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Abstract:

Cystic Fibrosis (CF), characterized by its profound impact on respiratory and digestive functions,

arises due to genetic mutations in the CFTR gene on chromosome-7. Despite progress in medical

science, treatments like ivacaftor and lumicaftor offer incomplete restoration of chloride function

and are burdened by significant complications and side effects, highlighting an unmet medical

need. The emergence of gene editing technologies, particularly those utilizing

chemically-modified-mRNA, has shown promise in addressing the underlying genetic mutations

associated with CF. Concurrently, Lipid Nanoparticles (LNPs) have revolutionized the

pharmaceutical industry, with mRNA-based therapies being at the forefront of innovation.

However, the formulation of LNPs presents challenges concerning stability and biocompatibility,

underscoring the necessity for innovative solutions. In response to these challenges, this research

introduces LNP-VACCO, a novel approach that seamlessly integrates cutting-edge technologies

such as Variational Autoencoders (VAEs) and Combinatorial-Chemistry. By leveraging

principles of lipophilicity encoded in Simplified Molecular-Input Line-Entry System (SMILES)

strings, LNP-VACCO autonomously navigates the vast landscape of LNP compositions, offering

an efficient and systematic exploration of potential formulations. The methodology involves a

sophisticated three-step unsupervised deep learning process, wherein the model iteratively

refines lipid constituent compositions to optimize LNP performance. Validation experiments

conducted in-vitro, involving the synthesis of lipids and subsequent transfection into HeLa

mammalian cells to simulate CF conditions, demonstrated promising results in terms of

encapsulation efficiency and cell viability. This research represents a significant leap forward in

enhancing the efficacy of nanoparticle-based drug delivery systems, offering hope for effective

treatments for CF and other genetic disorders.
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1: Background Information

1.1 Cystic Fibrosis Background

Cystic Fibrosis (CF) is a complex genetic disorder that profoundly affects both the

respiratory and digestive systems. At the core of this condition lies the abnormal composition of

mucus within the airways of the lungs (1). Unlike the thin, watery mucus found in healthy

individuals, the mucus in CF patients is notably thicker and stickier. This aberrant mucus

consistency poses significant challenges, obstructing the air passages and impeding the normal

flow of air into and out of the lungs. Moreover, the viscous nature of the mucus creates an ideal

environment for the retention of pathogens, making CF individuals more susceptible to recurrent

respiratory infections.

The underlying cause of CF can be traced back to a mutation in the Cystic Fibrosis

Transmembrane Conductance Regulator (CFTR) gene (2). Normally, this gene encodes a protein

that regulates the movement of chloride ions across cell membranes, crucial for maintaining

proper hydration levels in various tissues, including the epithelial lining of the lungs and

digestive tract. However, in individuals with CF, this gene mutation disrupts the normal function

of the CFTR protein, leading to the production of thick, sticky mucus characteristic of the

disease. Historically, CF has been associated with a significantly shortened lifespan, often

resulting in premature death, particularly in childhood.

1.2 LNP Introduction
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Lipid Nanoparticles (LNPs) are an effective drug encapsulation delivery system for

nucleic acids (1). They are currently used in drug delivery, specifically for gene editing, cancer

immunotherapy, vaccines, and other therapeutic materials. This relatively new technology was

recently introduced in 1990 as an alternative to synthetic drug carriers such as polymeric

nanoparticles and polymers. However, the first commercial usage was in 2018, for the siRNA

therapy Onpattro, into the cytoplasm of hepatocytes (2). The siRNA-LNP delivery system was

then optimized for encapsulation of mRNA. The most notable usage of lipid nanoparticles

transfected with mRNA is in the mRNA-COVID-19 vaccine by the pharmaceutical companies

Pfizer-BioNTech and Moderna.

