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BiFine: Bilateral Fine-Grained Alignment with Dual
Channels for Partial Domain Adaptation

Abstract. Partial Domain Adaptation (PDA) often grapples with
negative transfer when the target label space is a subset of the source
domain’s. Addressing this, we present BiFine, a dual-channel adver-
sarial weighting framework for PDA that orchestrates a bilateral fine-
grained alignment between domains. The Dual-Channel consists of
two key components: the Shared-Private Weighting Diverger (SPW)
and the Centroid-Based Similarity Discriminator (CSD). The SPW
selectively modulates weights for shared classes, amplifying them to
enhance positive transfer while suppressing those potentially lead-
ing to negative transfer from private source domain classes. Concur-
rently, CSD employs a bilateral strategy by adjusting target sample
weights based on their cosine similarity to the centroids of shared
source classes and attenuates intra-class variances to sharpen class
boundaries. This holistic approach promotes a refined domain adap-
tation, securing closer alignment for shared classes and segregat-
ing outliers. Extensive evaluations on ImageCLEF, Office-31 and
Caltech-office datasets affirm BiFine’s efficacy, outperforming exsit-
ing methods with classification accuracies of 91.99%, 97.78% and
96.49%, respectively.

1 Introduction

In machine learning, Domain Adaptation (DA) [21] plays a cru-
cial role in adapting models from a labeled source domain to varied
target domain distributions, particularly in out-of-distribution scenar-
ios. Traditional DA approaches, however, often fall short in real-
world applications where label spaces between domains shift. This
challenge is addressed by Partial Domain Adaptation (PDA) [1],
where the target domain’s label space is a subset of the source do-
main’s. PDA focuses on mitigating negative transfer caused by pri-
vate class samples in the source domain, a common issue in conven-
tional reweighted strategies [2, 3, 9, 23, 14].

Recently, several methods [9? , 16, 22, 23, 2, 3, 4, 24, 12]
have emerged to tackle the challenges of Partial Domain Adaptation
(PDA). The Selective Adversarial Network (SAN)[1] addresses the
problem by designing a discriminator for each class in the source do-
main. While this enhances data distibution matching between classes,
it also escalates computational demands and parameter counts as
dataset scales. Building on the foundation laid by SAN, the Partial
Adversarial Domain Adaptation (PADA)[2] method was introduced.
It employs a single domain discriminator for data distribution align-
ment and introduces class-level weights to the source classifier. How-
ever, its performance can be constrained by shifts.

Recognizing the need for more refined judgment of source domain
samples. The Importance Weighted Adversarial Nets (IWAN)[23]
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Figure 1: This figure shows the bilateral adaptation at the domain
and sample levels using the BiFine method. Icons of fire and ice dy-
namically adjust the weights, amplifying the influence of Fpos and
diminishing that of Fneg , respectively.

and the Example Transfer Network (ETN)[3] introduced an auxiliary
domain discriminator to individually assess source domain samples,
aiming to enhance the alignment between source and target domains.
The Class Subset Selection Network (SSPDA)[24] proposed regu-
larization terms to automatically reject abnormal samples, aiming to
streamline the adaptation process. On the other hand, the Dual Align-
ment Approach (DAPDA)[12] emphasized minimizing both inter-
domain and inter-class discrepancies through dual alignment tech-
niques. CSDN [13] enhances PDA by dynamically weighting rele-
vant source classes and focusing on ambiguous target samples. Yet,
all above methods, they predominantly relied on a singular discrim-
inative method to pinpoint source domain outlier classes. This sin-
gular focus becomes problematic, particularly when there’s a pro-
nounced similarity between cross-domain classes, leading to poten-
tial misalignments and reduced adaptation efficacy.

