
EasyChair Preprint
№ 10357

Do Developers Benefit from Recommendations
When Repairing Inconsistent Design Models? a
Controlled Experiment

Luciano Marchezan, Wesley K. G. Assunção,
Gabriela Karoline Michelon and Alexander Egyed

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 7, 2023



Do Developers Benefit from Recommendations when Repairing
Inconsistent Design Models? a Controlled Experiment

Luciano Marchezan
Wesley K. G. Assunção

ISSE - Johannes Kepler University Linz
Linz, Austria

Gabriela K. Michelon
Alexander Egyed

ISSE - Johannes Kepler University Linz
Linz, Austria

ABSTRACT
Repairing design models is a laborious task that requires a con-
siderable amount of time and effort from developers. Repair rec-
ommendation (RR) approaches focus on reducing the effort and
improving the quality of the repairs performed. Such approaches
have been evaluated in terms of scalability, correctness, and min-
imalism. These evaluations, however, have not investigated how
developers can benefit from using RRs and how they perceive the
difficulty of applying RRs. Investigating and discussing the use of
RRs from the developers’ perspective is important to demonstrate
the benefits of applying such approaches in practice. We explore
this opportunity by conducting a controlled experiment carried out
with 24 developers where they repaired UML design models in eight
different tasks, with and without RRs. The findings indicate that
developers can benefit from RRs in complex tasks by improving
their effectiveness and efficiency. The results also evidence that
the use of RRs does not impact the developers’ perceived difficulty
and confidence when repairing models. Furthermore, our findings
show that not all developers choose the same RR, but rather, have
varied preferences. Thus, the provision of RRs leads to developers
considering additional alternatives to repair an inconsistency.

CCS CONCEPTS
• General and reference → Empirical studies; • Software and
its engineering→ Model-driven software engineering.

KEYWORDS
Controlled Experiment, Consistency Checking, Repair Recommen-
dations

1 INTRODUCTION
Inconsistent models need to be repaired to maintain their correct-
ness and reduce the chance of requirements not being met [13, 25].
Repairing models, however, is an error-prone and laborious task
that requires a considerable amount of time and effort from de-
velopers [22]. Hence, repair recommendation (RR) approaches can
be applied to maintain consistency and reduce the time and effort
required for the repair task, mainly on UML models [2].

Approaches proposing the use of RRs have been evaluated in a
variety of scenarios in terms of scalability, correctness, and mini-
malism [1, 16, 20]. However, there are still limitations in this regard.
Firstly, most studies in the RR field do not focus their evaluations
on the perspective of developers regarding the provision of RRs
(Limitation 1). These evaluations are important to analyze the im-
plications of applying RRs strategies from the perspective of its
end-users, i.e., developers [19]. This is more important considering

that RRs approaches are not yet adopted in industrial settings, but
rather, developers perform manual repairs on demanded [10]. One
reason for that may be the lack of empirical studies with human
participants measuring the benefits and drawbacks of applying RRs.
Secondly, as developers have different experiences and preferences,
ranking or automatically executing RRs to fix inconsistencies may
change the models in a way not desired by the developer (Limita-
tion 2). Hence, it is important to understand the developers’ prefer-
ences when repairing models before applying these approaches in
industrial settings.

We address the aforementioned limitations by conducting an ex-
periment with developers. In this paper, we report this experiment
that is guided by three research questions (RQ):RQ1. Do developers
benefit from recommendations when repairing inconsistent design
models? RQ2. How do developers perceive the use of repair rec-
ommendations when repairing inconsistent design models? RQ3.
Do developers have preferred recommendations when repairing
inconsistent design models?

The data used to answer the RQs was collected by analyzing
developers repairing inconsistent models with and without the pro-
vision of RRs. The sample was composed of 24 M.Sc./Ph.D. students
with varied software development experience, ranging from aca-
demic only to more than five years of experience in the industry.
To answer RQ1, we measure how the use of RRs can bring benefits
to developers in terms of effectiveness (i.e., inconsistencies fixed)
and efficiency (i.e., the time required) when repairing design mod-
els compared to when RRs are not provided. For RQ2, we asked
developers to give us feedback regarding the difficulty and their
confidence when repairing the models. To obtain the results of RQ3,
we ask the developers to select and rank RRs and create new ones
to understand their preferences for different tasks.

Results show that the provision of RRs benefits developers by
improving their effectiveness by 37.63% (p-value of 0.04) and effi-
ciency by 29.81% (p-value of 0.17) in comparison to not having RRs
(RQ1). In more simple tasks, however, RRs reduce the efficiency
of developers by increasing the time required to repair the incon-
sistency. These findings evidence that RRs approaches can bring
benefits to developers in more complex tasks. Furthermore, the
perceived difficulty and confidence of developers when RRs are
given are similar without RRs (RQ2). This result demonstrates that
providing RRs does not affect the developers’ perspective during
the repairing process. We also observed that developers do not
have an ideal RR for a given inconsistency, but rather have different
preferences regarding how to repair a model (RQ3). Moreover, in
some contexts, any RR may be considered not applicable. These
findings highlight the importance of having developers’ feedback
when repairing models since they have different preferences. Such

https://orcid.org/0000-0003-3096-580X
https://orcid.org/0000-0002-7557-9091
https://orcid.org/0000-0002-9638-8569
https://orcid.org/0000-0003-3128-5427


Marchezan et al.

results also indicate that applying automatic RRs in models by se-
lecting the “most suited” RR may not be ideal, as developers do not
have the same opinion about what is the “most suited” RR.

This work is organized as follows: Section 2 describes the back-
ground of repair generation as well as related work. Section 3
presents the design and the threats to the validity of the controlled
experiment. Results and discussion of the RQs are presented in
Section 4. Lastly, Section 5 presents our conclusions.

2 BACKGROUND AND RELATEDWORK
In this section, we present the definitions related to the generation
of repair recommendations as well as related work.

2.1 Repair Recommendations
Repair recommendations are applied in models to repair inconsis-
tencies. In this study, we consider a model as consisting of model
elements that contain properties, e.g., a UML model. An example is
illustrated in Figure 1, where the model contains a model element
called CookingMode of the type class, which contains properties
such as setCookingMode of the type operation.

Consistency Rules (CR) are applied to identify inconsistencies in
the models. A CR is a condition that evaluates to a Boolean value as
true (consistent) or false (inconsistent). A CR is defined for a context,
which is a type of model element, e.g., UML class. Figure 1 presents
the application of a CR into a model, checking if a class contains
operations with the same signature. An inconsistency is found as
the class SlowCookingMode has two operations setCookingMode
with the same signature, one from itself and the other from the
superclass CookingMode.

Once inconsistencies are found, repair recommendations (RR)
are generated to fix them. An RR identifies the operator, the model
element, the model element property, and, optionally, a value to
change the model element property to, resolving an inconsistency.
The following operators are possible: add a model element to the
model or to a collection of model elements, delete a model element
from the model or from a collection of model elements, and modify
a model element property. Figure 1 presents examples of five RRs
for the inconsistency found in the class SlowCookingMode. The first
RR (1. Delete) is a concrete RR that recommends the deletion of
the operation setCookingMode from the CookingMode superclass. In
this case, the model element is the CookingMode class, the property
is the list of operations, the value is the operation setCookingMode,
and the operator is delete. A model-based representation of this RR
would be: (𝑑𝑒𝑙𝑒𝑡𝑒,𝐶𝑜𝑜𝑘𝑖𝑛𝑔𝑀𝑜𝑑𝑒.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑠𝑒𝑡𝐶𝑜𝑜𝑘𝑖𝑛𝑔𝑀𝑜𝑑𝑒).