1.3 LNP Components

The basic mRNA-LNP composition consists of four main lipid components: an ionizable

cationic lipid, cholesterol, phospholipid, and a PEG-lipid (Figure 1). It comprises a polar head

group, a hydrophobic tail region, and a linker between the two (3). The cationic ionizable lipid is

the most important portion, crucial for encapsulating nucleic acids in LNPs and releasing them

into the cytosol for disrupting endosomal membranes, playing an essential role in endosomal

uptake (4). They are molecules with a positively charged tertiary amine that are uncharged in

regular, neutral conditions but become positively charged in acidic conditions (when the pKa is

lower than the lipid). The most common designs of cationic lipids are

Dioleoylphosphatidylethanolamine (DOPE), 1,2-di-O-octadecenyl-3-trimethylammonium

propane (DOTMA), and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) (Figure 2). They

have similar lipid bilayer formations and therefore similar biocompatibility, about 25% of the

LNP composition. The next component used in mRNA-LNPs is the PEG-lipid. Though they
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make up a very small percentage (1.5%) of the lipid components, they have a significant impact

on the properties - including size and uniformity of the LNPs, prevention of LNP aggregation,

and stability during preparation and storage. The PEG-Lipids are also used as influential factors

in the efficiency of encapsulating nucleic acids, the duration of circulation in the body,

distribution in vivo, transfection efficiency, and the immune response. These effects are

influenced by factors like the ratio of PEG-lipid to other lipids and the structure and length of the

PEG chain and the lipid tail. Generally, longer PEG chains tend to improve circulation time and

reduce immune response (4). Cholesterol is used in LNPs to stabilize lipid bilayers by filling

gaps between phospholipids. Its inclusion enhances LNP stability by promoting membrane

function. At higher percentages, cholesterol enhances the activity of cationic lipids and promotes

gene transfer, possibly by destabilizing bilayers (5). Phospholipids play essential roles in

improving encapsulation and cellular delivery of LNPs. Some phospholipids originate from

small-molecule liposomal delivery systems and contribute to longer circulation times and overall

stability due to their high melting temperature (Tm). Other unsaturated lipids enhance

intracellular delivery of nucleic acids by promoting the formation of hexagonal structures. (6).

The main phospholipid, most commonly used, is known as Distearoylphosphatidylcholine

(DSPC).

1.4 Oligonucleotide (ON) Therapy and LNP Mechanism

LNPs are transfected with nucleic acids known as oligonucleotides, or ONs.

Therapeutic ONs, such as antisense ONs and antimiRs, hold promise for treating various
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diseases like metabolic disorders, infectious diseases, cancer, and regenerative medicine.

Antisense ONs target mRNAs to down-regulate gene expression, while antimiRs bind to

miRNAs to indirectly up-regulate gene expression. Both are single-stranded molecules. Small

interfering RNAs (siRNAs) and miRNA mimics are RNA duplexes that can efficiently silence

gene expression once inside the cytoplasm (6).

LNPs utilize receptor-mediated endocytosis to enter cells. When they bind to a cell, they

become enclosed in a lipid bubble called an endosome. Inside the endosome, the acidic

environment causes the ionizable lipids' heads to become positively charged. This positive

charge leads to a structural change in the nanoparticle, helping it escape from the endosome and

release its nucleic acid cargo into the cell's cytoplasm. Once released, the acid can perform its

function (7). For example, if the drug happens to be mRNA-based, it would make its way to the

ribosome for transcription. If it was DNA-based, the cargo would have to travel to the nucleus to

be decoded. The LNP’s endosome is then transfused with a lysosome to become an

endolysosome and further disintegrates into molecules (Figure 2).

1.5 Constraints in CF Therapeutics

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) modulators, while

revolutionary in the treatment landscape of cystic fibrosis (CF), come with complexities and

limitations. These medications, such as lumifactor and ivacaftor, designed to target the

underlying genetic defect in CF by restoring chloride transport across cell membranes, have

shown remarkable efficacy in some respects. However, it's crucial to recognize that their effects

are not universal and may only partially address the dysfunction associated with CF.
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One of the key limitations of CFTR modulators is their restriction. While they can significantly

improve certain aspects of CF, such as lung function and respiratory symptoms, they may not

fully address other manifestations of the disease, such as pancreatic insufficiency or

gastrointestinal complications. This selective efficacy means that even with treatment,

individuals with CF may still experience ongoing challenges related to their condition.

Furthermore, approximately 30% of CF cases are associated with mutations that currently have

no targeted treatment options. For these individuals, CFTR modulators offer no significant

improvement in disease management, leaving them reliant on conventional therapies and

supportive care measures. Furthermore, many people discontinue treatment. Despite the potential

benefits, many individuals opt to discontinue CFTR modulator therapy due to factors such as

intolerable side effects, limited efficacy, or challenges with adherence. This highlights the

importance of addressing not only the effectiveness but also the tolerability and practicality of

CF treatments to ensure long-term patient engagement and benefit.