In this paper, the BiFine framework is introduced to bridge the
distributional disparity between domains, as depicted in fig. 1, ensur-
ing a more seamless alignment for shared classes. The SPW is mani-
fested by the modulation of weights for shared and private source do-
main classes. Moreover, the essence of the CSD is captured through
the strategic movement between the classes centroid. In this dual-
channel approach, target samples are weighted based on their resem-
blance to shared source classes and distinctiveness within the source



domain classes is achieved by minimizing intra-class similarities.
The main contributions of this paper are as follows:

1) We propose BiFine, a Bilateral Fine-grained Alignment Net-
work based on dual-channel adversarial weighting to selectively im-
prove target transferability.

2) We design Shared-Private Weighting Diverger (SPW) that
finely selects shared classes and dynamically curbs negative trans-
fer from private classes.

3) We introduce the Centroid-Based Similarity Discriminator
(CSD) for bilateral alignment, improving class distinction by align-
ing target with source class centroids.

4) Extensive experiments on ImageCLEF, Office31 and
Caltech-office datasets show BiFine’s effectiveness, achieving clas-
sification average accuracies of 91.99%, 97.78% and 96.49% respec-
tively, surpassing exsisting methods.

2 Related work
Domain Adaptation (DA). The rise of deep learning has revital-

ized DA, notably through techniques that minimize distribution dis-
tances [19] or use adversarial methods for domain-invariant feature
extraction [20]. Dual classifier training approaches [11] have also
emerged, aligning classes by adversarially predicting unlabeled tar-
get samples. However, these methods often assume identical label
spaces across domains, an assumption frequently violated in real-
world applications.

Partial Domain Adaptation (PDA) addresses this challenge by
focusing on scenarios where the target domain’s labels are a sub-
set of the source’s. Techniques such as SAN [1], PADA [2], IWAN
[23],[5] and ETN [3] introduce various weighting strategies for better
adaptation of source instances. Innovations like DARL [4], DAPDA
[12] and SSPDA [24] provide unique solutions, but some methods
may induce negative transfer by including unknown class samples
in alignment [12, 24, 16]. CSDN [13] aims for detailed matching
and adaptive weighting, but its effectiveness is limited by a lack of
class-specific discriminative knowledge. Existing PDA methods of-
ten focus on leveraging target predictions to weight source instances,
neglecting the transferability of target samples and the risk of nega-
tive transfer from private classes.

3 Proposed Method
3.1 Definition of terminologies

In the field of machine learning, PDA represents a significant
challenge, especially when dealing with diverse data distributions.
In PDA, source domain data Xs ∈ RD×ns with labels Ds =
{(xs

i , y
s
i )}ns

i=1 are typically drawn from distribution P (Xs). Con-
versely, target domain data Xt ∈ RD×nt without labels Dt =
{xt

i}nt
i=1 come from a different distribution P (Xt). Here, D denotes

the feature dimension, and ns and nt represent the number of source
and target samples, respectively. Although the feature spaces of both
domains are identical (Xs = Xt), the label space of the target do-
main Yt is a subset of the source domain’s label space Ys (Yt ⊆ Ys),
indicating a domain shift since Ps ̸= Pt. The shared class samples
in the source domain follow a distribution Ps,c, which differs from
the target distribution Pt (Ps,c ̸= Pt).

3.2 Overall Framework

The BiFine framework utilizes a bilateral fine-grained adaptive
approach at both sample and domain levels, as demonstrated in

fig. 2.The framework employs SPW, leveraging an auxiliary classifier
C1 and discriminator D1, to assign adaptive weights that emphasize
shared classes through a weight inversion method detailed in eq. (1).
Aditionally, CSD method enhances domain alignment by calculating
cosine similarities w2 between target samples and source centroids,
further refining this alignment to bolster shared class discrimination,
as expounded in Lssd (see eqs. (5) and (6)). Furthermore, the Do-
main Adversarial Weighting Network combines weights from both
SPW and CSD to derive the final weight w (refer to eq. (7)), achiev-
ing a balance between classification loss Lcls and adversarial loss
Ladv through a minimax game (outlined in eq. (8)), as defined in
eqs. (9) and (10).