The generation of RRs used in this study is an adapted version
of approaches found in the literature [12, 16, 22], One important
adaptation is transforming the way RRs are displayed. Instead of
using a model-based representation, we represent RRs using natural
language (as shown in Figure 1). For instance, we transformed the
aforementioned RR into “Delete operation setCookingMode from
CookingMode” as displayed in the RR 1.Delete in Figure 1. Also, there
are different rationales for selecting approaches already present in
the literature [12, 16, 22] as the basis for our RR generation. For
instance, their robustness, since they have been evaluated in large-
scale models in terms of scalability, correctness, and minimalism.
Furthermore, the documentation provided by them was used to

CR Class’ Operations must not have the same signature.

Inconsistency SlowCookingMode has two operations setCookingMode with the same signature
(one from itself and the other from its superclass CookingMode)

Rank RR Id Repair Recommendation

1.Delete Delete operation setCookingMode() from CookingMode

2.Modify Modify the signature of operation setCookingMode() from CookingMode

3.Delete Delete operation setCookingMode() from SlowCookingMode

4.Modify Modify the signature of operation setCookingMode() from SlowCookingMode

5.Delete Delete inheritance association between SlowCookingMode and CookingMode

Figure 1: Example of task with Repair Recommendations

implement the approach using their algorithm logic and repair
generator functions.1

One example of an RR generation function can consider Fig-
ure 1, where the defined CR iterates over all operations of a class.
The operations from the class and superclasses are compared con-
sidering their signature, i.e., name and parameters. If at least one
comparison evaluates to false, i.e., two operations have the same
signature, the class is considered inconsistent. The operations that
resulted in false are returned in a set of model elements that are
the cause of the inconsistency. Considering the example in Figure 1,
one inconsistency is identified for class SlowCookingMode. This
inconsistency is related to three model elements (highlighted with
an ellipse), namely operation setCookingMode from CookingMode,
the inheritance association from SlowCookingMode to CookingMode,
and the operation setCookingMode from SlowCookingMode. These
three model elements are the cause of the inconsistency and should
be modified to repair the model.

The RR approach applies generator functions to the cause of the
inconsistency to generate RRs. In this case, the generator function
is applied to a universal quantifier (forAll) as described by the OCL2
definition of the CR.1 This function suggests both modifying or
deleting the inconsistent model elements [16, 22]. Additionally, it
suggests deleting the inheritance association, since this association
is responsible for the set of operations. This leads to five RRs be-
ing generated, as shown in Figure 1. Thus, for each type of OCL
expression, e.g., exists, and, or, among others, a generator function
is applied to generate the RRs. Only one of the generated RRs is
required to fix any given inconsistency. The approach we adopt
treats every option equally, thus, they are not ranked in any partic-
ular order. Hence, the rank column remains empty, and it is one of
the goals of the participants from the experiment.

1Details about the repair generation as well as all artifacts of the experiment are
available at our online appendix [15]
2Object Constraint Language: https://www.omg.org/spec/OCL/

https://www.omg.org/spec/OCL/


Do Developers Benefit from Recommendations when Repairing Inconsistent Design Models? a Controlled Experiment

2.2 Related Work
Several approaches proposed the use of RRs [13]. These approaches
use different strategies for generating repairs, such as relying on
OCL rules and generator functions [9, 12, 16, 22], analyzing the
history of changes [14, 20], and applying learning algorithms [1].
These approaches have been evaluated for their correctness, scala-
bility, and minimalism. To the best of our knowledge, however, the
use of repair recommendations has never been evaluated from the
developers’ perspective in a controlled experiment. Moreover, there
is a lack of studies analyzing the implications of providing RRs to
developers, such as benefits and preferences. Analyzing these impli-
cations is important to understand why, despite the importance of
RRs, they are still not being supported by tools that are adopted in
industrial scenarios [10]. Furthermore, the results of such a study
can support the claims that using RRs is better than doing manual
repairs, which is always assumed, although empirical evidence is
not provided in the literature. Thus, we designed our experiment
intending to collect and analyze these implications.

When designing our experiment, we applied the guidelines for
experimentation with human participants in software engineer-
ing [11, 27]. Furthermore, we considered how other experiments
with human participants were designed. Petersen et al. [21] report
an experiment to analyze the impact of time-controlled reading in-
spection regarding effectiveness and efficiency. When formulating
two metrics for RQ1 (see Section 3.1.1), namely, effectiveness and
efficiency, we considered Petersen et al. [21] formulas to calculate
the scores for each task of our experiment. When designing the
methods for analyzing the results of our experiment, we considered
studies that had similar protocols. For instance, Dzidek et al. [6]
report an empirical evaluation of the costs and benefits of using
UML documentation for software maintenance. Their experiment
focused on how the use of UML impacts the time and quality of
source code maintenance in comparison to the lack of documenta-
tion. This is similar to how we compare the benefits and perceived
difficulty and confidence when repairing inconsistent models with
and without RRs. Their experiment was also composed of quan-
titative and qualitative RQs, similar to ours, as RQ1 and RQ3 are
quantitative and RQ2 is qualitative. Analyzing works that deal with
questionnaires is also important when formulating the questions,
and metrics for analyzing the results of questionnaires [18].

Since the experiment’s sample is composed mostly of develop-
ers that are M.Sc./Ph.D. students, we have to consider guidelines
regarding students as participants in experiments [7, 8]. Falessi
et al. [7], for instance, proposes the 𝑅3 scheme (Real, Relevant,
and Recent) for classifying participants’ experiences. Based on this
scheme, every characterization question for the Real and Relevant
experience has four alternatives: i) No experience; ii) Less than 2
years of experience (short); iii) between 2 and 5 years of experience
(medium); iv) more than 5 years of experience (long). Furthermore,
questions related to Recent experience had the following alterna-
tives: i) None; ii) more than 5 years ago (old); iii) between 2 and
5 years ago (medium); and iv) less than 2 years ago (new). Also,
for each question, participants should provide their academic and
industrial experience. This scheme is important as the experience
of participants may impact the results of the experiment. According
to Falessi et al. [7], conducting experiments with students does not

have a lower relevance or lower interest than experiments with pro-
fessionals. In the same context, Feldt et al. [8] argue that researchers
should discuss the limitations of having students as participants
while aiming to run more experiments with practitioners. In our
experiment, 19 out of the 24 participants have varied professional
experiences, being both students and practitioners. Details about
the experiment design, including the sample selection, are described
in the next section.

3 EXPERIMENT DESIGN
In this section, we present the experiment design1 defined based
on the aforementioned related work.

3.1 Experiment Definition and Planning
The goal of our experiment is to analyze if the provision of RRs brings
benefits to developers. Moreover, we want to observe how developers
perceive the difference between using RRs compared to not using
them. We also aim at investigating if developers have preferred RRs
when fixing inconsistent models. Thus, the goal of the experiment
is not to compare two RRs techniques to conclude which one is
better. Rather, we aim at understanding and evidencing the real
benefits (if they exist) of providing RRs from the perspective of the
developers. This clarification is important, as the experiment was
planned and executed with this goal in mind.