Moreover, the use of CFTR modulators is often restricted to specific patient populations,

typically those aged six years and older. This limitation excludes younger children and infants

who may also benefit from early intervention. Additionally, the prevalence of outside infections

remains a significant concern in CF management, as CFTR modulators do not confer immunity

against respiratory pathogens, necessitating ongoing vigilance and infection control measures.

1.6 Constraints in LNP Composition

On the other hand, While composing LNPs, the main hindrance in coming up with a

formulation is the time and money that it costs. The time and financial investment required for
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LNP optimization can vary depending on factors such as the complexity of the formulation, the

desired characteristics of the nanoparticles, and the specific methods used for optimization.

Optimization for LNPs claims to be such a difficult process in the lens of bioavailability

of the overall molecule. One problem involves poor drug loading efficiency, as most initial LNP

formulations tend to have unsatisfactory encapsulation efficiency rates. They also tend to lose the

encapsulated drug through drug leakage and instability. This is due to the destabilization of the

lipid bilayer and the leakage from the core (22). This then leads to quick disintegration and

reduced clearance. Instability and size inconsistencies limit cellular uptake, affecting measures

such as tissue penetration. The largest, most important challenge that occurs is the

immunogenicity and toxicity issues. LNPs may lead to adverse reactions because of increased

potency.

Generally, the process involves multiple steps such as design, synthesis, characterization,

and testing, each of which requires time and resources. LNP optimization can take several

months to years, particularly if it involves extensive experimentation and iterative refinement to

achieve the desired properties. This time frame includes the design and synthesis of different

lipid combinations, formulation optimization, and rigorous testing to assess stability, drug

loading efficiency, and efficacy (8). Financially, the cost of LNP optimization can also be

significant, as it involves expenses related to research personnel, materials and reagents,

equipment, laboratory space, and analytical services. Additionally, there may be costs associated

with intellectual property, regulatory compliance, and scale-up for potential clinical translation.

Overall, while the time and financial investment for LNP optimization can be substantial, it is

essential for developing effective and safe nanoparticle-based drug delivery systems with

optimized properties for specific therapeutic applications (9). The average labor costs for 1 year
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and 100 million doses of an mRNA vaccine. Due to the novelty and ongoing advancements in

this technology, comprehensive commercial data regarding the costs and time involved in LNP

optimization may be limited. The fastest recorded time for LNP optimization was for formulation

of the COVID-19 vaccine, taking about a year (10).

1.7 Lipophilicity

Lipophilicity is an estimate of how the molecule performs in solvents, mainly water. In

other words, lipophilicity is the ability of the molecule to mix with water. In most papers and

estimative models, this will be expressed as a partition coefficient such as ethanol-water

coefficients such as octanol-water components, known as log_p. This number is especially

important because it influences the way the molecule can penetrate cell membranes and stabilize

within itself (23). This number is particularly important for LNP stability, giving a good estimate

of whether the LNP is a mixable compound or not. The number is based on the hydrophobic and

hydrophilic interactions between the molecules, which makes this an experimental derivation.

Computationally, this number can be achieved by taking into account the hydrogen bondings,

number of carbons, number of aromatic rings, number of bonds, charge, etc.

2: AI in Drug Discovery

2.1 How AI has been used in drug discovery

Collaboration between Artificial Intelligence (AI) researchers and pharmaceutical

scientists is vital for creating better treatments for various diseases. They work together to

develop advanced algorithms and models that can predict how well potential drugs might work.
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This speeds up finding new medicines and makes clinical trials more accurate and efficient (11).

AI plays a crucial role in drug discovery by virtually screening and optimizing compounds,

estimating their bio-activities, and predicting protein-drug interactions. AI helps plan efficient

chemical synthesis routes and provides insights into drug reaction mechanisms, minimizing

unwanted interactions with other molecules. By refining and modifying candidate drug

structures, AI improves target specificity, pharmacodynamics, pharmacokinetics, and

toxicological properties. Virtual chemical spaces with structure and ligand information facilitate

profile analysis and faster elimination of non-lead structures, expediting the drug discovery

process. Multi-objective optimization methods fine-tune molecules toward desired characteristics

(12).

