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Abstract

In this research article, by making use of Salagean differential operator,
we introduce and investigate a new subclass of analytic and bi-univalent
functions using the Horadam polynomial. We derive the coefficient
estimate and obtain Fekete-szegö inequality for functions in this subclass.
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1 Introduction

Let A denote the class of all analytic functions f defined on the open unit disk
∆ = {z ∈ C : |z| < 1}, which is normalized under the condition f(0) = f ′(0) = 1
having the Taylor series expansion

f(z) = z +
∞∑
n=2

anz
n, z ∈ ∆. (1)

and S, the class of functions in A which are univalent in ∆. Let the function f
and g be analytic in ∆. Then we say that the function f is subordinate to g, if
there exist a schwarz function w(z) which is analytic in ∆ with

w(0) = 0 , |w(z)| < 1, (z ∈ ∆)

satisfying

f(z) = g(w(z)).

It is known that,
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f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(∆) ⊂ g(∆).

By, the Koebe one-quarter theorem [10] every function f ∈ S has an inverse
f−1 defined by

f−1(f(z)) = z, (z ∈ ∆)

and

f(f−1(w)) = w,

(
|w| < r0(f), r0(f) ≥ 1

4

)
where

g(w) = f−1(w) = w − a2w2 + (2a22 − a3)w3 − ... (2)

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent
in ∆. Denote by Σ the class of bi-univalent functions in ∆. Examples of bi-
univalent functions are

z
1−z ,−log(1− z), 1

2
log(1+z

1−z ), ....

The familiar Koebe function is not a member of Σ.

Lewin [16] investigated the class of bi-univalent function Σ and showed
|a2| < 1.51 and motivated by the work of Lewin, Brannan and Clunie [8]
conjectured that |a2| ≤

√
2. The best known estimate for functions in Σ is

obtained by Tan [21] in 1984, that is |a2| < 1.485. The coefficient estimate
problem for |an|(n ∈ N, n ≥ 3) is still open [18]. The study of bi-univalent
functions gained interest mainly due to the work of Srivastava et al [18]. Several
researchers got motivated by this, (see[1,2,3,4,5,6,7,9,10,11,12,18,19,20,22,23])
and investigated interesting subclasses of the class Σ and found non-sharp
estimates for the first two Taylor-Maclaurin coefficients.

Definition 1.1. (see [13,14]) The Horadam polynomials hn(r) are given by the
following recurrence relation:

hn(r) = prhn−1(r) + qhn−2(r) (r ∈ R; n ∈ N = {1, 2, 3...}) (3)

with

h1(r) = a and h2(r) = br,

for some real constants a, b, p and q. Moreover, the characteristic equation of
the recurrence relation (3) is given by

t2 − prt− q = 0,
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which has the following two real roots:

α =
pr +

√
p2r2 + 4q

2
and β =

pr −
√
p2r2 + 4q

2
.

By choosing appropriately the parameters a, b, p and q, we get some special
cases of the Horadam polynomials hn(r).

• Taking a = b = p = q = 1, we obtain the Fibonacci polynomials Fn(r).

• Taking a = 2 and b = p = q = 1, we get the Lucas polynomials Ln(r).

• Taking a = q = 1 and b = p = 2, we have the Pell polynomials Pn(r).

• Taking a = b = p = 2 and q = 1, we find the Pell-Lucas polynomials Qn(r).

• Taking a = b = 1, p = 2 and q = -1, we obtain the Chebyshev polynomials
Tn(r) of the first kind.

• Taking a = 1, b = p = 2 and q = -1, we have the Chebyshev polynomials
Un(r) of the second kind.

The generating function of the Horadam polynomials hn(r) (see [14]) are given
by

Ω(r, z) = Σ∞n=1hn(r)zn−1 =
a+ (b− ap)rz
1− prz − qz2

. (4)

We now define and discuss (p,q)-analogue of Salagean differential operator:

T0
p,qf(z) = f(z),

T1
p,qf(z) = z(Tp,qf(z)),

.

.

.

Tkp,qf(z) = zTp,q(T
k−1
p,q f(z)),

Tkp,qf(z) = z +
∞∑
n=2

[n]kp,qanz
n (k ∈ N0 = N ∪ {0}, z ∈ ∆).

