, which iteratively transforms data, is area-
efficient but low in throughput. The unrolling approach
achieves high throughput with pipelining but requires
significant area. This work highlights area-throughput trade-
offs; however, while the iterative approach conserves area, it
sacrifices speed, and the unrolled structure demands large
resources, limiting its use in area-constrained systems. The
design does not address power efficiency for embedded or
processor-integrated applications.

Ref. [8] proposes a non-pipelined AES algorithm aimed at
balancing throughput and area with an online key generation
method that synchronously produces round keys with
encryption. This design allows for high-speed operation
despite key changes but lacks the throughput advantages of
pipelined architectures. While it supports dynamic key
changes, it is less suited to applications needing concurrent
encryption-decryption or minimal latency due to its
sequential, non-pipelined nature.

In [9], a pipelined partial rolling architecture for AES on
FPGA is proposed to achieve high throughput within a small
memory area, with comparisons to other AES architectures.
This design balances area and throughput but limits
parallelization potential with its partially pipelined structure.
Moreover, it does not support both encryption and decryption
on the same hardware, reducing flexibility for compact
implementations requiring dual functionality.

Ref. [10] demonstrates an AES-128 coprocessor for
wireless sensor networks, optimized for throughput, resource
use, and power consumption on FPGA. This coprocessor
performs well in low-power, wireless environments but is
primarily tailored to this application, lacking considerations
for high-performance systems, dual encryption-decryption
functionality, or integration as custom instructions in general-
purpose processors.

Ref. [11] discusses RACE, a RISC-V SoC designed for
secure, efficient homomorphic encryption (HE) en/decryption
on edge devices, achieving energy and area efficiency through
memory reuse and a shared Datapath. While RACE is highly
optimized for HE, it is not designed for general-purpose
cryptographic algorithms like AES or seamless processor
integration. In contrast, our work provides dedicated AES
operations within a RISC-V core, enabling a substantial
speedup over software implementations via custom
instruction integration.

Fig. 2. Encryption and Decryption Flowchart

IV. HARDWARE ARCHITECTURE

In this section, we present the overall architecture of the
AFTAB processor and then we discuss our contribution in
developing security custom instructions for AFTAB.

A) AFTAB:
 AFTAB, a RISC-V processor introduced in [1], supports

the RV32IM ISA, enabling 32-bit base integer and
multiplication/division instructions. AFTAB is designed at the
Register Transfer Level (RTL) and features a multi-cycle
Datapath and Controller. Its Datapath includes several
combinational and sequential units, such as an Arithmetic
Logic Unit (ALU), Barrel Shifter Unit (BSU), and Add Sub-
Unit (ASU) for instruction execution. Data transfer is
facilitated by two units: the Data Adjustment Read Unit
(DARU) and the Data Adjustment Write Unit (DAWU),
which manage handshaking with external memory [1]. The
processor also incorporates a Physical Memory Protection
(PMP) unit to ensure secure memory access, raising
exceptions for illegal access.

To enhance data security, we propose encrypting stored
memory data and decrypting it upon loading. This is achieved
through an extended instruction scheme for the AES
algorithm, utilizing RISC-V custom instructions. The added
AES hardware unit and the custom instructions format are
detailed in the following sections.

B) AES Unit:

The AES algorithm is described in the previous sections.
In this part, we focus on the RTL design of the AES
encryption/decryption unit.

As shown in Fig. 3, the AES unit is formed from an AES
core, the key expansion unit, input and output buffer units, and
the main core controller. These units aim to convert plaintext
to ciphertext or ciphertext to plaintext based on a mode input,
which is extracted from the instruction and is synchronized
together with appropriate handshaking signals, e.g., start and
done signals. The input buffer unit collects 4 sets of 32-bit
data, as the plaintext or message, from the memory and
provides 128-bit data for the AES core.