2.2 Overview of Combinatorial Chemistry

Combinatorial chemistry is a synthesis strategy that enables the simultaneous production

of large numbers of related compounds, known as libraries. These libraries are valuable in drug

discovery and, to a lesser extent, in materials science. The approach, when combined with

high-throughput screening and computational methods, has become integral to the lead discovery

and optimization process in the pharmaceutical industry (13). Combinatorial chemistry involves

the generation of a large array of structurally diverse compounds, called a chemical library,

through systematic, repetitive, and covalent linkage of various “building blocks”. Once prepared,

the compounds in the chemical library can be screened, concurrently, for individual interactions

with biological targets of interest. Positive compounds can then be identified, either directly (in

position-addressable libraries) or via decoding (using genetic or chemical means) (14). This is
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used in the paper when the four different “building blocks” of LNPs are used in combination to

build the LNP (Figure 3). The structures of the four different lipids that are used are also given. It

is important to note the structural differences between these components, for example, the large

PEG-lipid tails and the aromatic cholesterol (Figure 3).

2.3 Overview of Variational Autoencoders

As discussed in Appendix A, Variational Autoencoders (VAEs) are a type of deep

generative model, part of unsupervised learning. A VAE is an autoencoder—a type of neural

network—that is trained with regularization on its encodings distribution. This ensures that its

latent space (the space where data is represented in a compressed form) has good properties for

generating new data. The term "variational" refers to the close relationship between the

regularization process and variational inference in statistics (15). An autoencoder is a neural

network architecture composed of an encoder and a decoder. The encoder compresses the input

data into a latent space representation, and the decoder reconstructs the original input data from

this compressed representation (Figure 4). The latent space is a low-dimensional representation

of the input data. Regularizing the latent space ensures that it has desirable properties, such as

being continuous and smooth, which enables effective data generation. VAEs generate new data

by sampling from the latent space and decoding these samples using the decoder network. By

learning the distribution of data in the latent space, VAEs can generate new data points that

resemble the training data. Variational inference is a statistical method used to approximate

complex probability distributions. In VAEs, the regularization process is closely related to

variational inference, as it involves approximating the true posterior distribution of the latent

variables given the observed data (16).
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3: Methodology

3.1 Application of VAEs: The Encoder/Decoder

The VAE-Bayesian interference method is implemented in this study because it allows

for a continuous, molecule-based algorithm that can derive features from its own latent space. As

the input is a valid Simplified Molecular-Input Line-Entry System (SMILES) entry of an LNP,

the VAE traverses through its encoder/decoder network recognizing the principal components of

the entry. This model is differentiable, meaning it links molecular representations to desirable

properties and enables efficient gradient-based optimization in chemical space. As the function is

established as differentiable and continuous, it allows for Bayesian inference to select the

informative compounds and for Gaussian optimization. The code is built using Keras and

Tensorflow for the ML and supplied with libraries such as rdKit, PubChem, Numpy, and Pandas.

This encoder/decoder system is made up of deep neural networks, powered by linear algebra.

The encoder is made based on Relational Graph Convolutional Networks (R-CGN) (Appendix

B).

The main inputs for the encoder are the adjacency and feature matrices, given by the

previously defined hyperparameters. While data processing, the data is turned into

rdKit.Chem.Mol objects through defined SMILES-to-Graph and vice versa functions. After the

relational convolutions, the dimensionality of the graph is then further reduced from 2D to 1D so

that the molecule can then be easily represented for random selection later on. However, the 2D

dimensionality is retained such that it represents the latent space. It then enters into a loop where

it applies densely connected layers with ReLU activation and dropout regularization to the

pooled features. Finally, the output layers, z_mean and log_var, the quantitative representations



Yadalam 15

for the latent space, are compressed for output. The two refer to the Gaussian distribution and the

mean of the latent space. These two metrics will be used in the loss function further on.

The decoder reconstructs the primarily inputted SMILES from the latent space. The

decoder, in essence, works oppositely from the encoder. After defining the latent (space) input, it

applies densely connected layers inside the latent space to learn a nonlinear mapping from the

latent space representation to the adjacency matrix and feature matrix. Therefore, the generated

outputs capture meaningful graph structures and node features while mitigating the risk of

overfitting. The decoder’s dense layers are then mapped to a continuous adjacency tensor and

reshaped to match the specified adjacency shape to generate a representation of the adjacency

matrix of the graph. After some symmetrization and applying softmax functions, the final

adjacency and feature matrices are outputted.