3.1.1 Research Questions, Metrics, and Hypotheses.
The independent variable is the use of RRs for repairing design

models. We decided to use UML diagrams to represent the models
since UML is a well-known modeling language adapted in the in-
dustry for documentation [3], as well as being commonly used in
controlled experiments [5, 6]. The values (treatments) given to this
variable are: repair recommendations (RR), providing a set of repair
alternatives for each inconsistency; and without recommendations
(WR), repairing the diagrams only knowing their inconsistencies.
The dependent variables are: Time spent (in minutes) on the tasks
(T); the number of inconsistencies per task (I); the number of incon-
sistencies fixed per task (IF). We attribute different IF scores as an
inconsistency could be fixed (score 1), partially fixed (score 0.5), or
not fixed (score 0); Additional metrics include the ranking of repair
recommendations given by the participants in RR tasks (RRR); re-
pairs created by participants in WR tasks (RC). In addition, we use
four qualitative metrics, presented in Table 1: task difficulty level
(TD) and overall difficulty (OD); confidence level (CL) regarding
the inconsistency being repaired; and the participants’ acceptance
(PA) regarding RRs.

We also formulate indirect metrics based on related work [21],
namely, effectiveness (EFT) and efficiency (EFY). EFT is the degree
to which participants repair a model inconsistency (Equation 1).
The result is a range from 0 to 1, where 0 means that no partici-
pant repaired the inconsistency and 1 means that all participants
repaired the inconsistency for that task. EFY is the degree to which
participants repair a model inconsistency, considering the time
required (Equation 2).

𝐸𝐹𝑇 =
IF

I
(1) 𝐸𝐹𝑌 = 60 ∗ 𝐸𝐹𝑇

T
(2)

We also complement the analysis of the results by extracting themes
from open-ended questions present in the feedback questionnaires.



Marchezan et al.

Table 1: Questions from the experiment questionnaires

ID Question When it was
asked

Type

TD How difficult was this task? After each task 5-Point Scale
CL How confident are you about fixing the

inconsistency in this task?
After each task 5-Point Scale

OD How difficult was repairing the models
(RR and WR)?

After all tasks 5-Point Scale

PA Do you think that using RRs is worse or
better than not using them?

After all tasks 5-Point Scale

CF What challenges did you face when
repairing the models (RR and WR)?

After all tasks Open-ended

These questions included asking participants about the challenges
faced (see CF in Table 1) when performing the tasks, justifying
the reason why an inconsistency was not fixed, and how the given
RRs could be improved in terms of understandability. From all the
answers given, we applied a thematic synthesis process to create
and extract themes [4], describing patterns that are found in the
answers. These metrics are used to answer the following RQs:
RQ1. Do developers benefit from recommendations when repairing
inconsistent design models?

Rationale: we investigate if the provision of RRs impacts the ef-
fectiveness and efficiency of the participants when repairing incon-
sistent models.Method: we answer this RQ by testing two-sided
hypotheses for the EFT and EFY metrics. The null hypothesis 𝐻0
states that the provision of RRs has no impact, as it does not increase
or decrease the EFT/EFY compared to WR. The alternative hypothe-
sis𝐻𝑎 states that RRs have an impact on the EFT/EFY scores. To test
the statistical significance of the results, we performed a two-tailed
distribution, paired t-test, with a probability level of 5% to reject𝐻0:
𝐻0𝐸𝐹𝑇 : 𝐸𝐹𝑇 (𝑅𝑅) = 𝐸𝐹𝑇 (𝑊𝑅)
𝐻𝑎𝐸𝐹𝑇 : 𝐸𝐹𝑇 (𝑅𝑅) ≠ 𝐸𝐹𝑇 (𝑊𝑅)

𝐻0𝐸𝐹𝑌 : 𝐸𝐹𝑌 (𝑅𝑅) = 𝐸𝐹𝑌 (𝑊𝑅)
𝐻𝑎𝐸𝐹𝑌 : 𝐸𝐹𝑌 (𝑅𝑅) ≠ 𝐸𝐹𝑌 (𝑊𝑅)

RQ2. How do developers perceive the use of repair recommendations
when repairing inconsistent design models?

Rationale:we investigate participants’ opinions regarding the diffi-
culty of the tasks performed, their confidence when performing the
tasks, and the acceptance of using RRs when repairing inconsistent
models. We analyze these results to understand if when RRs are
provided, participants perceive tasks to be less or more difficult
while having less or more confidence in performing them.Method:
we consider four questions from the feedback questionnaires given
to participants, namely, TD, CL, OD, and PA, shown in Table 1.
We also consider the two metrics used for the hypothesis testing
performed for RQ1 when analyzing the correlation between the
perceived difficulty and the effectiveness and efficiency results.
RQ3. Do developers have preferred recommendations when repairing
inconsistent design models?

Rationale: we investigate if there is one ideal RR for each incon-
sistency. We also investigate the possibility of RRs that are always
or never selected.Method: we consider the RRs ranking assigned
by participants in each RR task. Then, we analyze the frequency
of an RR being selected as the first option as well as the most fre-
quent, best, and worst rank of each RR. For WR tasks, we look at

Table 2: Experience of the 24 Participants

Experience Number of Participants (Academic/Industrial Exp.)
Level Soft. Eng. UML Soft. Repair UML Repair

None 1/5 1/15 6/9 11/21
Short 4/8 10/7 7/6 12/3
Medium 14/8 12/2 9/8 1/0
Long 5/3 1/0 2/1 0/0

the repairs created by participants, comparing them with the RRs
provided for the RR tasks.

3.1.2 Sample Selection.
We invited participants for the experiment using convenience

sampling, i.e., participants selected were easily accessible [27]. We
sent e-mail invitations toM.Sc./Ph.D. students enrolled in theModel-
Driven Engineering course. After the students replied, demonstrat-
ing interest in participating in the experiment, we sent a question-
naire to collect demographic data about them. This questionnaire to
characterize participants1 was designed using the 𝑅3 scheme (Real,
Relevant, and Recent) considering both academic and industrial
experience [7]. The strategy for inviting participants and collecting
their data was designed based on the mitigation strategy of threats
to validity (TtV) TtV1 and TtV2, described in Section 3.3.

In total, 31 participants answered the experience questionnaire,
however, seven participants were not able to be present in the exper-
iment. Hence, the sample consists of 24 participants (22 M.Sc. and
two Ph.D. students). As shown in Table 2, the experience of the par-
ticipants varied between the categories of short, medium, and long,
with most participants having at least short experience in the in-
dustry (19) with software engineering. We only invited participants
that were familiar with UML, since all the tasks given contained
UML diagrams. Table 2 also shows that only one participant did
not have experience with UML in the academy, however, the same
participant had a short experience with UML in the industry.

3.1.3 Experimental Package.
The experimental package was designed considering the mitiga-

tion of threats to validity (see Section 3.3) and it was composed of
the following artifacts:

Design models: UML diagrams that are part of a dataset of both
industry and academic models of different domains.1 This dataset
has also been used for evaluating RR generation approaches [12, 16,
23]. We used six different UMLmodels, composed of class, sequence,
and state machine diagrams.

Guidelines: this document included an explanation about con-
sistency checking and RRs, how the tasks should be conducted, and
the consent term that participants had to agree on. The guidelines
also contained two illustrative tasks that were completed by partic-
ipants together with an experimenter carrying out the session. The
definition of the guidelines was based on the mitigation from TtV5.