If we let p=1 and q → 1−, then Tkp,qf(z) reduces to the well-known Salagean
differential operator [17].

Definition 1.2. For ζ ≥ 1, % ≥ 0 and δ ≥ 0, a function f ∈ A given by (1) is
said to be in the class Mζ(p, q, k, %) if the following subordinations are satisfied:

(1−ζ)

(
Tkp,qf(z)

z

)%

+ζ(Tkp,qf(z))′

(
Tkp,qf(z)

z

)%−1

+δz(Tkp,qf(z))′′ ≺ Ω(r, z)+1−a

(5)
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Definition 1.3. For ζ ≥ 1, % ≥ 0 and δ ≥ 0, a function f ∈ Σ given by (1) is
said to be in the class Bζ(p, q, k, %) if the following subordinations are satisfied:

(1−ζ)

(
Tkp,qf(z)

z

)%

+ζ(Tkp,qf(z))′

(
Tkp,qf(z)

z

)%−1

+δz(Tkp,qf(z))′′ ≺ Ω(r, z)+1−a

(6)
and

(1−ζ)

(
Tkp,qg(w)

w

)%

+ζ(Tkp,qg(w))′

(
Tkp,qg(w)

w

)%−1

+δw(Tkp,qg(w))′′ ≺ Ω(r, w)+1−a

(7)
where g(w) = f−1(w) is defined by (2)

2 Coefficient bounds for f ∈Mζ(p, q, k, %)

Let B = {ω ∈ H : |ω(z)| ≤ 1, z ∈ ∆} and B0 be the subclass of B of all ω such
that ω(0) = 0. The elements of B0 are known as Schwarz functions.

We will apply a lemma below to prove the main theorem of this section.

Lemma 2.1. ([15]) If ω ∈ B0 is of the form

ω(z) =
∞∑
n=1

ωnz
n, z ∈ ∆, (8)

then for ν ∈ C,
|ω2 − νω2

1| ≤ max{1, |ν|}. (9)

Theorem 2.1. Let f given by (1) be in the class Mζ(p, q, k, %). Then

|a2| ≤
|br|

[2]kp,q(%+ ζ + 2δ)
,

|a3| ≤
|br|

(%+ 2ζ + 6δ)[3]kp,q
max

{
1,

∣∣∣∣((%+ 2ζ)(%− 1)br

2(%+ ζ + 2δ)2

)
− pbr2 + aq

br

∣∣∣∣}
and

|a3 − %a22| ≤
|br|

(%+ 2ζ + 6δ)[3]kp,q
max

{
1,

∣∣∣∣ (%+ 2ζ)br

2(%+ ζ + 2δ)2(
2%(%+ 2ζ + 6δ)[3]kp,q

(%+ 2ζ)([2]kp,q)
2

+ %− 1

)
− pbr2 + aq

br

∣∣∣∣∣
}
.

Proof. Let f is in the class Mζ(p, q, k, %) then from Definition 1.2, for some
analytic functions u and v such that u(0) = v(0) = 0,
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| u(z) |=| u1z + u2z
2 + u3z

3 + ... |< 1, (z ∈ ∆)

then

| ut |≤ 1 for t ∈ N. (10)

(1− ζ)

(
Tkp,qf(z)

z

)%

+ ζ(Tkp,qf(z))′

(
Tkp,qf(z)

z

)%−1

+

δz(Tkp,qf(z))′′ = Ω(r, u(z)) + 1− a

or equivalently,

(1− ζ)

(
Tkp,qf(z)

z

)%

+ ζ(Tkp,qf(z))′

(
Tkp,qf(z)

z

)%−1

+ δz(Tkp,qf(z))′′ =

1 + h1(r) + h2(r)u(z) + h3(r)(u(z))2 + ...− a (11)

From the equality (11)

(1− ζ)

(
Tkp,qf(z)

z

)%

+ ζ(Tkp,qf(z))′

(
Tkp,qf(z)

z

)%−1

+ δz(Tkp,qf(z))′′ =

1 + h2(r)u1(z) + [h2(r)u2 + h3(r)u
2
1]z

2 + ... (12)