3.2 Chemical Composition

The first step of the process is manned by combinatorial chemistry to form different

syntheses of LNPs. After manually retrieving many different cationic ionizable lipids,

cholesterols, phospholipids, and PEG-Lipids, a class was built using RDKit to combine the

molecules in a reasonable setting. The client class iterates through the database, identifying the

SMILES input of each compound. The canonical smiles were manually inputted at the beginning

for easy access. Following this, it selects a “scaffold” compound, which will be the cationic

ionizable lipid. It selects the other three molecules and processes the input molecules to perform

R-group decomposition concerning the given scaffold. Then, it uses rdRGroupDecomposition

from RDKit to decompose the molecules into core and R-groups. The code then generates

combinatorial libraries of molecules by enumerating possible combinations of R-groups on the
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scaffold. The combinations are established by creating a “bond” between the molecules using

RDKit’s Chem.RWMol. After the composition, they are appended to one large array of LNPs.

3.3 Chemical Optimization

In the latent chemical space, the features, or properties, of the compounds were reduced

to lower dimensionality and then optimized using Gaussian properties. The specialty of VAEs is

the fact that they include random latent space sampling (as mentioned in section 3.1) which is

then used to minimize the loss function. The definition of a VAE is like any other ML model,

built on its loss function. A VAE is built by maximizing its loss function, shown in Figure 5.

(17). Here, the objective function consists of two terms, a reconstruction loss, and a KL

divergence loss. The reconstruction loss term measures how well the model reconstructs the

input data, while the KL divergence term encourages the learned latent space to resemble a

predefined prior distribution. The hyperparameter β is used to balance the influence of the

reconstruction loss and the KL divergence term. A higher β places more emphasis on matching

the latent space distribution to the prior, while a lower β prioritizes reconstruction accuracy.

When β equals 1, the objective function reduces to that of a standard VAE, where the model aims

to maximize a lower bound on the log-likelihood of the input data distribution. β-VAE refers to

VAEs where β is not equal to 1, allowing for different trade-offs between reconstruction accuracy

and latent space regularization. The encoder network maps input data points to mean (µ) and

standard deviation (σ) vectors in the latent space. These parameters are used to sample latent

space representations for the input data points. The sampling process involves generating a

random variable (ε) from a standard normal distribution and combining it with the mean and
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standard deviation vectors. The decoder network takes latent space representations as input and

generates reconstructed data points. Given a latent variable (z), the decoder produces a

reconstructed data point (x̂) by sampling from the conditional probability distribution pθ(x | z).

All in all, the Kullback-Leibler (KL) divergence in variational autoencoders (VAEs) quantifies

the discrepancy between the encoder's learned approximate posterior distribution and a

predefined prior distribution over latent variables, serving as a regularization term to ensure the

learned latent space aligns with prior assumptions. Minimizing this divergence, alongside

reconstruction loss, facilitates the acquisition of informative latent representations while

balancing fidelity to input data with the model's generative capacity.

3.4 Chemical Verification

Following the development of the model and exploration of the latent space to identify

the most suitable representation using the decoder, the code undergoes a validation process to

confirm the chemical validity of the output. Occasionally, the Variational Autoencoder (VAE)

may generate SMILES representations for molecules that are not chemically feasible. To address

this, the code utilizes a function within a class, leveraging RDKit modules like

Chem.MolFromSmiles, to assess the viability of the molecule. This involves iterating through

the generated bonds to ascertain the practical feasibility of the molecule.

4: In-Vitro Validation

4.1: In-Vitro Procedure
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Brief, bare-bones procedure listed, can refer to the appendix for more clarification on

LNP and assay prep.

1. Wear appropriate PPE: Lab coat, goggles, gloves

2. Prep sterile environment: liberally sterilize all materials with ethanol

3. Collect relevant lipid components from the biological freezer

4. Prep tubes and pipettes

5. Pipette lipid mixes: cationic lipid, PEG-lipid, phospholipid, cholesterol and dilute with

ethanol

6. Mix well using pipettes and save in freezer

7. Prepare DNA for formulation using commercially available dsDNA

8. Freeze overnight

9. Prepare PicoGreen assay by accounting for TE + Titron + standard samples

10. Prepare cell culture with HeLa cells

11. Incubate + transfect

12. Readouts from DLS and plate reader

4.2 Tested Formulations

From this VAE model, there were almost 100 LNPs that were optimized. However, due to

the practical availability of the lab and its components, 8 of these were chosen to test in-vitro.