Tasks’ document: the tasks were given to participants as a
printed document. An example of a task is illustrated in Figure 1.
For each task, we presented the CR applied and described the in-
consistency with a sentence in English (at the top of the figure).
We also highlighted in the diagram the inconsistency to be fixed
(the three ellipses). To ensure that the inconsistencies given in the
tasks were varied, for some tasks we introduced the inconsistency,



Do Developers Benefit from Recommendations when Repairing Inconsistent Design Models? a Controlled Experiment

Table 3: Experiment Tasks

Group Task Model Diagram CR Inconsistency

G1 TCex M1 class and seq. CR1 Original
TCac M2 class and seq. CR2 Introduced

G2 TMic M3 class CR3 Introduced
TCdr M4 class CR4 Original

G3 TSeq M4 seq. and state CR5 Introduced
TSta M4 class and state. CR6 Introduced

G4 TCno M5 class and seq. CR1 Original
TSup M6 class and seq. CR1 & CR2 Introduced

i.e., by deleting or modifying an element from the diagram. We
defined five task criteria to be followed when creating a task: the
diagram used in the task must be of a certain size range, between 3
and 15 model elements; tasks should have different combinations
of diagrams, e.g., only class, class and sequence, class and state
machine, and sequence and state machine; each task must have
unique inconsistencies; an inconsistency must have multiple RRs;
inconsistencies must affect different types of model elements, e.g.,
operations, associations, messages, lifelines, and states.

Table 3 summarizes the description of the eight tasks defined, six
main tasks (G1 - G3), and two extra tasks (G4). These two extra tasks
were defined based on feedback from the pilot studies conducted
before the experiment (details in Section 3.3, TtV7). Tasks were
grouped in pairs based on the diagram types being used, e.g., G3 is
composed of two tasks that contain state-machine diagrams. The
reason for grouping tasks is due to the order of the tasks changing
for each participant (see Section 3.2).

Repair recommendations: The RR used in the experiment
were generated by adopting approaches and applying them into
the inconsistent models [12, 16, 22]. During the experiment, each
participant received RRs for four tasks (one task per task group),
having to perform the other four without RRs. For instance, Partic-
ipant 1 received RRs for TCex but not for TCac, which belong to
G1. Participant 2, however, received RRs for TCac and not for TCex.
We ensured that no matter the order of the tasks given to each
participant, they would alternate between RR and WR. When a task
contained RRs, participants were asked to write down the rank for
selecting each RR. For instance, as illustrated in Figure 1, five RRs
were given, hence, participants rank them using numbers (from 1
to 5) to determine which RR is more suited in their opinion (1 being
the most suited one). They could also use the same rank more than
once if they thought that two or more RRs were equivalent, e.g.,
2. Modify and 4. Modify could be both considered the first option.
The participants could also write down that one or more RRs were
non-applicable for that task by writing “N/A” or 0 (zero). Lastly,
participants could include new RRs if they believed that none of
the RRs was valid.

Feedback questionnaires: after the completion of each task,
participants were asked to answer a feedback questionnaire com-
posed of questions TD andCL from Table 1. After the completion of
all tasks, participants were given an overall feedback questionnaire
with questions OD, PA, and CF from Table 1 among others.1

3.2 Operation of the Experiment
The experiment was carried out in a classroom at the university on
two different dates due to the availability of participants. On the first
date, fourteen participants were present, and ten participants were
present on the second date. For both dates, the experiment opera-
tion was carried out following the same script, with the same three
experimenters in the room. The experiment started at 10:35 AM on
both dates and lasted (the time when the last participant handed
in the feedback questionnaire) until 11:35 AM on the first date and
11:18 AM on the second date. At the start of the experiment, partici-
pants were given an explanation about the experiment’s main goal,
without mentioning RQs or hypotheses. The guidelines document
was given to each participant and one experimenter read it aloud
also asking participants if they had any questions related to it. At
this point, we explained that the tasks must be performed individu-
ally and that participants were allowed to ask questions. However,
questions related to how to create or rank repairs would not be
answered to avoid bias. Furthermore, participants were not allowed
to talk with other participants. We also reminded participants to
write down the current time before and after each task.

After all the participants had finished reading the guidelines,
the task document was given to them. While participants were
performing the given tasks, three experimenters were in the room
observing if participants were following the guidelines explained.
In total, we had 24 different task documents printed, one for each
participant. All documents had the same eight tasks (see Table 3)
and the same feedback questionnaire for each task. However, the
order and the type of the tasks changed for each document, such as
that participants would alternate between RR and WR tasks. This
structure is important to mitigate a threat to validity related to
the learning effect (TtV6 in Section 3.3). Once a participant have
finished their tasks, the experiment feedback questionnaire was
given. After the experiment, the documents filed by the participants
were converted into raw data.

3.3 Threats to Validity
In this section, we discuss threats to validity (TtV) and how we
mitigated them.

Construct Validity: The first threat is using a convenience sam-
ple, as it can bias the results based on the participants’ experience
(TtV1). To mitigate this, we applied a questionnaire with the 𝑅3
characterization mechanism [7] to collect data about the academic
and industrial experience of participants on different topics. This
experience was considered when analyzing the results of each par-
ticipant. Furthermore, the majority of participants (19 out of 24)
have industrial experience. However, collecting the background
data about the participants may have a negative impact, such as
the stereotype threat (TtV2), which may lead to less experienced
participants having less confidence as they can be reminded of their
lack of experience [11, 17]. We mitigated this threat by collecting
participants’ demographic data through an online form, one week
before the experiment. The options provided as possible answers
to close-ended questions are also a threat, as they may confuse
or unintentionally bias participants’ answers (TtV3) [17]. Hence,
when using the Likert scale for answers, we always used textual



Marchezan et al.

descriptions for all options given. We also included open-ended
questions, asking participants to include observations.

Internal Validity: The models selected may bias the results
of the RQs (TtV4). The models used in our experiment, however,
were already evaluated and used in other studies [12, 23], being
thoroughly tested. Furthermore, the dataset was composed of both
industry and academic models with three different types of UML
diagrams and combinations of them for the tasks, as described
in Table 3. Another threat is related to participants not reading or
understanding the instructions (TtV5). To mitigate this, participants
were asked to silently read the guidelines while an experimenter
read the same guidelines aloud. The guidelines also contained two
illustrative tasks that simulated the two types of tasks (RR and WR).

Conclusion Validity: A threat is related to the tasks’ order and
structure, impacting the results (TtV6) due to the learning effect [11,
24]. To mitigate this threat, we structured the experiment tasks
using a counterbalancing strategy [11, 26]. Hence, the participants
alternated between RR and WR tasks with the order changing, such
as that no two participants did the same combination of tasks (RR or
WR) in the same order.3 Another threat is related to task difficulty
and completion time (TtV7) that impact the results by creating
fatigue in the participants [11]. We mitigated this by conducting
two pilot studies with four participants (two for each pilot) that
were not present in the final sample. After each pilot study, we
interviewed these participant. Based on their feedback for each task
regarding difficulty and the time spent, we re-balanced the tasks and
time required for the experiment operation. For instance, the first
pilot study had only six tasks. Participants from the pilot studies
also reported that most tasks were easy, so we re-balanced these
tasks, increasing their difficulty. Measuring the success of WR tasks
can also be a threat to validity, since incorrect measures may impact
the WR tasks’ results (TtV8). To mitigate this, we checked if the
RRs created by participants in WR tasks were part of the generated
RRs from the same RR task. Lastly, measuring the time wrongly due
to participants not being sure when the task started and finished
may threaten the results regarding efficiency (TtV9). We asked
participants to only start the tasks after signing the consent form
agreement to mitigate this threat. Whenever starting a task, they
would write down the start time at the top of the page. They also
recorded the end time before answering the feedback questionnaire
for each task. To keep the time consistent, we asked participants to
use the time from a digital clock displayed on the beamer.