3.3 Shared-Private Weighting Diverger

The Shared-Private Weighting Diverger (SPW) is designed to am-
plify the influence of shared class samples from the source domain
while minimizing the impact of private classes. In this approach, an
auxiliary classifier and discriminator system is utilized to initially as-
sign weights ŵ(Xs) to the source domain data, where a weight of 1
indicates a source sample and 0 indicates a target sample.

The key innovation lies in the adjustment of sample weights to
prioritize shared classes. This is achieved by inverting the initial
weights:

w1(x
s
i ) = 1− ŵ(xs

i ), (1)

where w1(x
s
i ) is the adjusted weight for the source sample xs

i ,
thereby enhancing the prominence of shared classes in the learning
process.

The auxiliary classifier is trained exclusively on source domain
data, leading to the auxiliary classification loss Lcls

aux:

Lcls
aux =− 1

ns

ns∑
i=1

C∑
c=1

[
ys
i,c log(ŷ

s
i,c)

+ (1− ys
i,c) log(1− ŷs

i,c)
]
,

(2)

where C the number of source domain classes and ys
i,c, ŷs

i,c denoting
the true label and the predicted probability for the i-th source sample
in class c, respectively.

Conversely, the auxiliary discriminator is trained using both source
and target domain data, yielding the auxiliary adversarial loss Ladv

aux:

Ladv
aux =− 1

ns

ns∑
i=1

log (D1(F(xs
i )))

− 1

nt

nt∑
j=1

log
(
1−D1(F(xt

j))
)
.

(3)

3.4 Centroid-Based Similarity Discriminator

The proposed CSD, leveraging two key strategies for effective bi-
lateral fine-grained alignment based on the similarity between target
and source domains.

Cosine Similarity with Source Centroid. We utilize the cosine
similarity between the target batch samples and the source domain
class centroids to infer the likelihood of a class being shared. High
cosine similarity scores indicate that a target sample closely aligns
with a source class, suggesting shared class characteristics. For a
given source centroid vector S = [s1, s2, . . . , smb] and a target sam-
ple batch Xt

i = [x1, x2, . . . , xmt], weights are assigned as:

wmb = Xt
i · (S · 1mt×mb), (4)
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Figure 2: The Framework of proposed BiFine, where F represents feature extractors, C represents classifier, D represents discriminator, C1

represents auxiliary classifier, D1 represents auxiliary discriminator, Sinter represents the target and source centroid similarity discrimination,
fire and ice icon represents increasing and decreasing weight respectively.

where 1mt×mb facilitates the dimensional alignment of S and Xt
i .

After obtaining wmb, the class weights corresponding to the i-th
batch of source domain samples are extracted to form a new weight
vector w2.

Discriminative Source Space Construction. To address the chal-
lenge of data disorder and distribution disparities, we develop a dis-
criminative source space based on cosine similarity. This approach
focuses on widening the inter-class gaps within the source domain to
foster more accurate classification. Assuming T = [t1, t2, . . . , tcs]
represents the normalized source-class center matrix, we define the
inter-class cosine similarity matrix as:

Sinter = TT ·T. (5)

Subsequently, to quantify the inter-class differences and enhance
classification boundaries, we compute a scalar loss:

Lssd = γ
∑
i<j

Sinter(i, j), (6)

which aims to reduce inter-class similarity and enforce class separa-
bility in the source domain.

3.5 Dual-Channel Based Adversarial Weighting

In this work, BiFine computes the final weight w(x) from the co-
sine similarity of vectors w1 and w2, which are outputs of the SPW
and CSD channel. The final weight w(x) for a source domain sample
is computed as:

w(x) =
w1 ·w2

mean(w1 ·w2)
, (7)

where mean denotes the mean dot product of w1 and w2 across the
source domain.