These 8 formulations were set to encompass and model a variety of common optimized

candidates in the real clinical testing phase. The 8 that were used are a combination of different

lipids available. Due to the similar aromatics of the molecules, the cholesterol was kept constant

throughout all the tests. The 8 LNP formulations are given in Figure 5.
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4.3 Collected Measurements

Three different experiments were performed on these LNPs. One of them was running

through a Dynamic Light Scatter (DLS), a PicoGreen Assay, and Cell Titor Flour (CTF). The

DLS was through a stunner which measured many different variables that correlate to the

identity of the LNP. The notable areas of data from this, however, include the size and the

polydispersity (Figure 6). The PicoGreen assay uses TE and Titron to help compute the

encapsulation efficiency (Figure 7), and the CTF measures the cell viability (Figure 8).

5: Results and Discussion

The outputted LNPs are in the form of SMILES. The efficacy of the LNP can be

quantitatively assessed with the polydispersity index, the encapsulation efficiency, and the cell

viability. The overall encapsulation efficiency saw a significant difference and increased to a

range of ~60-80%. The overall cell viability saw a stable number from ~104-115%. The overall

size and polydispersity hovered at a regular ~500-1000 nm, with a 0.3 nm variance. For the

encapsulation efficiency, The ideal range for the EE is from 60 - 85%. The more it gets, the more

toxic the drug is seen to be. Too much potency can lead to cell death. For cell viability, CV > 100

represents the health and innocuity of the non-toxic drug. This means the cells are still alive and

the LNP supports the cell rather than kills portions of it. The size should vary from 100-1000 nm,

which means the constructed LNPs fit mostly in that range. The nominal PDI value is

appreciated, with less variance and more consistency. All the LNPs were positively charged (as

seen on the DLS) and were protonated. The encapsulation efficiency was calculated specially,

taking the abs(1-(unencapsulated signal/total signal)) * 100. The full calculation is given in

Figure 10.



Yadalam 20

After applying the metrics to LNPs before and after, there was a 45% increase in

encapsulation efficiency. The numbers went from an estimated and standard given 30% to an

overall of 75%, performing well. The data analysis model took both the side-by-side comparison

with relevant LNPs (disregarding those that could not yield a ‘practical’ optimization) and

compared the averages. This figure demonstrates an example of comparing LNPs as well as the

average across the entire dataset. Therefore, the LNP efficacy can be significantly optimized with

the VAEs.

The efficiency of the model is another important point to be considered, which was a

tradeoff that had to be made. The model goes through four phases: the combination, the VAE, the

mixability test, and the data analysis. Therefore, running the code takes significant time. The

model needs to learn many different parameters and go through many different layers to achieve

the latent space and then decode it. Consequently, the combinatorial steps require a run time of

O(n^4) as there are four nested four loops to represent each part of the lipids. The time therefore

increases while combining the lipids. While testing the program, it took a significantly long time

to run. A main addendum to the accuracy of the model is the custom layer defined, as well as the

hyperparameters. There were 100+ lines of hyperparameters defined primarily in the code. This

process typically involves training multiple versions of the model with different hyperparameter

configurations, which can increase the overall time spent on model development and

experimentation.

6: Conclusion

This research presents a novel method for optimizing LNPs using VAEs and a

continuous, accessible input of SMILES. The models eliminate the need to manually select
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compounds, and then spend time optimizing the molecule but rather allow for a hands-free

autoencoder neural network to explore a gradient-based neural network and decode it further into

a SMILES string output. With an increased overall metric of 85%, the VAE system accounts for

exceptional abilities to capture distinctive features from the molecular dataset and also extracts

features from the latent space. After continuously relearning from the results of the loss

functions, the model has an improved accuracy with every epoch.

This research attempts to bridge the world of unsupervised learning and the power of

opposing neural networks, which is a relatively new technology. Most ML today occurs in a

supervised format, but our needs push us into more advanced applications such as synthetic data

generation and optimization. The usage of mRNA-LNP therapies, hence, is also a development

in technology. The COVID-19 vaccine saw many benefits in society and was also a strong

launch into the nanoparticle industry. Going forward, many gene therapies will start to utilize the

utilitarian nature of LNPs. As mentioned in the introduction, cancer treatments and precautious

vaccines qualify for the usage of LNPs. Instituting an efficient, time-friendly, and cost-friendly

optimization system makes it easier for researchers to account for production and synthesis

without having to compute combinations manually.