External Validity: The impossibility to generalize the results
to practical cases due to the participants of the experiment being
students is a threat (TtV10). To mitigate this threat, we only in-
vited participants that already concluded their bachelor’s degree.
As shown in Table 2, the majority of the participants (19 out of 24)
had experience in the industry. Furthermore, we argue that even
inexperienced developers should be able to use RRs. The last threat
is related to the experimental package not representing a practi-
cal case, such as using toy examples that are not representative
of industrial practice (TtV11). To mitigate this, we used models
that were taken from real systems and the diagrams were scaled
down to be of a manageable size. However, as all elements of the
model that were relevant to each inconsistency were kept in the

3The definition of the task order is presented in our online appendix [15].

diagram, we argue that scaling down the models would not affect
the inconsistency repair.

4 RESULTS AND DISCUSSION
In this section, we present the results of the experiment, and also
discuss the limitations and lessons learned.

4.1 Answering the RQs
RQ1. Do developers benefit from recommendations when repairing
inconsistent design models?

Table 4 describes the results of the effectiveness and efficiency
metrics per task, distinguished by task type (RR and WR). Consid-
ering the effectiveness result, column EFT, the use of RR always led
to 1 effectiveness (100%). This means that for RR tasks, participants
always selected a repair to fix the given inconsistency. For the WR
tasks, however, the result was 1 (100% EFT) only for task TSta. The
lowest result was for task TCex WR, where participants obtained
0.29 effectiveness on average. This means that inconsistencies were
fixed (three in total) or partially fixed (one in total) in TCex WR for
only 29% of the participants.

The effectiveness results of task TCex cannot be attributed to
the order in which TCex was performed, since the order of the
tasks changed for each participant. Similarly, tasks TCno and TSup
were always the last two tasks, still, the effectiveness scores for
these tasks were among the worst. We observed that the reason
for these lower scores is the inconsistency type and their required
RRs, which were suggesting modifying the association between
UML classes. Such RRs are more complex than renaming or delet-
ing model elements that were part of WR tasks that obtained the
best effectiveness results, i.e., tasks TCac, TMic, TCdr, TSeq, and
TSta. Thus, the results regarding effectiveness indicate that partici-
pants can benefit from RRs in more complex tasks by improving the
effectiveness while keeping similar effectiveness for simpler tasks.

Figure 2 illustrates the results related to the time (T) required
(in minutes) to complete each task. The average time is similar for
RR and WR tasks. We observed that in the RR tasks, participants
spent their time analyzing the RRs given and their respective im-
pacts on the model. Whereas in WRs tasks, participants used the
time to think about which changes would possibly fix the given
inconsistency and how to formulate them. In cases where simple
changes, such as renaming, were sufficient to fix the inconsistency,
participants spent less time on WR tasks. This is evidenced by the
completion time results of tasks TCac, TSeq, and TSta.

In the tasks where more complex changes were required, such
as TCex and TCno, time greatly varied when RRs were not given.
This is shown by analyzing the interquartile range regarding the
completion time for these two WR tasks, ranging from around 4 to
8 minutes for task TCex and from 2 to 7 minutes for task TCno (see
Figure 2). This range is much larger in comparison with the same
range for task TCex RR (from 3 to 5 minutes) and TCno RR (from
2 to 4 minutes). The difference in these ranges indicates that the
time required to fix inconsistencies varies more when repairing more
complex inconsistencies without RRs. Due to the different completion
times on average, which is shown in column T in Table 4, five tasks
(TCex, TMic, TCdr, TCno, and TSup) were performed with more
efficiency when RRs were given. In the other three tasks (TCac,



Do Developers Benefit from Recommendations when Repairing Inconsistent Design Models? a Controlled Experiment

Table 4: Results of EFT and EFY per task and overall

Task Type I IF (avg.) EFT Avg. T (min) EFY

TCex RR 1 1.00 1.00 3.92 15.31
WR 1 0.29 0.29 5.58 3.14

TCac RR 1 1.00 1.00 3.33 18.02
WR 1 0.92 0.92 2.92 18.84

TMic RR 1 1.00 1.00 2.83 21.20
WR 1 0.96 0.96 3.00 19.17

TCdr RR 1 1.00 1.00 3.17 18.93
WR 1 0.92 0.92 3.58 15.36

TSeq RR 1 1.00 1.00 4.50 13.33
WR 1 0.92 0.92 4.08 13.48

TSta RR 1 1.00 1.00 3.92 15.31
WR 1 1.00 1.00 2.58 23.26

TCno RR 1 1.00 1.00 3.42 17.54
WR 1 0.38 0.38 3.92 5.74

TSup RR 2 2.00 1.00 3.42 17.54
WR 2 0.88 0.44 3.92 6.70

Metric Type Mean Median Std. % dif. p-value

EFT RR 1.00 1.00 0.00 37.63 0.04WR 0.73 0.92 0.30

EFY RR 17.15 17.54 2.45 29.81 0.17WR 13.21 14.42 7.29

TSeq, and TSta) participants obtained higher efficiency results when
no RRs were given. Thus, RRs benefit participants in complex tasks
by improving efficiency. For simpler tasks, however, the provision of
RRs reduces the efficiency of participants.

Table 4 shows the results of the hypotheses testing, comparing
the mean, median, and standard deviation of the effectiveness (EFT)
and efficiency (EFY) metrics. Column % diff shows the percent-
age difference between the two means, i.e, a positive value means
that the use of RRs is better in terms of effectiveness or efficiency,
whereas a negative value means that RR is worse (column p-value).
Notice that the result for effectiveness is statically significant (p-
value < 0.05) while for efficiency it is not statically significant.
Answering RQ1: The use of RR has an impact as it improves EFT
by 37.63% on average, rejecting 𝐻0𝐸𝐹𝑇 (p-value = 0.04). The use
of RRs also improves EFY by 29.81% on average (p-value = 0.17).
Providing RRs, however, decreases the EFY of developers in simpler
tasks compared to manual repairs.

RQ2. How do developers perceive the use of repair recommendations
when repairing inconsistent design models?

Considering the results of tasks difficulty (TD) for four tasks
(TCac, TSeq, TSta, and TCno), the majority of participants had
similar answers for WR and RR tasks with most being either easy or
neutral difficulty. For the other tasks, answersweremore distributed.
For instance, for task TCex RR, 58% of the participants perceived
the task as having neutral difficulty, while for TCex WR the task
was difficult for 42% and neutral for 42% of the participants. For
TMic RR, 83% of the participants considered the task to be easy.
Considering TMic WR, however, the answers were varied, with
only 25% of the participants considering the task to be difficult.
Considering the question about difficulty asked after all tasks (OD),
the majority of participants (50%) considered the RR tasks to be
easy. The answers for WR tasks, however, were the same for neutral
and difficult, with 42% of the participants choosing either option.
Hence, we observe that the participants’ perceived difficulty per task

2 4 6 8 10 12
Completion time (minutes)

TCex

TCac

TMic

TCdr

TSeq

TSta

TCno

TSup

Ta
sk

Type
RR
WR

Figure 2: Result of time (in minutes) spent on tasks

is not impacted by the provision of RRs, instead, the participants’
perceived difficulty is related to the complexity of the inconsistency
and the possible RRs required.

The confidence level (CL) of participants about fixing the in-
consistencies cannot be related to the provision or the lack of RRs
since, for most tasks, the results were similar.4 An exception is
TSeq, where the majority of participants (42%) were fairly confident
without RRs, representing the number four in the 1-5 scale. More-
over, for RR tasks, 50% of the participants were somewhat confident,
representing the number three on the 1-5 scale.