Then, this weight is applied to modulate the classification and ad-
versarial losses within a minimax game:

min
θf ,θy

max
θd

[
1

ns

ns∑
i=1

w(xs
i )

(
Li

cls (θf , θc)− λLi
adv (θf , θd)

)]
, (8)

where θf , θy and θd are the parameters to be learned, ns is the num-
ber of source domain samples, Lcls is the classification loss, Ladv is

the adversarial loss and λ is the trade-off parameter between the two
losses.

The classification loss Lcls is detailed as:

Lcls =
1

ns

ns∑
i=1

w(xs
i ) [Lent (C(F(xs

i )), y
s
i )

+Lent (C1(F(xs
i )), y

s
i )] ,

(9)

where Lent represents the entropy loss and defined in eq. (11).
The adversarial loss Ladv, which focuses on domain classification,

is given by:

Ladv =− 1

ns

ns∑
i=1

w(xs
i ) log (D(F(xs

i )))

− 1

nt

nt∑
j=1

log
(
1−D(F(xt

j))
)
.

(10)

The entropy loss Lent, applied to both the primary and auxiliary
classifiers, aims to minimize uncertainty in target label predictions:

Lent = −
nt∑
j=1

ŷj log(ŷj), (11)

where ŷj denotes the pseudo-labels for the target samples.
Overall Loss Function. The aggregated loss for the BiFine net-

work, trainable end-to-end, is given by:

L = αLcls + βLadv + γLadv
aux + δLcls

aux + ζLssd, (12)

where the hyperparameters α, β, γ, δ and ζ balance each loss com-
ponent’s contribution to the training objective.

4 Experiments
4.1 Experimental setup

We evaluate our model’s performance via experiments on estab-
lished benchmarks: Office-31[18], ImageCLEF 1 and Caltech-office

1 https://www.ImageCLEF.org/2014/adaptation

https://www.ImageCLEF.org/2014/adaptation


[8]. Following the same settings as [3], we train our model lasts for
1000 iterations, using SGD optimizer (learning rate: 0.001, weight
decay: 0.05) and batch size of 36. To fine-tune the hyperparame-
ters, we use an importance-weighted cross-validation scheme, which
ensures effective optimization tailored to the specific needs of our
model.

Table 1: CLASSIFICATION ACCURACY (%) ON ImageCLEF DATASET

UDA

Method I → P P → I I → C C → I C → P P → C Avg

Resnet-50[10] 74.80 83.90 91.50 78.00 65.50 91.20 80.70
DAN[15] 74.50 82.20 92.80 86.30 69.20 89.80 82.50
DANN[7] 75.00 86.00 96.20 87.00 74.30 91.50 85.00

DRMEA[17] 80.70 92.50 97.20 90.50 77.70 96.20 89.10

BiFine 80.21 92.74 96.28 92.57 78.15 95.95 89.32

PDA

Method I → P P → I I → C C → I C → P P → C Avg

Resnet-50[10] 79.16 95.56 99.31 83.33 52.05 52.84 77.04
PADA[2] 82.49 91.68 96.67 91.33 78.79 93.33 89.05
ETN[3] 81.82 92.00 97.00 94.00 79.46 96.00 90.05

SAFN[22] 79.5 90.7 93.0 90.3 77.8 94.0 87.5
DMP [16] 82.4 94.5 96.7 94.3 78.7 96.4 90.5

BiFine 84.38 94.34 97.67 95.34 82.91 97.34 91.99

4.2 Experimental Results

Results Analysis on ImageCLEF. The analytical results on the
ImageCLEF dataset, as shown in table 1. In the rigorous tasks, BiFine
notably excels, especially in the C → I task with a 92.57% accu-
racy, eclipsing DRMEA [17] by 2.07%.This improvement is credited
to BiFine’s bilateral fine-grained domain alignment that maintains
target data adaption direction, unlike DRMEA’s risk-prone pseudo
labels. In tasks like C → P , BiFine’s selective source class weight-
ing circumvents the pitfalls of negative transfer that SAFN [22] en-
counters, leading to a substantial 5.11% accuracy improvement by
focusing on the shared classes and utilizing a more precise sample
and domain adaptation strategy.