Future work in this research involves extending the combinatorial chemistry phase into

precision medicine. In this work, an optimization system was implemented for current LNPs

(constructed with previous chemistry) but follows a one-size-fits-all mechanism. Recognizing

the inherent variability in endosomal escape, delivery kinetics, and dissipation times across

individual patients—attributes applicable to all pharmaceuticals—an imperative future avenue is

to consider patient-specific factors during the formulation process. The LNPs will then be

tailored to individualized specifications encompassing size, composition, and surface properties.



Yadalam 22

Such precision customization not only holds promise in ameliorating therapeutic outcomes but

also serves to mitigate the likelihood of adverse reactions. An additional enhancement entails

aligning the structural composition of lipid nanoparticles (LNPs) with the specific mRNA

payload they are intended to deliver. For instance, in the case of COVID-19 mRNA, an affinity is

observed towards the DLin-MC3-DMA cationic ionizable lipid. Thus, a notable advancement

lies in the capability to input mRNA sequences and obtain an optimized SMILES output,

ensuring precise matching between the LNP formulation and the mRNA cargo. This targeted

approach not only enhances delivery efficiency but also underscores a sophisticated integration

of molecular design principles into therapeutic development methodologies. The model used in

this research quotes “mixability” as simply a metric calculated by the RDKit library. However,

there are more practical layers to synthesis, such as emulation, hydrophilic balance, and pressure.

Taking these into account will further eliminate improbable combinations and bring to light more

optimized candidates.

Moving forward, this research endeavor will advance towards rigorous in-vitro and

in-vivo testing, aiming to validate and refine the findings obtained thus far. By subjecting the

optimized LNPs to laboratory experimentation, a deeper understanding of the optimization

process will be gained. Through systematic testing in controlled laboratory settings, the efficacy

and safety of the optimized LNPs can be comprehensively evaluated, providing valuable insights

for further optimization and potential therapeutic application.
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Figures

Figure 1: Abstract representation of LNP, with all four components
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Figure 2: LNP Mechanism in body

Figure 3: Example of database used for chemical combination
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Figure 3: LNP Components (Phospholipid, cationic onizable lipid, cholesterol, PEG-lipid as

pictured)

Figure 4: Flow of a VAE
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Figure 5: Mathematical representation of the VAE loss function: Reconstruction loss + KL

Divergence. Sourced from Boyar and Takeuchi, 2023.

Figure 6: Formulations
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Figure 7: DLS Measurements

Figure 8: PicoGreen measurements
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Figure 9: CTF Assay

Figure 10: Encapsulation Efficiency Calculations
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Figure 11: The formulas for the Fourier transformation in the encoder.
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Appendices

Appendix A: Overview of ML Algorithms

Machine Learning (ML) is a subset of Artificial Intelligence trained on datasets and

algorithms to make predictions based on trends in data. As of MIT 2021, “[machine learning]

gives computers the ability to learn without explicitly being programmed” (18). Most algorithms

use data from datasets to make predictions, classify data, cluster data points, or reduce

dimensionality. There are two main classifications of machine learning algorithms: supervised

and unsupervised learning. Supervised learning refers to an ML style based on learning from a

training set with the correct input and outputs. It measures its accuracy through a statistical

metric from which the algorithm tries to optimize its loss function. There are two further

categories of supervised ML algorithms: classification and regression (19). Classification

employs clustering techniques to determine how close different entities are concerning one

another. Therefore, groups of entities can be discerned from this algorithm type. The other

category is regression, to understand the relationship between independent and dependent

variables. Common examples of classification algorithms include Decision Trees, K-nearest

neighbors, Random Forest, and Naive Bayes. Regression models include Linear Regression,

Logistic Regression, and variants of Polynomial Regression. On the other hand, unsupervised

learning does not require any human supervision, as the algorithm self-learns from the data and

applies functions without outside intervention. There are three further subdivisions: clustering,

association rules, and dimensionality reduction (20). Clustering is the task of grouping similar

data points based on some similarity or distance metric. This is different from supervised

learning as this data does not have class labels and is determined solely on features. Examples:
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K-Means Clustering, Hierarchical clustering, DBSCAN. Association rule mining discovers

interesting relationships between variables in large datasets, such as the Apriori Algorithm and

the FP-Growth pattern. Dimensionality reduction techniques aim to reduce the number of

features or variables in a dataset while preserving as much relevant information as possible, such

as Principal Component Analysis and Autoencoders. This study will go into further detail

regarding Autoencoders and Logistic Regression for the ML portion.