The results for the confidence level can be related to the diffi-
culty level results, since tasks considered to be easier were those
where participants felt more confident (TCac, TMic, TCdr). Fur-
thermore, tasks considered to be more difficult were those where
the CL was lower (TCex, TCno, and TSup). Hence, the provision of
RRs does not impact the confidence level of participants when fixing
inconsistent models. These results can be complemented by analyz-
ing two themes extracted from the open-ended questions. In these
questions, twelve participants reported that, for some tasks, it was
hard to repair the inconsistency due to their lack of knowledge about
the model’s domain. This is also related to how inconsistencies are
presented and described to the developers, which was reported by two
participants as impacting their decision. Providing this information
may be useful when deciding on RRs, especially considering RRs
that should not be applied since they may contradict the original
design of the model.

Concerning the participants’ acceptance of RRs (PA), the ma-
jority of participants (88%) answered that using RRs when fixing
inconsistentmodels is eithermuch better or somewhat better. The op-
tion about the same was chosen by 4%, and somewhat worse selected
by 8% of the participants. The option much worse was not selected
by any participant. In addition to these results, if we consider the
themes extracted from open-ended questions, ten participants men-
tioned that the lack of RR made some tasks harder. These results
indicated that participants feel that the use of RRs is better than not
using them when repairing models.

4Results of all questions are available at our online appendix [15]



Marchezan et al.

Table 5: Results of RRs ranking

Ranked 1st* Overall Ranking
Task RR # % Avg. Std. Mode Best Med. Worst

TCex
RR1 9 75 1.25 0.45 1 1 1 2
RR2 0 0 3.25 0.62 3 2 3 4
RR3 4 33.33 2.08 1.08 2 1 2 4

TCac
RR1 3 25 2.25 1.06 2 1 2 4
RR2 9 75 1.58 1.16 1 1 1 4
RR3 1 8.33 2.92 1 3 1 3 4

TMic

RR1 1 8.33 4.67 1.56 6 1 5 6
RR2 0 0 3.83 1.59 2 2 3.5 6
RR3 9 75 1.42 0.79 1 1 1 3
RR4 1 8.33 2.58 1.31 2 1 2 6
RR5 0 0 4.92 1.51 6 2 5.5 6

TCdr

RR1 2 16.67 3.83 1.64 5 1 5 5
RR2 10 83.33 1.25 0.62 1 1 1 3
RR3 0 0 4.25 1.22 5 2 5 5
RR4 8 66.67 1.50 0.90 1 1 1 4

TSeq

RR1 4 33.33 2.58 1.51 3 1 3 6
RR2 3 25 3 2.09 2 1 2 6
RR3 3 25 2.67 1.23 4 1 3 4
RR4 2 16.67 3.42 1.78 3 1 3 6
RR5 2 16.67 4.42 1.98 6 1 5 6

TSta

RR1 2 16.67 3.08 1.88 2 1 2.5 6
RR2 6 50 1.92 1.44 1 1 1.5 6
RR3 3 25 3.58 2.11 6 1 3 6
RR4 3 25 3.67 2.06 6 1 4 6
RR5 0 0 5.42 1 6 3 6 6

TCno
RR1 2 16.67 2.67 1.07 3 1 3 4
RR2 3 25 2.25 1.06 2 1 2 4
RR3 7 58.33 2.08 1.44 1 1 1 4

TSup

RR1 5 41.67 2.75 1.86 1 1 2 5
RR2 3 25 2.33 1.15 2 1 2 5
RR3 5 41.67 2.42 1.56 1 1 2 5
RR4 3 25 3.50 1.73 5 1 4 5

*-Percentage is based on the number of participants that ranked RRs 1st. Since more than one RR
could be ranked 1st, percentages may sum up to more than 100%

Answering RQ2: The provision or the lack of RRs has no direct
impact on participants’ perceived difficulty and confidence. Also,
participants feel that using RRs is better than not using them.

RQ3. Do developers have preferred recommendations when repairing
inconsistent design models?

Table 5 shows the results for the RR ranking (RRR) for each RR
task. Column Ranked 1st # shows the number of times that an RR
was selected as the first option. For each RR task, 12 participants
had to select RRs, since the other 12 participants performed the
same task without RRs. For task TCex, RR1 was the first option for
9 participants (75%) while RR2 was never the first option, and RR3
was the first option for 4 participants (33.33%). Because participants
could repeat the ranking for two or more RRs, the sum of the
percentages can be greater than 100%. None of the tasks had only
one RR always selected as the first option. In four tasks (TCex, TCac,
TMic, and TCno), only one RR was the first option for more than
50% of the participants. In three tasks (TSeq, TSta, and TSup), no RR
was selected by more than 50% of the participants. For task TCdr,
two RRs were selected by more than 50% of the participants. There
were some cases, such as RR1 and RR3 for TSup, where two RRs
were selected as the first option by the same amount of participants.
The results indicate that there is not one ideal solution for repairing
an inconsistency, but rather participants prefer different RRs.

Table 5 also shows results for the overall ranking of RRs per task.
The average ranking (column Avg.) shows that, for most tasks, at

Table 6: Repairs Created (RC) in WR tasks

Task RC # % Rel. RR Task RC # % Rel. RR

TCex RC1 3 25 RR1 TCno RC1 1 8.33 -

TCac RC1 1 8.33 RR3

TCdr

RC1 6 50 RR2
RC2 10 83.33 RR2 RC2 8 66.67 RR4

RC3 3 25 RR1
RC4 2 16.67 RR3

TMic
RC1 11 91.67 RR3

TSeq
RC1 3 25 RR1

RC2 1 8.33 - RC2 6 50 RR2
RC3 1 8.33 RR2 RC3 3 25 RR4

TSta
RC1 2 16.67 -

TSup
RC1 7 58.33 RR3

RC2 8 66.67 RR2 RC2 8 66.67 RR1
RC3 5 41.67 RR4 RC3 1 8.33 RR2

least one RR stayed close to the bottom rank. This means that such
an RR is always considered not applicable for the given inconsis-
tency. Examples include RR3 for task TCex (avg. ranking of 3.25)
and RR5 for TSta (avg. ranking of 5.42). For both RRs, the ranking
given was greater than the number of options, i.e., for task TCex
only three RRs were given and RR3 ranked 3.25 on average. This
happens because when an RR was not selected, i.e., not ranked,
we considered it to be the worst possible rank. For task TCex, the
worst possible ranking was 4th, since three RRs were given. Thus,
the 4th ranking for task TCex means that this RR was not selected.
Tasks TSta, TCno, and TSup had RRs that were, at least once, not
selected. This is displayed by the columnWorst in Table 5, which
describes the worst ranking given for each RR. These results indi-
cate that, depending on the context, any RR may be considered not
applicable. The context in this case is the inconsistency, the bro-
ken model, and the personal preferences of the developer. Further
support for this finding is given by analyzing three themes from
the open-ended questions. Firstly, nine participants mentioned that
some RRs seemed not suited to fix the inconsistency. Most of these
RRs mentioned were the ones that suggested deleting elements.
Secondly, eleven participants (45%) commented that the lack of side
effects analysis related to the application of RRs made the decision
more difficult. Hence, if such analysis is provided, the decision of
using or not an RR may be impacted. Lastly, one participant men-
tioned that a better rationale for using the RRs should be provided.
These three themes indicate that only providing a list of RRs may
not be sufficient for developers. Approaches should instead provide
enough rationale related to why each RR should be considered and
what are their side effects.