The AES core, displayed in Fig. 3, receives a 128-bit
message, key, and expanded key as its inputs and transfers a
128-bit output text as its output. This unit is composed of
proper units compatible with the functionality of appurtenant
to the steps explained in the encryption flowchart. They are
named Add Round Key, S-box, Shift Rows, Mix Columns,

and a local dedicated controller. The four former modules
support both encryption and decryption based on the mode
signal, in our design if the mode has the value of 0, the AES
core encrypts the data, if the mode has the value 1, the AES
core performs the decryption process. The local controller has
the status of the current round. It terminates the encryption

process after 10𝑡ℎ round and notifies the ciphertext is
available.

The optimization in this design consolidates the
encryption and decryption processes into a unified unit. As
illustrated in Fig. 2, the process begins with the essential Add
Round Key step, where the input text and original key serve
as inputs. The substitute input for this module varies according
to the mode signal: for encryption, it receives output from the
MixColumns module, while decryption uses the InverseSbox
output. In the final encryption round, the Add Round Key step
processes the output from ShiftRows, omitting MixColumns.
A signal generated by the local controller manages these
variations through multiplexers, adjusting based on the current
round.

Upon encryption or decryption, the 128-bit output is
segmented byte-wise. The output buffer stores this 128-bit
ciphertext and distributes it in four-byte packs.

The key expansion unit generates round keys for each
encryption round by applying substitution and permutation to
the original key, divided into four 32-bit words. This unit
comprises a controller, multiplexer, XOR gates, registers, and
a cipher_word0_key module (Fig. 4). For the first word,
cipher_word0_key is used, while subsequent words are
generated by XORing the input key with the previous key
segment, providing the input for each following round.
 Fig. 5 illustrates the assembled AES unit. Data is loaded
from the memory in 32 bits (Load word), so there is an input
buffer to save 4 words from the memory and concatenate them
to make the 128-bit input for the AES Core. Since the data is
stored in the memory in 32 bits, an output buffer gets the 128-
bit result from the AES Core and transfers it as a vector of 4
words, back to memory. All these are wired together, and their
sequential behavior is realized through handshaking with the
controller. Once the entire 128-bit output text is prepared, it is
transferred back to the memory through 4 successive clocks,
with each clock transferring 32 bits of data.

C) AFTAB custom instructions:

The complex encryption and decryption tasks of AES can

be handled by a hardware unit specifically designed to be

initiated and invoked by custom instructions added to the

AFTAB processor. RISC-V ISA provides a series of reserved

Fig. 4. Key Expansion Unit Schematic

Fig. 3. AES Core Schematic

opcodes for future usage. We exert and customize four

reserved instructions for running on the AFTAB processor.

Hence, load-AES and store-AES instructions are customized

for AFTAB, each with an additional bit called mode that

defines the encryption or decryption process, in our case

when the mode value is 0, the unit proceeds with encryption,

otherwise it decrypts data.

The load-AES loads a set of four consecutive 32-bit data

from the memory saves them into the input buffer of the AES

core and then activates the AES core. As shown in Fig. 6,

load-AES instruction's fields use bits 0 to 6 for the opcode and

bits 8 to 12 for the source register, which encompasses the

memory address. The 7th bit indicates that the memory is the

destination for the data. The rest of the bits remain unused.

Fig. 6. load-AES Instruction Format

 As depicted in Fig. 7, the readReg-AES instruction shares

the same opcode as load-AES and transmits the data similarly.

The key difference is that the data transfer occurs directly

between the Register File and the AES core, as indicated by

the 7th bit.

Fig. 7. readReg-AES Instruction Format

 The store-AES stores four consecutive sets of 32-bit data

from the output buffer to the memory. As shown in Fig. 8,

store-AES instruction uses bits 0 to 6 for the opcode and bits

7 to 11 for the source register, which encompasses the

memory address. The rest of the bits remain unused.

Fig. 8. Store-AES Instruction Format

 As illustrated in Fig. 9, The writeReg-AES also shares the

same opcode with Store-AES and only differs in the data

transaction location. This opcode is intended to store the data

in the Register File instead of memory, thereby reducing the

overhead for certain tasks.