Comparing the coefficients of equation (12), we get

[2]kp,q(%+ ζ + 2δ)a2 = h2(r)u1 (13)

(%+ 2ζ)

{(
%− 1

2

)
([2]kp,q)

2a22 +

(
1 +

6δ

%+ 2ζ

)
[3]kp,qa3

}
= h2(r)u2 + h3(r)u

2
1

(14)
From (13) we get,

a2 =
h2(r)u1

[2]kp,q(%+ ζ + 2δ)

|a2| ≤
|br|

[2]kp,q(%+ ζ + 2δ)
. (15)

Now we get,

(%+ 2ζ)(1 +
6δ

%+ 2ζ
)[3]kp,qa3 = h2(r)u2 + h3(r)u

2
1 − (%+ 2ζ)

(
%− 1

2

)
([2]kp,q)

2a22

= h2(r)u2 + h3(r)u
2
1 − (%+ 2ζ)

(
%− 1

2

)(
h2(r)u1
%+ ζ + 2δ

)2

= h2(r)u2 −
u21
2

[(
h2(r)(%+ 2ζ)(%− 1)

(%+ ζ + 2δ)2

)
− 2h3(r)

]
.
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Thus we have

a3 =
h2(r)

(%+ 2ζ + 6δ)[3]kp,q

{
u2 − u21

[(
(%+ 2ζ)(%− 1)h2(r)

2(%+ ζ + 2δ)2

)
− h3(r)

h2(r)

]}
=

h2(r)

(%+ 2ζ + 6δ)[3]kp,q
{u2 − ℵu21} (16)

where

ℵ =

[(
(%+ 2ζ)(%− 1)h2(r)

2(%+ ζ + 2δ)2

)
− h3(r)

h2(r)

]
.

By applying Lemma 2.1, we get

|a3| =
|h2(r)|

(%+ 2ζ + 6δ)[3]kp,q
|u2 − ℵu21|

≤ |br|
(%+ 2ζ + 6δ)[3]kp,q

max

{
1,

∣∣∣∣((%+ 2ζ)(%− 1)br

2(%+ ζ + 2δ)2

)
− pbr2 + aq

br

∣∣∣∣} .
For any % ∈ C, we get

a3 − %a22 =
h2(r)

(%+ 2ζ + 6δ)[3]kp,q

{
u2 − u21

[(
(%+ 2ζ)(%− 1)h2(r)

2(%+ ζ + 2δ)2

)
− h3(r)

h2(r)

]}
− %

(
h2(r)u1

[2]kp,q(%+ ζ + 2δ)

)2

=
h2(r)

(%+ 2ζ + 6δ)[3]kp,q
{u2 − ηu21}

where

η =
(%+ 2ζ)h2(r)

2(%+ ζ + 2δ)2

(
2%(%+ 2ζ + 6δ)[3]kp,q

(%+ 2ζ)([2]kp,q)
2

+ %− 1

)
− h3(r)

h2(r)
.

By applying Lemma 2.1, we get

|a3 − %a22| =
|h2(r)|

(%+ 2ζ + 6δ)[3]kp,q
|u2 − ηu21|

|a3 − %a22| ≤
|br|

(%+ 2ζ + 6δ)[3]kp,q
max

{
1,

∣∣∣∣ (%+ 2ζ)br

2(%+ ζ + 2δ)2(
2%(%+ 2ζ + 6δ)[3]kp,q

(%+ 2ζ)([2]kp,q)
2

+ %− 1

)
− pbr2 + aq

br

∣∣∣∣∣
}
.
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Theorem 2.2. Let f given by (1) be in the class Bζ(p, q, k, %). Then

| a2 |≤
| br |

√
2 | br |√

|Θ(%, ζ, p, q, k)|

and

|a3| ≤
b2r2

([2]kp,q)
2(%+ ζ + 2δ)2

+
|br|

(%+ 2ζ)(1 + 6δ
2ζ+1

)[3]kp,q

where

Θ(%, ζ, p, q, k) = {(%+ 2ζ)[(%− 1)([2]kp,q)
2 + 2(1 +

6δ

%+ 2ζ
)[3]kp,q]b

− 2([2]kp,q(%+ ζ + 2δ))2p}br2 − 2[[2]kp,q(%+ ζ + 2δ)2]aq. (17)