Considering the best ranking in Table 5 (column Best), for most
tasks all RRs were considered as the first or second option, at least
for one participant. The only exception, task TSta, had one RR
(RR5) which had 3rd as the best ranking. The most frequent ranking
(column Mode) for this same RR was 6, which means that this RR
was most frequently not selected at all. If we consider the results
for the other seven tasks, excluding TSta, we observe that any RR
may be considered as the most suited alternative.

Table 6 describes the repairs created (RC) by the participants
in the WR tasks. We analyzed all WR tasks and counted the num-
ber of times (column #) that the same RC was performed. While
performing this analysis, we only considered RC that fixed the
inconsistencies in the task. Tasks TCex and TCno had only one RC
each, these are the same tasks with the lowest effectiveness and



Do Developers Benefit from Recommendations when Repairing Inconsistent Design Models? a Controlled Experiment

efficiency results. The repair for task TCex was used only for three
participants, representing 25% of the participants that performed
TCex WR. The RC for task TCno was only performed by one par-
ticipant. We also noticed that most repairs created for task TCno
(seven cases) only partially fixed the inconsistency in the task. For
both TCex and TCno, the number of participants able to formulate
a correct repair stayed below four. This indicates that the lack of
RRs can lead to few repairs being considered as alternatives.

The columns # and % from Table 6, show that in four tasks
(TCac, TMic, TCdr, and TSta) only one RC was used for more than
50% of the participants. In one task (TSup) two RCs were used
for more than 50%. One important aspect observed is that for all
tasks, except TCdr, participants did not consider all possible repairs
(the ones given in RR tasks). Additionally, the columns # and %
from Tables 5 and 6 can be compared to observe that when RRs are
provided, participants considered using different repair alternatives.
This is further supported by a theme extracted from the comments
of two participants, mentioning that some RRs alternatives were not
considered when RRs were not given.

The column Related RR in Table 6 shows RRs that were part
of the RR tasks, which proposed the same changes represented
by the RCs. Only in three cases, the repairs created by partici-
pants did not have a corresponding RR. For all three cases, this
happened because the RCs suggested deleting the model element
which contained the inconsistency. Two of these three RCs were
applied only once (RC2 for TMic and RC1 for TCno) and the other
was applied by two different participants (RC1 for TSta). Although
these RRs were generated by the approach, based on the feed-
back from the pilot experiments (see Section 3.3), we decided to
remove such RRs from the experiment. The reason was that par-
ticipants from the pilot described deleting the model elements
that cause the inconsistency to be “senseless” RRs. Thus, the re-
pairs created by participants were also proposed by the approach.
Answering RQ3: There is not one ideal RR for repairing a given
inconsistency. Depending on the context, the developer’s preferences
change as any given RR may be considered the ideal one. There are,
however, contexts where any RR may be considered not applica-
ble. Furthermore, when RRs are provided, developers consider more
alternatives to fix the inconsistency.

4.2 Lessons Learned and Limitations
In this section, we discuss the lessons learned with the results and
the limitations of this study.

RRs in simpler tasks:Considering RQ1, the results of efficiency
were not statistically significant since for three tasks (TCac, TSeq,
TSta) the efficiency was worse when RRs were given. These results
led us to understand that providing RRs may not be always the best
solution for all tasks. Tasks TCac, TSeq, and TSta had inconsisten-
cies that could be fixed with simple changes such as renaming a
model element. In these cases, participants can create their repairs
fairly fast. When RRs are given, however, participants need to ana-
lyze all alternatives before selecting, increasing the required time.
This analysis is important and not addressed in other studies, as it
is always assumed that using repairs is better than not using them.
The results of our experiment show that this is not always the case,

as in simpler tasks the use of RRs did not affect the effectiveness and
providing RRs reduced the efficiency in simpler tasks. This is an im-
portant lesson learned, as we observed that it may not be required
to provide repairs for all inconsistencies when repairing models, as
simpler inconsistencies can be easily repaired manually. Deciding
which inconsistencies are “simpler”, however, is not trivial and is
related to the developers’ knowledge and experience. Since our
experiment is limited to the types of models and inconsistencies
provided, further investigation has to be carried out on this topic.
The results of this investigation may aid practitioners to develop
approaches that are flexible to the developers/model context.

Relation of effectiveness/efficiency with difficulty and con-
fidence: The results of the difficulty and confidence of participants
(RQ2) can be related to the effectiveness and efficiency scores from
Table 4 (RQ1). This relation is important since low effectiveness
and efficiency may be associated with the difficulty of the task. The
three tasks considered more difficult by participants (TCex, TCno,
and TSup) are the same below 0.5 effectiveness and below 10 effi-
ciency. Furthermore, tasks TCac, TMic, and TCdr were considered
either easy or very easy and stayed between 0.9 and 1 effectiveness
and between 10 and 20 efficiency. Similarly, the confidence level
may also be associated with the effectiveness and efficiency results.
In two RR tasks (TCex, TCno), although participants were always
able to fix the inconsistency (effectiveness = 1), they still did not
feel confident about it. These results indicate that, in some cases,
RRs still seem wrong in the developers’ perception as they are not
confident that the inconsistency is fixed by these RRs. According to
the answers to open-ended questions, some participants reported
that they needed additional information from the RR when deciding
the rank. This information could include the impact of the RR in the
model, i.e., what the model would look like after the RR has been
performed. Additional information, according to the participants,
would be to include previous changes from the model history. This
information would help the developers understand how the model
was designed and what was the intent of the designer. Our results
are limited in this regard, as we did not include this information
and focused on the current state of the models only. Analyzing
these implications remains as future work.

RRs preferences: The results related to developers’ confidence
are also important to better understand the impact of RRs from
the developers’ perspective, including how much the developer
trusts the given suggestion. This analysis relates to the use of auto-
matic repair approaches which, usually, do not rely on developers’
feedback [13]. These approaches produce correct repairs, however,
those repairs may not be correct or the ideal alternative in the eyes
of the developer. This argument is supported by the results of RQ3,
which show that developers have different preferences when se-
lecting repairs. Similarly, designing an approach that ranks the RRs
alternatives brings challenges, as even the rank is different depend-
ing on developers’ preferences. Moreover, some RRs are preferable
depending on different types of models and inconsistencies. Hence,
the ranking of RRs should consider the context in which it should
be applied. We argue that when ranking RRs, approaches should
take into account the preferences of developers and should be context-
sensitive. Our results, however, cannot support the claim regarding
the context as all models and inconsistencies used derive from the
same domain (UML) and further investigation is needed.



Marchezan et al.

RRs generated: The analysis of the results is limited by the
RRs generated because a different RR approach for generating or
presenting the RRs may lead to developers ranking or selecting
different RRs. This could also impact othermetrics such as efficiency,
TD, and CL. Hence, if a different approach was used for generating
the RRs, the results may differ. Due to this limitation, we decided
to give the tasks to developers using pen and paper, instead of
relying on a tool. By using this strategy, we allow the protocol of
the experiment to be easily adapted by replacing the approach used
for generating the RRs as the protocol is tool-independent. This
strategy facilitates the replicability of the experiment to confirm
or decline the findings using different approaches. We understand,
however, that the findings and answers for the RQs can only be
supported considering the approach applied in this experiment.