Fig. 9. writeReg-AES Instruction Format

D) Integration of AES Encryption Core into AFTAB:

This part attempts to elucidate the process of ASE core

integration into the AFTAB processor. As shown in Fig. 10,

the AES core is placed in AFTAB, and it has interfaces with

DARU and DAWU for reading/writing from/to the memory.

The AES core also has connections with the register files and

the controller units.

Once AFTAB’s controller detects the opcode of load-

AES or store-AES instruction, it traverses to the

corresponding state dedicated to these instructions. In load-

AES execution states, the controller starts reading from

memory through DARU and storing the data in the AES

core’s input buffer, and it also starts the AES core. In store-

AES execution states, the controller starts writing the AES

core’s output buffer to the memory through DAWU.

V. IMPLEMENTATION AND RESULT

This section explores both the software and hardware

implementation of the AES encryption algorithm, providing

a comprehensive comparison between the two approaches.

A) Verification Results:

To verify the encryption and decryption, the unit

processed a 32×32-pixel image. The image data, transformed

into 32×32 8-bit segments, is stored as eight packs of four 32-

bit data, requiring 32 load instructions to fill the input buffer

in 8 iterations for encryption. The encrypted data is then fed

back to the unit for decryption. The results show that the

decrypted image closely matches the original, confirming the

accuracy of the AES core. As shown in Fig. 11, the decrypted

image closely matches the original, demonstrating high

precision and confirming the accuracy and reliability of the

AES core integrated into the RISC-V processor.

 Fig. 12 presents an example of an 8-bit 512×512 example

for encryption results. In this example, the image was gray-

Fig 5. AES Unit Schematic

Fig. 10. AES in AFTAB

Fig. 11. Original Image, Encrypted Image, and Decrypted Image in order

scaled and fed to the unit in 128-bit packs. The encrypted

output was later partitioned in its original form, and the right

image was obtained, indicating a thorough encryption. Its

decrypted image was identical to the original picture proving

its high accuracy. Demonstrating the process across multiple

image processing case studies and decrypting them showed

that the AES Unit exhibits high precision with negligible

error.

B) Simulation and FPGA Results:

The AES core, described in Verilog HDL, is integrated

within the AFTAB processor. A 128-bit AES algorithm,

including the two developed custom instructions, is simulated

on AFTAB. The AES Core and AES unit were synthesized

and implemented on a Xilinx FPGA “7vx485tffg1157-1”. The

results are presented in Table I. The number of slices reported

for our proposed AES design includes both encryption and

decryption, whereas other entries in the table reflect only

encryption or decryption.

TABLE I. FPGA RESULTS COMPARISON

Implementation FPGA

Architecture
Number

of

Slices

𝐹𝑚𝑎𝑥(𝑀𝐻𝑧)
Latency
(Clock

Cycles)

Our proposed AES Unit 3751* 163.63 65

Our proposed AES Core 2271* 200.12 20

FPGA-based AES[3] (encryption) 10773 10.81 20

FPGA-based AES[3] (decryption) 15240 7.017 30

NLU-V-only [4] 5608* - 19056

[12](encryption) 2444 456.00 -

[13](encryption) 15612 14.69 -

*This includes hardware for both encryption and decryption.

The AES core is synthesized and implemented on

“Cyclone IV E: EP4CE115F29I8L”. The compilation is

configured to map onto Logic Elements only, excluding the

use of any embedded multipliers in the device. Table II

compares our proposed non-pipelined architecture with other

related works. The maximum frequency of the AES core is

reported as 101MHz, with results available within 65 clock

cycles. The number of logic elements reported for our

proposed AES design reflects both encryption and

decryption, while other entries in the table pertain solely to

encryption.

During the fabrication of AFTAB, it is essential to

ascertain the area occupied by the AES unit relative to the

entire processor. Table III compares the ASIC

implementation result of our proposed core to [11].