Proof. Let f is in the class Bζ(p, q, k, %) then from Definition 1.3, for some
analytic functions u and v such that u(0) = v(0) = 0,

| u(z) |=| u1z + u2z
2 + u3z

3 + ... |< 1, (z ∈ ∆)

and

| v(w) |=| v1w + v2w
2 + v3w

3 + ... |< 1, (w ∈ ∆)

then

| ut |≤ 1 and | vt |≤ 1 for t ∈ N. (18)

(1−ζ)

(
Tkp,qf(z)

z

)%

+ ζ(Tkp,qf(z))′

(
Tkp,qf(z)

z

)%−1

+ δz(Tkp,qf(z))′′ = Ω(r, u(z))+1−a

(1−ζ)

(
Tkp,qg(w)

w

)%

+ζ(Tkp,qg(w))′

(
Tkp,qg(w)

w

)%−1

+δw(Tkp,qg(w))′′ = Ω(r, v(w))+1−a

or equivalently,

(1− ζ)

(
Tkp,qf(z)

z

)%

+ ζ(Tkp,qf(z))′

(
Tkp,qf(z)

z

)%−1

+ δz(Tkp,qf(z))′′ =

1 + h1(r) + h2(r)u(z) + h3(r)(u(z))2 + ...− a (19)

(1− ζ)

(
Tkp,qg(w)

w

)%

+ ζ(Tkp,qg(w))′

(
Tkp,qg(w)

w

)%−1

+ δw(Tkp,qg(w))′′ =

1 + h1(r) + h2(r)v(w) + h3(r)(v(w))2 + ...− a (20)
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From the equalities (19) and (20),

(1− ζ)

(
Tkp,qf(z)

z

)%

+ ζ(Tkp,qf(z))′

(
Tkp,qf(z)

z

)%−1

+ δz(Tkp,qf(z))′′ =

1 + h2(r)u1(z) + [h2(r)u2 + h3(r)u
2
1]z

2 + ... (21)

(1− ζ)

(
Tkp,qg(w)

w

)%

+ ζ(Tkp,qg(w))′

(
Tkp,qg(w)

w

)%−1

+ δw(Tkp,qg(w))′′ =

1 + h2(r)v1(w) + [h2(r)v2 + h3(r)v
2
1]w2 + ... (22)

Comparing the coefficients of equation (21) and (22), we get

[2]kp,q(%+ ζ + 2δ)a2 = h2(r)u1 (23)

(%+ 2ζ)

{(
%− 1

2

)
([2]kp,q)

2a22 +

(
1 +

6δ

%+ 2ζ

)
[3]kp,qa3

}
= h2(r)u2 + h3(r)u

2
1

(24)
−[2]kp,q(%+ ζ + 2δ)a2 = h2(r)v1 (25)

(%+ 2ζ)

{(
%− 1

2

)
([2]kp,q)

2a22 +

(
1 +

6δ

%+ 2ζ

)
[3]kp,q(2a

2
2 − a3)

}
= h2(r)v2 + h3(r)v

2
1 (26)

From (23) and (25) we get,
u1 = −v1 (27)

2{[2]kp,q(%+ ζ + 2δ)}2a22 = h22(r)(u
2
1 + v21) (28)

Adding (24) and (26) we get,

2(%+2ζ)

{
%− 1

2
([2]kp,q)

2 +

(
1 +

6δ

%+ 2ζ

)
[3]kp,q

}
a22 = h2(r)(u2+v2)+h3(r)(u

2
1+v

2
1)

(29)
Substituting the value of (u21 + v21) from (28) in the right hand side of (29) we
get,

a22 =
h32(r)(u2 + v2)

(%+ 2ζ)
{

(%− 1)([2]kp,q)
2 + 2

(
1 + 6δ

%+2ζ

)
[3]kp,q

}
h22(r)− 2h3(r)([2]kp,q(%+ ζ + 2δ))2

(30)
Compute using (3), (17), (18) and (30),

| a2 |≤
| br |

√
2 | br |√

|Θ(%, ζ, p, q, k)|
.
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Subtracting (26) from (24) we obtain,