Results Analysis on Office-31. BiFine’s performance on Office-
31 dataset’s are reported in table 3. Achieving an accuracy of 97.22%
in the A → W task, BiFine outperforms the ETN [3] by 2.70%,
showcasing the advantage of its class-specific weighting mechanism
which precisely discriminates features relevant to the target domain.
Additionaly, in fig. 4, BiFine converges faster than ETN even though
the maximum accuracy is the same. Furthermore, BiFine’s robust
feature space alignment exceeds DARL [4] and PADA [2], espe-
cially in the D → A task with an accuracy of 95.46%, which is
a significant increase over DARL’s 94.57%. Overall, BiFine presents
an impressive average accuracy of 97.78% across tasks,which shows
effectively mitigates domain shift and avoids the negative transfer.

Results Analysis on Caltech-office. The results on Caltech-office
is shown in table 2. In the C10 → A5 task, BiFine achieves an accu-
racy of 96.98%, which is 1.55% higher than DAPDA’s [12] method.
This accurate class alignment demonstrates BiFine’s superior abil-
ity in situations where methods such as DAPDA may not be able
to reach due to their rigid alignment strategies. Furthermore, in the
W10 → C5 task, BiFine’s 93.92% accuracy, a significant 2.92% im-
provement over the AR method, showcases its flexible bidirectional
fine-grained alignment and robustness against negative transfer.

4.3 Feature Visualization

The effectiveness of the BiFine approach is visualized using t-SNE
[6] for the A → W task of the Office-31 dataset, as shown in fig. 3.
Initially, the use of ResNet-50 for feature embeddings results in a
scattered distribution, suggesting a lack of clear domain alignment,
especially in the A → W scenario. This scattered distribution could
potentially lead to misclassification. However, after applying BiFine,
there is a noticeable improvement. The embeddings show not only
a more compact intra-class grouping but also a closer alignment be-
tween the centroids of shared classes, marked as T0-T9 and S0-S9.
This improvement indicates that BiFine effectively promote class-
wise separation and reduce negative transfer.

4.4 Ablation Study

In our ablation studies, we evaluated the components of the BiFine
framework, with findings summarized in table 4. The implementa-
tion of the SPW module alone slightly improved performance to
95.83%, highlighting its role in emphasizing shared class features. In
contrast, using only the CSD module notably increased accuracy to
96.18%, demonstrating its effectiveness in aligning domain features
and minimizing intra-class variations. Combining SPW and CSD in
the BiFine framework led to a significant performance boost, reach-
ing an average accuracy of 96.49%. This was particularly evident
in complex tasks like C10 → A5 and W10 → C5, where this
dual approach was highly effective. The BiFine framework, through
SPW, adeptly filters outlier classes from the source domain to miti-
gate negative transfer. Simultaneously, CSD facilitates bilateral fine-
grained alignment, accommodating label space shifts in Partial Do-
main Adaptation (PDA) scenarios.

5 CONCLUSION

In this paper, we present a Bilateral Fine-Grained Alignment Net-
work (BiFine) for PDA. BiFine stands out by implementing a dual-
channel architecture for bilateral adaptation at both the domain and
sample levels. The BIFINE’s Shared-Private Weighting (SPW) com-
ponent dynamically adjusts class weights, reducing negative trans-
fer, while the Centroid-Based Similarity Discriminator (CSD) en-
sures bilateral fine-grained alignment. These mechanisms work in
adversarial training to significantly improve the performance of PDA
tasks. Extensive experiments on datasets such as ImageCLEF, Office-
31 show that BiFine achieves average classification accuracies of
91.99% and 97.78% respectively, surpassing the performance of
original setting by 1.94% and 1.02%.
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