TABLE II. FPGA RESULTS COMPARISON

Implementation FPGA

Architecture
Logic

Elements
𝐹𝑚𝑎𝑥(𝑀𝐻𝑧)

Latency

(Clock
Cycles)

Our proposed

AES Unit
9326* 163.63 65

Our proposed
AES Core

8063* 200.12 20

Aes 128

arch1[7]
75840 - -

Aes 128

arch2[7]
80829 - -

Aes 128
arch3[7]

75147 - -

Harshali Zodpe

[8]
4089 495.32

-

AES-4SM [9] 10530 49.8 21

AES-8SM [9] 10730 98.31 21

AES

Coprocessor
[10]

3047 - -

 *This includes hardware for both encryption and decryption.

TABLE III. ASIC RESULTS COMPARISON

Implementation ASIC

Architecture
Area

(mm²)

Power

(mW)

Our proposed

AES Unit
0.0296 1.31

(1024, 27) [11] 0.1569 0.35

(2048, 30) [11] 0.1638 0.58

(4096, 90) [11] 0.1756 1.47

(8192, 130) [11] 0.1996 3.78

(16384, 390) [11] 0.2509 11.51

 Fig. 13 illustrates the latency of our design compared to

the encryption/decryption units proposed in [6]. This

comparison highlights the efficiency of our design in 16- and

128-byte transactions. Our design outperforms all others in

16-byte data transmissions and most in 128-byte

transmissions. However, in 1024-byte data transmissions, our

performance is slightly lower than some other designs due to

the overhead associated with larger data blocks. Despite this,

for small to moderately sized data transmissions, our design

demonstrates superior performance, making it highly suitable

Fig. 12. Original image, Encrypted Image

Fig 13. Latency Comparison with [6]

for applications requiring efficient, small-scale data

encryption.

Fig. 14 illustrates an average power comparison between

our proposed AES core and the AES coprocessors from [5].

In this comparison, our AES core operating in CBC mode

exhibits the lowest power consumption among all resources,

in both CBC and CMAC modes.

C) Software-based Simulation:

To validate THE effectiveness of implementing an AES

core, we conducted a test wherein the 128-bit AES algorithm

was executed solely using the original RISC-V ISA on the

processor. The AES program was compiled using the RISC-

V GNU toolchain [13]. This simulation showed that the

software-based implementation of AES requires 1219 clock

cycles to complete each encryption and decryption process.

In contrast, our hardware-based implementation completes

the same task in 65 clock cycles. This significant difference

in the number of clock cycles required for encryption

between the software-based and hardware-based

implementations is noteworthy. Our hardware

implementation is approximately 18.75 times faster than the

software approach This enhanced speed is crucial for time-

sensitive operations and large-scale data encryption.

VI. ADVANCEMENTS AND CONTRIBUTIONS

A) Power Efficiency and Resource Utilization

Our implementation excels in power efficiency and

resource utilization, particularly by merging encryption and

decryption functions—a feature that sets it apart from state-

of-the-art solutions. Leveraging the RISC-V architecture’s

characteristics and optimized implementation techniques, we

achieve notable power reductions without compromising

encryption strength, making it ideal for energy-constrained

environments like IoT devices and battery-powered systems.

B) Speed Enhancement

One of the key contributions of our work is the

substantial speed improvement compared to software-based

implementations of AES. Our hardware implementation

operates at a remarkable speed, achieving a performance

increase of 19x compared to its software counterpart. This

enhancement ensures rapid encryption and decryption,

making our solution suitable for real-time applications where

both speed and efficiency are critical. C) Security Assurance

In addition to its efficiency and speed, our

implementation guarantees a high level of security. Through

image processing testing, we have demonstrated high-

precision encryption and correct decryption, ensuring the

confidentiality of sensitive data. The presented figures in the

results section affirm the robustness of our encryption

scheme, highlighting its effectiveness in securing data against

unauthorized access and malicious attacks.