2(%+ 2ζ)

(
1 +

6δ

%+ 2ζ

)
[3]kp,q(a3 − a22) = h2(r)(u2 − v2). (31)

In view of (28) and (30), Equation (31) becomes

a3 =
h22(r)(u

2
1 + v21)

2([2]kp,q(%+ ζ + 2δ))2
+

h2(r)(u2 − v2)

2(%+ 2ζ)
(

1 + 6δ
%+2ζ

)
[3]kp,q

By applying (3), we get,

|a3| ≤
b2r2

([2]kp,q)
2(%+ ζ + 2δ)2

+
|br|

(%+ 2ζ)(1 + 6δ
%+2ζ

)[3]kp,q
.

By setting % = δ = 0 and ζ = 1 in Theorem 2.2, we obtain the
following consequence.

Corollary 2.1. If f of the form (1) is in the class B1(p, q, k) then

| a2 |≤
| br |

√
| br |√

|{(2[3]kp,q − ([2]kp,q)
2)b− [2]kp,qp}br2 − [2]kp,qaq|

and

| a3 |≤
b2r2

([2]kp,q)
2

+
| br |
2[3]kp,q

.

setting % = δ = 0, ζ = 1 and k = 0 in Theorem 2.2, we obtain

Corollary 2.2. If f of the form (1) is in the class B1(r) then

| a2 |≤
| br |

√
| br |√

|{b− p}br2 − aq|

and

| a3 |≤ b2r2 +
| br |

2
.
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3 Fekete-Szegö inequality for the class Bζ(p, q, k, %) :

In this section, we prove Fekete-Szegö inequalities for functions in the class
Bζ(p, q, k, %). These inequalities are given in the following theorem.

Theorem 3.1. Let f given by (1) be in the class Bζ(p, q, k, %) and µ ∈ R Then

| a3 − %a22 |≤


2|br|

2(%+2ζ)(1+ 6δ
%+2ζ )[3]kp,q

, 0 ≤| φ(%, r) |≤ 1

2(%+2ζ)(1+ 6δ
%+2ζ )[3]kp,q

2|br||φ(%, r)|, |φ(%, r)| ≥ 1

2(%+2ζ)(1+ 6δ
%+2ζ )[3]kp,q

where

φ(%, r) =
h22(r)(1− %)

Υ(p, q, k, %)

and

Υ(p, q, k, %) = (%+ 2ζ)

{
(%− 1)([2]kp,q)

2 + 2

(
1 +

6δ

%+ 2ζ

)
[3]kp,q

}
h22(r)

− 2h3(r)([2]kp,q(%+ ζ + 2δ))2. (32)

Proof. From (30) and (31)

a3 − %a22 =
(1− %)h32(r)(u2 + v2)

Υ(p, q, k, %)
+

h2(r)(u2 − v2)

2(%+ 2ζ)
(

1 + 6δ
%+2ζ

)
[3]kp,q

= h2(r)


φ(%, r) +

1

2(%+ 2ζ)
(

1 + 6δ
%+2ζ

)
[3]kp,q

u2
+

φ(%, r)− 1

2(%+ 2ζ)
(

1 + 6δ
%+2ζ

)
[3]kp,q

 v2


where

φ(%, r) =
h22(r)(1− %)

Υ(p, q, k, %)

and Υ(p, q, k, %) is given in (32).

| a3 − %a22 |≤


2|br|

2(%+2ζ)(1+ 6δ
%+2ζ )[3]kp,q

, 0 ≤| φ(%, r) |≤ 1

2(%+2ζ)(1+ 6δ
%+2ζ )[3]kp,q

2|br||φ(%, r)|, |φ(%, r)| ≥ 1

2(%+2ζ)(1+ 6δ
%+2ζ )[3]kp,q

.
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4 Conclusion

In the present work, by making use of Salagean differential operator, we
define a new subclass of analytic and bi-univalent functions using the Horadam
polynomial. Coefficient estimate |a2| , |a3| and Fekete szegö inequality of the
functions has been studied.
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