Appendix B: Relational Graph Convolution Layers

The goal of the encoder is to slowly chip away at the input dimensionality by calculating

the eigenvector of the Laplace order - or the differential operator of the divergence of the

gradient space - L. The well-known Fourier transform and the corresponding eigenfunction is

computed. (21) It is crucial to notice the fact that the Laplace transformation is merely another

transformation on a matrix. Therefore, the eigenspace before and after will be retained. An

eigenvector L with its corresponding eigenvalue will be similar to the complex exponential at a

given frequency. A popular eigenvalue decomposition, further explored in the application, is the

well-known L = UλUTwhere the Ith column of U is the eigenvector Ui and λl is the

corresponding eigenvalue (21).

Appendix C: Full LNP Protocol

LNP preparation via pipet mixing

● Prepare ethanol and aqueous solutions according to the formulation spreadsheet

● Ethanol phase will contain lipids (typically 30 µl total volume)
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● Aqueous phase will contain DNA or other nucleic acid cargo (typically 5 µg 90 µl

total volume, in citric buffer at pH 4)

● Note: it is most convenient to handle the solutions in PCR tubes

● Transfer all ethanol solution into citric buffer solution and mix vigorously for at least 5

cycles

● Allow to incubate for 10 minutes

● Dilute with phosphate buffered saline at 1:1 ratio

● Formulations are ready to use

LNP characterization

● Size and polydispersity (general particle formation)

● Pipet 2 µl of LNP solutions into a Stunner plate to analyze the nanoparticle size

via dynamic light scattering (DLS)

● Read the size using “gene therapy” preset with appropriate cargo (e.g. DNA)

● Encapsulation and loading efficiency

● Conduct encapsulation and loading efficiency assays using RiboGreen or

PicoGreen assay protocols (depending on the nucleic acid; for DNA use

PicoGreen). Use 50 µl of nanoparticle solutions.

● Encapsulation efficiency indicates how much of the total nucleic acid is fully

encapsulated inside the nanoparticle; loading efficiency indicates the amount of

nucleic acid present in the sample compared to the initial amount of solutions

prepared. For example, encapsulation efficiency can be 99% with loading

efficiency of 50% - all nucleic acid is inside the LNPs, but we lost half of the

nucleic acid (e.g., lost in pipetting).
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● Transfection efficiency and cell viability

● Prepare the cell culture (e.g., HeLa cells at 5000 cells/well in a 96-well plate) and

allow the cells to adhere for 24 hours

● Determine the dose and transfect. The dose depends on the nucleic acid, the

reporter, and the nanoparticle properties. E.g., for pTwist-Luc2 plasmid produces

luciferase enzyme, and we should be aiming for 750 ng per well. Use 4 replicates

(4 wells per samples) and include controls (e.g., untreated – negative control). To

transfect, simply transfer a designated nanoparticle volume onto cells with a pipet.

Do not mix!

● Allow to incubate at 37 degrees C (cell incubator) for 24 hours

● If using luciferase reporter (see above), prepare reagents for OneGlo + TOX assay

from Promega ahead of the time

● First, add 10µl CellTiter Fluor (CTF) reagent per well and allow to incubate for

30 minutes to read the cell viability. Read the fluorescence signal with a plate

reader at 375 nm excitation/480 nm emission. The data readout should include

both raw fluorescence values (averaged per sample) and cell viability (in %)

normalized to the control (e.g., untreated wells). The cells viability can also be

evaluated in a qualitative manner with an inverted microscope

● To read transfection efficiency, add 25 µl of OneGlo reagent per well and incubate

for 5 minutes. Read luminescence values with a plate reader at 2500 ms

integration value. The data readout should include raw luminescence values

(averaged per sample). Optional: compare to the control (e.g., untreated wells).
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● Lastly, to normalize transfection efficiency, divide the number from luminescence

assay by fluorescence (OneGlo/CTF) and include that in the readout.
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