5 CONCLUSION
The benefits of using RRs when repairing inconsistent design mod-
els have never been investigated in an experiment with human
participants. In this work, we reported a controlled experiment
carried out with 24 developers. The results evidence that develop-
ers benefit from RRs by improving the effectiveness and efficiency
when repairing inconsistent design models. This improvement is
more evident when the tasks are complex. We also observed, how-
ever, that RRs can reduce efficiency in simpler tasks. Moreover, the
perceived difficulty and confidence of developers are not impacted
by the provision of RR. Furthermore, we concluded that not all
developers choose the same RR, but rather, have varied preferences.
Hence, the provision of RRs leads to developers considering more
alternatives for fixing an inconsistency.

We also reported lessons learned, limitations, and future work
planned to address them. For instance, improving the RRs feedback
given to developers by exploring the side effects of repairs. We
argue that this aids developers during the decision-making process.
However, these potential implications should be further explored in
studies focusing on side effects and RRs rationale. The investigation
of the benefits and challenges of side effects and change propagation
of RRs from the developers’ perspective can aid researchers and
practitioners to formalize the repair process for design models.

6 DATA AVAILABILITY
Artifacts of the experiment are available in an online appendix [15].

ACKNOWLEDGMENTS
This research has been funded by the Austrian Science Fund (FWF,
P31989-N31), by the FFG-COMET-K1 Center “Pro2Future”, (881844),
and by the LIT Secure and Correct System Lab funded by the State
of Upper Austria.

REFERENCES
[1] Angela Barriga, Rogardt Heldal, Adrian Rutle, and Ludovico Iovino. 2022. PAR-

MOREL: a framework for customizable model repair. SoSym (2022), 1–24.
[2] Raja Sehrab Bashir, Sai Peck Lee, Saif Ur Rehman Khan, Victor Chang, and Shahid

Farid. 2016. UML models consistency management: Guidelines for software
quality manager. IJIM 36, 6, Part A (2016), 883–899.

[3] Federico Ciccozzi, Ivano Malavolta, and Bran Selic. 2019. Execution of UML
models: a systematic review of research and practice. SoSym 18, 3 (2019), 2313–
2360.

[4] Daniela S. Cruzes and Tore Dyba. 2011. Recommended Steps for Thematic
Synthesis in Software Engineering. In ESEM. 275–284.

[5] África Domingo, Jorge Echeverría, Óscar Pastor, and Carlos Cetina. 2021. Com-
paring UML-based and DSL-based Modeling from Subjective and Objective
Perspectives. In CAiSE. Springer, 483–498.

[6] Wojciech J. Dzidek, Erik Arisholm, and Lionel C. Briand. 2008. A Realistic
Empirical Evaluation of the Costs and Benefits of UML in Software Maintenance.
IEEE TSE 34, 3 (2008), 407–432.

[7] Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch,
Andreas Jedlitschka, and Markku Oivo. 2018. Empirical software engineering
experts on the use of students and professionals in experiments. EMSE 23, 1
(2018), 452–489.

[8] Robert Feldt, Thomas Zimmermann, Gunnar R Bergersen, Davide Falessi, An-
dreas Jedlitschka, Natalia Juristo, Jürgen Münch, Markku Oivo, Per Runeson,
Martin Shepperd, et al. 2018. Four commentaries on the use of students and
professionals in empirical software engineering experiments. EMSE 23, 6 (2018),
3801–3820.

[9] Juan Antonio Gómez-Gutiérrez, Robert Clarisó, and Jordi Cabot. 2022. A Tool
for Debugging Unsatisfiable Integrity Constraints in UML/OCL Class Diagrams.
In BPMDS. Springer, 267–275.

[10] Robbert Jongeling, Federico Ciccozzi, Jan Carlson, and Antonio Cicchetti. 2022.
Consistency Management in Industrial Continuous Model-Based Development
Settings: A Reality Check. SoSym 21, 4 (aug 2022), 1511–1530.

[11] Amy J Ko, Thomas D LaToza, and Margaret M Burnett. 2015. A practical guide to
controlled experiments of software engineering tools with human participants.
EMSE 20, 1 (2015), 110–141.

[12] Roland Kretschmer, Djamel Eddine Khelladi, Roberto Erick Lopez-Herrejon, and
Alexander Egyed. 2020. Consistent change propagation within models. SoSym
(2020), 1–17.

[13] Nuno Macedo, Tiago Jorge, and Alcino Cunha. 2017. A Feature-Based Classifica-
tion of Model Repair Approaches. IEEE TSE 43, 7 (2017), 615–640.

[14] Luciano Marchezan, Wesley K. G. Assuncao, Roland Kretschmer, and Alexander
Egyed. 2022. Change-Oriented Repair Propagation. In ICSSP. ACM, 82–92.

[15] LucianoMarchezan,Wesley K. G. Assunção, Gabriela K. Michelon, and Alexander
Egyed. 2023. Experiment’s Online Appendix. https://sites.google.com/view/
rrexperiment/home.

[16] Luciano Marchezan, Roland Kretschmer, Wesley KG Assunção, Alexander Reder,
and Alexander Egyed. 2022. Generating repairs for inconsistent models. SoSym
(2022), 1–33.

[17] Rahul Mohanani, Iflaah Salman, Burak Turhan, Pilar Rodríguez, and Paul Ralph.
2020. Cognitive Biases in Software Engineering: A Systematic Mapping Study.
IEEE TSE 46, 12 (2020), 1318–1339.

[18] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. 2022.
Trust Enhancement Issues in Program Repair. In ICSE.

[19] Mie Nørgaard and Kasper Hornbæk. 2006. What Do Usability Evaluators Do in
Practice? An Explorative Study of Think-Aloud Testing. In DIS. ACM, 209–218.

[20] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, Lars Grunske, and Timo
Kehrer. 2021. History-Based Model Repair Recommendations. ACM Trans. Softw.
Eng. Methodol. 30, 2, Article 15 (Jan. 2021), 46 pages.

[21] Kai Petersen, Kari Rönkkö, and Claes Wohlin. 2008. The Impact of Time Con-
trolled Reading on Software Inspection Effectiveness and Efficiency: A Controlled
Experiment. In ESEM. ACM, 139–148.

[22] Alexander Reder and Alexander Egyed. 2012. Computing repair trees for resolv-
ing inconsistencies in design models.. In ASE, Michael Goedicke, Tim Menzies,
and Motoshi Saeki (Eds.). ACM, 220–229.

[23] Alexander Reder and Alexander Egyed. 2013. Determining the Cause of a Design
Model Inconsistency. Miner Revision. TSE (2013).

[24] Robert Rosenthal and Ralph L Rosnow. 2008. Essentials of behavioral research:
Methods and data analysis. McGraw-Hill.

[25] Weslley Torres, Mark GJ Van den Brand, and Alexander Serebrenik. 2020. A
systematic literature review of cross-domain model consistency checking by
model management tools. SoSym (2020), 1–20.

[26] Sira Vegas, Cecilia Apa, and Natalia Juristo. 2016. Crossover Designs in Software
Engineering Experiments: Benefits and Perils. IEEE TSE 42, 2 (2016), 120–135.

[27] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

https://sites.google.com/view/rrexperiment/home
https://sites.google.com/view/rrexperiment/home

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Repair Recommendations
	2.2 Related Work

	3 Experiment Design
	3.1 Experiment Definition and Planning
	3.2 Operation of the Experiment
	3.3 Threats to Validity

	4 Results and Discussion
	4.1 Answering the RQs
	4.2 Lessons Learned and Limitations

	5 Conclusion
	6 Data Availability
	Acknowledgments
	References