VII. CONCLUSION

 This paper presents an enhanced AES encryption

implementation on the RISC-V processor, AFTAB, aimed at

improving security for data transmission in safety-critical

hardware platforms. By integrating an AES unit with four

custom AES instructions, we achieved a nearly 19x speed

increase in executing a 128-bit AES program compared to the

standard implementation. Our design leverages an innovative

approach that combines encryption and decryption using

resource sharing and mode bit differentiation, optimizing

logic element utilization during SoC fabrication. This work

represents a significant advancement in cryptographic

implementations on RISC-V, balancing power efficiency,

resource utilization, speed, and security, making it well-

suited for applications ranging from resource-constrained

embedded systems to high-performance computing.

REFERENCES

[1] Rajabalipanah, M., Roodsari, M. S., Jahanpeima, Z., Roascio, G.,
Prinetto, P., & Navabi, Z. (2021, September). AFTAB: A RISC-V
Implementation with Configurable Gateways for Security. In 2021
IEEE East-West Design & Test Symposium (EWDTS) (pp. 1-6). IEEE.

[2] Waterman, A., Lee, Y., Patterson, D. A., & Asanovic, K. (2011). The
risc-v instruction set manual, volume i: Base user-level isa. EECS
Department, UC Berkeley, Tech. Rep. UCB/EECS-2011-62, 116, 1-3.

[3] M arshall, B., Newell, G. R., Page, D., Saarinen, M. J. O., & Wolf, C.
(2020). The design of scalar AES Instruction Set Extensions for RISC-
V. Cryptology ePrint Archive.

[4] Uzuner, H., & Kavun, E. B. (2024). NLU-V: A Family of Instruction
Set Extensions for Efficient Symmetric Cryptography on RISC-V.
Cryptography, 8(1), 9.

[5] Pan, L., Tu, G., Liu, S., Cai, Z., & Xiong, X. (2021). A lightweight
AES coprocessor based on RISC-V custom instructions. Security and
Communication Networks, 2021, 1-13.

[6] Cheng, H., Großschädl, J., Marshall, B., Page, D., & Pham, T. (2023).
RISC-V instruction set extensions for lightweight symmetric
cryptography. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 193-237.

[7] Arrag, S., Hamdoun, A., & Tragha, A. (2012). Design and
Implementation A different Architectures of mixcolumn in FPGA.
arXiv preprint arXiv:1209.3061

[8] Zodpe, H., & Sapkal, A. (2020). An efficient AES implementation
using FPGA with enhanced security features. Journal of King Saud
University-Engineering Sciences, 32(2), 115-122.

[9] Qin, H., Sasao, T., & Iguchi, Y. (2006). A design of AES encryption
circuit with 128-bit keys using look-up table ring on FPGA. IEICE
transactions on information and systems, 89(3), 1139-1147

[10] Abdelmoghni, T., Mohamed, O. Z., Billel, B., Mohamed, M., &
Sidahmed, L. (2018, November). Implementation of AES coprocessor
for wireless sensor networks. In 2018 International Conference on
Applied Smart Systems (ICASS) (pp. 1-5). IEEE.

[11] Azad, Z., Yang, G., Agrawal, R., Petrisko, D., Taylor, M., & Joshi, A.
(2022, August). Race: Risc-v soc for en/decryption acceleration on the
edge for homomorphic computation. In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design (pp.
1-6).

[12] Hussain, U., & Jamal, H. (2012, December). An efficient high
throughput FPGA implementation of AES for multi-gigabit protocols.
In 2012 10th International Conference on Frontiers of Information
Technology (pp. 215-218). IEEE.

[13] Wang, Y., & Ha, Y. (2013). FPGA-based 40.9-Gbits/s masked AES
with area optimization for storage area network. IEEE Transactions on
Circuits and Systems II: Express Briefs, 60(1), 36-40.

[14] https://github.com/riscv-collab/riscv-gnu-toolch

Fig 14. Power Comparison with [5]

https://github.com/riscv-collab/riscv-gnu-toolch

